Author Bibliographies
Publications by Ann M. Fridlind
This citation list includes papers published while the author has been on staff at the NASA Goddard Institute for Space Studies. It may include some publications based on research conducted prior to their having joined the institute.
Submitted / In Review
Using machine learning to generate a GISS ModelE calibrated physics ensemble (CPE). J. Adv. Model. Earth Syst., submitted.
, , Q. Yang, , , , , , , A. Behrangi, S.J. Camargo, , , , and J.D.O. Strong, 2024:Warm-phase microphysical evolution in large eddy simulations of tropical cumulus congestus: Constraining drop size distribution evolution using polarimetery retrievals and a thermal-based framework. Atmos. Chem. Phys., submitted.
, , , B. van Diedenhoven, Q. Xiao, J. Wang, T. Matsui, D. Hernandez-Deckers, and P. Lawson, 2024:Measurement report: A survey of meteorological and cloud properties during ACTIVATE's postfrontal flights and their suitability for Lagrangian case studies. Atmos. Chem. Phys., submitted.
, , , , , S. Chellappan, D. Painemal, P. Zuidema, C. Voigt, S. Kirschler, and A. Sorooshian, 2024:2024
Observational constraint on a feedback from supercooled clouds reduces projected warming uncertainty. Commun. Earth Environ., 5, 181, doi:10.1038/s43247-024-01339-1.
, , , I. Silber, , M. Zelinka, H. Chepfer, T. Khadir, and R. Roehrig, 2024:Better constraining supercooled clouds could reduce projected warming spread. In Radiation Processes in the Atmosphere and Ocean, 4–8 July 2022, Thessaloniki, Greece, AIP Conference Proceedings, vol. 2988, AIP Publishing, p. 070009, doi:10.1063/5.0183626.
, , , I. Silber, , M.D. Zelinka, and H. Chepfer, 2024:Kleese van Dam, K., A. Schlosser, J. Schmutz, B. Bond-Lamberty, K. Fangan, A Unified Data Infrastructure for Biological and Environmental Research: A Report from the BER Advisory Committee. DOE/SC-0214. U.S. Department of Energy, Office of Science, Biological and Environmental Research Program, doi:10.2172/2331276.
, S. Gregurick, D. Niyogi, D. Segre, and P. Weisenhorn, 2024:Korolev, A., Z. Qu, J. Milbrandt, I. Heckman, M. Cholette, M. Wolde, C. Nguyen, G. McFarquhar, P. Lawson, and High ice water content in tropical mesoscale convective systems (a conceptual model). Atmos. Chem. Phys., 24, no. 20, 11849-11881, doi:10.5194/acp-24-11849-2024.
, 2024:Matsui, T., D. Hernandez-Deckers, S. Giangrande, T. Biscaro, A thermal-driven graupel generation process to explain dry-season convective vigor over the Amazon. Atmos. Chem. Phys., 24, no. 18, 10793-10814, doi:10.5194/acp-24-10793-2024.
, and S. Braun, 2024:Mroz, K., A. Battaglia, and Enhancing consistency of microphysical properties of precipitation across the melting layer in the Dual-frequency Precipitation Radar data. Atmos. Meas. Tech., 17, no. 5, 1577-1597, doi:10.5194/amt-17-1577-2024.
, 2024:Mülmenstädt, J., Can general circulation models (GCMs) represent cloud liquid water path adjustments to aerosol-cloud interactions? Atmos. Chem. Phys., 24, no. 23, 13633-13652, doi:10.5194/acp-24-13633-2024.
, , M. Huang, P.-L. Ma, N. Mahfouz, , S.M. Burrows, M.W. Christensen, S. Dipu, A. Gettelman, L.R. Leung, , J. Quaas, A.C. Varble, H. Wang, K. Zhang, and Y. Zheng, 2024:Mülmenstädt, J., E. Gryspeerdt, S. Dipu, J. Quaas, General circulation models simulate negative liquid water path-droplet number correlations, but anthropogenic aerosols still increase simulated liquid water path. Atmos. Chem. Phys., 24, no. 12, 7331-7345, doi:10.5194/acp-24-7331-2024.
, , , , A. Gettelman, Y. Ming, Y. Zheng, P.-L. Ma, H. Wang, K. Zhang, M.W. Christensen, A.C. Varble, L.R. Leung, X. Liu, D. Neubauer, D.G. Partridge, P. Stier, and T. Takemura, 2024:Williams, A.S., J.L. Dedrick, L.M. Russell, Aerosol size distribution properties associated with cold-air outbreaks in the Norwegian Arctic. Atmos. Chem. Phys., 24, no. 20, 11791-11805, doi:10.5194/acp-24-11791-2024.
, I. Silber, , B. Swanson, P.J. DeMott, P. Zieger, and R. Krejci, 2024:2023
Knopf, D.A., I. Silber, N. Riemer, A 1D model for nucleation of ice from aerosol particles: An application to a mixed-phase Arctic stratus cloud layer. J. Adv. Model. Earth Syst., 15, no. 10, e2023MS003663, doi:10.1029/2023MS003663.
, and , 2023:Earth-system-model evaluation of cloud and precipitation occurrence for supercooled and warm clouds over the Southern Ocean's Macquarie Island. Atmos. Chem. Phys., 23, no. 16, 9037-9069, doi:10.5194/acp-23-9037-2023.
, , I. Silber, , , J. Mülmenstädt, A. Protat, S. Alexander, and A. McDonald, 2023:On the impact of a dry intrusion driving cloud-regime transitions in a mid-latitude cold-air outbreak. J. Atmos. Sci., 80, no. 12, 2881-2896, doi:10.1175/JAS-D-23-0040.1.
, , , , , D. Painemal, and , 2023:2022
Diamond, M.S., P.E. Saide, P. Zuidema, Cloud adjustments from large-scale smoke-circulation interactions strongly modulate the southeast Atlantic stratocumulus-to-cumulus transition. Atmos. Chem. Phys., 22, no. 18, 12113-12151, doi:10.5194/acp-22-12113-2022.
, S.J. Doherty, , H. Gordon, C. Howes, J. Kazil, T. Yamaguchi, J. Zhang, G. Feingold, and R. Wood, 2022:Hernandez-Deckers, D., T. Matsui, and Updraft dynamics and microphysics: On the added value of the cumulus thermal reference frame in simulations of aerosol-deep convection interactions. Atmos. Chem. Phys., 22, no. 2, 711-724, doi:10.5194/acp-22-711-2022.
, 2022:McCann, M., P. Reed, E. Foufoula-Georgiou, Chapter 8. Strategies for people, partnerships, and productivity. In U.S. Scientific Leadership: Addressing Energy, Ecosystems, Climate, and Sustainable Prosperity: Report from the BERAC Subcommittee on International Benchmarking, DOE/SC-0208. M. McCann and P. Reed, Eds., U.S. D.O.E., Biological and Environmental Research Advisory Committee, pp. 122-137, doi:10.2172/1895129.
, M.N. Goosseff, M. Kleber, A. Rogers, T. Scheiebe, M.S. Torn, and S. Wullschleger, 2022:Silber, I., R.C. Jackson, The Earth Model Column Collaboratory (EMC2) v1.1: An open-source ground-based lidar and radar instrument simulator and subcolumn generator for large-scale models. Geosci. Model Dev., 15, no. 2, 901-927, doi:10.5194/gmd-15-901-2022.
, , S. Collis, J. Verlinde, and J. Ding, 2022:Dilution of boundary layer cloud condensation nucleus concentrations by free tropospheric entrainment during marine cold air outbreaks. Geophys. Res. Lett., 49, no. 11, e2022GL098444, doi:10.1029/2022GL098444.
, , , , E.C. Crosbie, S. Kirschler, R.H. Moore, D. Painemal, C.E. Robinson, C. Seethala, M.A. Shook, C. Voigt, E.L. Winstead, L.D. Ziemba, P. Zuidema, and A. Sorooshian, 2022:Tridon, F., I. Silber, A. Battaglia, S. Kneifel, Highly supercooled riming and unusual triple-frequency radar signatures over McMurdo Station, Antarctica. Atmos. Chem. Phys., 22, no. 18, 12467-12491, doi:10.5194/acp-22-12467-2022.
, P. Kalogeras, and R. Dhillon, 2022:Weyant, J., Chapter 7. Integrative science. In U.S. Scientific Leadership: Addressing Energy, Ecosystems, Climate, and Sustainable Prosperity: Report from the BERAC Subcommittee on International Benchmarking, DOE/SC-0208. M. McCann and P. Reed, Eds., U.S. D.O.E., Biological and Environmental Research Advisory Committee, pp. 103-121, doi:10.2172/1895129.
, A.A. Campbell, J. Pett-Ridge, G.P. Robertson, G. Stacey, and D. van Vuuren, 2022:Xie, S., Chapter 5. Climate science. In U.S. Scientific Leadership: Addressing Energy, Ecosystems, Climate, and Sustainable Prosperity: Report from the BERAC Subcommittee on International Benchmarking, DOE/SC-0208. M. McCann and P. Reed, Eds., U.S. D.O.E., Biological and Environmental Research Advisory Committee, pp. 63-82, doi:10.2172/1895129.
, K. Keller, G.A. Meehl, and J. Quaas, 2022:2021
Snow reconciles observed and simulated phase partitioning and doubles cloud feedback. Geophys. Res. Lett., 48, no. 20, e2021GL094876, doi:10.1029/2021GL094876.
, , , I. Silber, and , 2021:Evidence that horizontal moisture advection regulates the ubiquitous amplification of rainfall variability over tropical oceans. J. Atmos. Sci., 78, no. 2, 529-547, doi:10.1175/JAS-D-20-0201.1.
, M. Biasutti, and , 2021:Knopf, D.A., K.R. Barry, T.A. Brubaker, L.G. Jahl, K.A. Jankowski, J. Li, Y. Lu, L.W. Monroe, K.A. Moore, F.A. Rivera-Adorno, K.A. Sauceda, Y. Shi, J.M. Tomlin, H.S.K. Vepuri, P. Wang, N.N. Lata, E.J.T. Levin, J.M. Creamean, T.C.J. Hill, S. China, P.A. Alpert, R.C. Moffet, N. Hiranuma, R.C. Sullivan, Aerosol ice formation closure: A Southern Great Plains field campaign. Bull. Amer. Meteorol. Soc., 102, no. 10, E1952-E1971, doi:10.1175/BAMS-D-20-0151.1.
, M. West, N. Riemer, A. Laskin, P.J. DeMott, and X. Liu, 2021:An evaluation of size-resolved cloud microphysics scheme numerics for use with radar observations. Part II: Condensation and evaporation. J. Atmos. Sci., 78, no. 5, 1629-1645, doi:10.1175/JAS-D-20-0213.1.
, , and , 2021:Marinescu, P.J., S.C. van den Heever, M. Heikenfeld, A.I. Barrett, C. Barthlott, C. Hoose, J. Fan, Impacts of varying concentrations of cloud condensation nuclei on deep convective cloud updrafts — A multimodel assessment. J. Atmos. Sci., 78, no. 4, 1147-1172, doi:10.1175/JAS-D-20-0200.1.
, T. Matsui, A.K. Miltenberger, P. Stier, B. Vie, B.A. White, and Y. Zhang, 2021:Redemann, J., R. Wood, P. Zuidema, S.J. Doherty, B. Luna, S.E. LeBlanc, M.S. Diamond, Y. Shinozuka, I.Y. Chang, R. Ueyama, L. Pfister, J. Ryoo, A.N. Dobracki, A.M. da Silva, K.M. Longo, M.S. Kacenelenbogen, C.J. Flynn, K. Pistone, N.M. Knox, S.J. Piketh, J.M. Haywood, P. Formenti, M. Mallet, P. Stier, An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: Aerosol-cloud-radiation interactions in the Southeast Atlantic basin. Atmos. Chem. Phys., 21, no. 3, 1507-1563, doi:10.5194/acp-21-1507-2021.
, , , G.R. Carmichael, P.E. Saide, G.A. Ferrada, S.G. Howell, S. Freitag, , B.N. Holben, K.D. Knobelspiesse, S. Tanelli, T.S. L'Ecuyer, A.M. Dzambo, O.O. Sy, G.M. McFarquhar, M.R. Poellot, S. Gupta, J.R. O'Brien, A. Nenes, M.E. Kacarab, J.P.S. Wong, J.D. Small-Griswold, K.L. Thornhill, D. Noone, J.R. Podolske, K.S. Schmidt, P. Pilewskie, H. Chen, S.P. Cochrane, A.J. Sedlacek, T.J. Lang, E. Stith, M. Segal-Rozenhaimer, R.A. Ferrare, S.P. Burton, C.A. Hostetler, D.J. Diner, S.E. Platnick, J.S. Myers, K.G. Meyer, D.A. Spangenberg, H. Maring, and L. Gao, 2021:Russell, L.M., D. Lubin, I. Silber, E. Eloranta, J. Muelmenstaedt, A. Aiken, D. Wang, M. Petters, M. Miller, Eastern Pacific Cloud Aerosol Precipitation Experiment (EPCAPE) Science Plan. DOE/SC-ARM-21-009. U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, doi:10.2172/1804710.
, , M. Witte, M. Lebsock, D. Painemal, R. Chang, J. Liggio, and M. Wheeler, 2021:Silber, I., The prevalence of precipitation from polar supercooled clouds. Atmos. Chem. Phys., 21, no. 5, 3949-3971, doi:10.5194/acp-21-3949-2021.
, J. Verlinde, , , and D.A. Knopf, 2021:Teixeira, J., J.R. Piepmeier, A.R. Nehrir, C.O. Ao, S.S. Chen, C.A. Clayson, Toward a Global Planetary Boundary Layer Observing System: The NASA PBL Incubation Study Team Report. NASA PBL Incubation Study Team.
, M. Lebsock, W. McCarty, H. Salmun, J.A. Santanello, D.D. Turner, Z. Wang, and X. Zeng, 2021:Preconditioning of overcast-to-broken cloud transitions by riming in marine cold air outbreaks. Atmos. Chem. Phys., 21, no. 15, 12049-12067, doi:10.5194/acp-21-12049-2021.
, , and , 2021:2020
Vertical profiles of droplet size distributions derived from cloud-side observations by the Research Scanning Polarimeter: Tests on simulated data. Atmos. Res., 239, 104924, doi:10.1016/j.atmosres.2020.104924.
, D.J. Miller, C. Rajapakshe, , , , , and Z. Zhang, 2020:A second-order closure turbulence model: New heat flux equations and no critical Richardson number. J. Atmos. Sci., 77, no. 8, 2743-2759, doi:10.1175/JAS-D-19-0240.1.
, , , , , , , , , and , 2020:Knopf, D.A., P. DeMott, J. Creamean, T. Hill, N Riemer, N. Hiranuma, A. Laskin, R. Sullivan, Aerosol-Ice Formation Closure Pilot Study (AEROICESTUDY) Field Campaign Report. DOE/SC-ARM-20-017. U.S. Department of Energy Office of Science, doi:10.2172/1691464.
, X. Liu, and M. West, 2020:Korolev, A., I. Heckman, M. Wolde, A new look at the environmental conditions favorable to secondary ice production. Atmos. Chem. Phys., 20, 1391-1429, doi:10.5194/acp-20-1391-2020.
, , L. Ladino, P. Lawson, J. Milbrandt, and E. Williams, 2020:Lubin, D., D. Zhang, I. Silber, R.C. Scott, P. Kalogeras, A. Battaglia, D.H. Bromwich, M. Cadeddu, E. Eloranta, AWARE: The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment. Bull. Amer. Meteorol. Soc., 101, no. 7, E1069-E1091, doi:10.1175/BAMS-D-18-0278.1.
, A. Frossard, K. Hines, S. Kneifel, W.R. Leaitch, W. Lin, J. Nicolas, H. Powers, P.K. Quinn, P. Rowe, L.M. Russell, S. Sharma, J. Verlinde, and A.M. Vogelmann, 2020:Molongwane, C., M.-J.M. Bopape, Sensitivity of Botswana Ex-Tropical Cyclone Dineo rainfall simulations to cloud microphysics scheme. Afr. Acad. Sci. Open Res., 3, 30, doi:10.12688/aasopenres.13062.1.
, T. Motshegwa, T. Matsui, E. Phaduli, B. Sehurutshi, and R. Maisha, 2020:Morrison, H., Confronting the challenge of modeling cloud and precipitation microphysics. J. Adv. Model. Earth Syst., 12, no. 8, e2019MS001689, doi:10.1029/2019MS001689.
, , W.W. Grabowski, J.Y. Harrington, C. Hoose, A. Korolev, M.R. Kumjian, J.A. Milbrandt, H. Pawlowska, D.J. Posselt, O.P. Prat, K.J. Reimel, S.-I. Shima, , and L. Xue, 2020:Quaas, J., A. Arola, Constraining the Twomey effect from satellite observations: Issues and perspectives. Atmos. Chem. Phys., 20, no. 23, 15079-15099, doi:10.5194/acp-20-15079-2020.
, M. Christensen, H. Deneke, A.M.L. Ekman, G. Feingold, , E. Gryspeerdt, O. Hasekamp, Z. Li, A. Lipponen, P.-L. Ma, J. Mülmenstädt, J. Penner, D. Rosenfeld, R. Schrödner, , O. Sourdeval, P. Stier, M. Tesche, , and M. Wendisch, 2020:Silber, I., Non-turbulent liquid-bearing polar clouds: Observed frequency of occurrence and simulated sensitivity to gravity waves. Geophys. Res. Lett., 125, no. 10, e2020GL087099, doi:10.1029/2020GL087099.
, J. Verlinde, L.M. Russell, and , 2020:Somses, S., M.-J.M. Bopape, T. Ndarana, Convection parametrization and multi-nesting dependence of a heavy rainfall event over Namibia with Weather Research and Forecasting (WRF) model. MDPI Climate, 8, no. 10, 112, doi:10.3390/cli8100112.
, T. Matsui, E. Phaduli, A. Limbo, S. Maikhudumu, R. Maisha, and E. Rakate, 2020:Global statistics of cloud top ice microphysical and optical properties. J. Geophys. Res. Atmos., 125, no. 6, e2019JD031811, doi:10.1029/2019JD031811.
, , , , and J. Riedi, 2020:2019
Evaluating models' response of tropical low clouds to SST forcings using CALIPSO observations. Atmos. Chem. Phys., 19, 2813-2832, doi:10.5194/acp-19-2813-2019.
, , , , , , , and , 2019:Use of polarimetric radar measurements to constrain simulated convective cell evolution: A pilot study with Lagrangian tracking. Atmos. Meas. Tech., 12, 2979-3000, doi:10.5194/amt-12-2979-2019.
, , S. Collis, S.E. Giangrande, R.C. Jackson, X. Li, T. Matsui, R. Orville, M.H. Picel, D. Rosenfeld, A. Ryzhkov, R. Weitz, and P. Zhang, 2019:Ghate, V.P., P. Kollias, S. Crewell, The Second ARM Training and Science Application Event: Training the next generation of atmospheric scientists. Bull. Amer. Meteorol. Soc., 100, no. 1, ES5-ES9, doi:10.1175/BAMS-D-18-0242.1.
, T. Heus, U. Löhnert, M. Maahn, G.M. McFarquhar, D. Moisseev, M. Oue, M. Wendisch, and C. Williams, 2019:An evaluation of size-resolved cloud microphysics scheme numerics for use with radar observations. Part I: Collision-coalescence. J. Atmos. Sci., 76, no. 1, 247-263, doi:10.1175/JAS-D-18-0174.1.
, , and , 2019:Silber, I., Persistent supercooled drizzle at temperatures below -25°C observed at McMurdo Station, Antarctica. J. Geophys. Res. Atmos., 124, no. 20, 10878-10895, doi:10.1029/2019JD030882.
, J. Verlinde, , Y.-S. Chen, D.H. Bromwich, S.-H. Wang, M. Cadeddu, and E.W. Eloranta, 2019:Silber, I., J. Verlinde, S.-H. Wang, D.H. Bromwick, Cloud influence on ERA5 and AMPS surface downwelling longwave radiation biases in West Antarctica. J. Climate, 32, no. 22, 7935-7949, doi:10.1175/JCLI-D-19-0149.1.
, M. Cadeddu, E.W. Eloranta, and C.J. Flynn, 2019:2018
Chen, Y., J. Verlinde, E. Clothiaux, On the forward modeling of radar Doppler spectrum width from LES: Implications for model evaluation. J. Geophys. Res. Atmos., 123, no. 14, 7444-7461, doi:10.1029/2017JD028104.
, , M. Chamecki, P. Kollias, M.P. Kirkpatrick, B.-C. Chen, G. Yu, and A. Avramov, 2018:Chaper 7 — Simulations of Arctic mixed-phase boundary layer clouds: Advances in understanding and outstanding questions. In Mixed-Phase Clouds: Observations and Modeling. C. Andronache, Ed., Elsevier, pp. 153-183, doi:10.1016/B978-0-12-810549-8.00007-6.
, and , 2018:Grosvenor, D.P., O. Souderval, P. Zuidema, Remote sensing of cloud droplet number concentration: Review of current and perspectives for new approaches. Rev. Geophys., 56, no. 2, 409-453, doi:10.1029/2017RG000593.
, , R. Bennartz, R. Boers, , J.C. Chiu, M. Christensen, H. Deneke, M. Diamond, G. Feingold, , A. Hünerbein, C. Knist, P. Kollias, A. Marshak, D. McCoy, D. Merk, D. Painemal, J. Rausch, D. Rosenfeld, H. Russchenberg, P. Seifert, , P. Stier, , M. Wendisch, F. Werner, R. Wood, Z. Zhang, and J. Quaas, 2018:Lamer, K., (GO)2-SIM: A GCM-oriented ground-observation forward-simulator framework for an objective evaluation of cloud and precipitation phase. Geosci. Model Dev., 11, 4195-4214, doi:10.5194/gmd-11-4195-2018.
, , P. Kollias, E.E. Clothiaux, and , 2018:Zhou, X., Simulation of mesoscale cellular convection in marine stratocumulus. Part I: Drizzling conditions. J. Atmos. Sci., 75, 257-274, doi:10.1175/JAS-D-17-0070.1.
, , and P. Kollias, 2018:2017
Derivation of aerosol profiles for MC3E convection studies and use in simulations of the 20 May squall line case. Atmos. Chem. Phys., 17, 5947-5972, doi:10.5194/acp-17-5947-2017.
, X. Li, D. Wu, , , W.-K. Tao, G.M. McFarquhar, W. Wu, X. Dong, J. Wang, A. Ryzhkov, P. Zhang, M.R. Poellot, A. Neumann, and J.M. Tomlinson, 2017:Ladino, L.A., A. Korolev, I. Heckman, M. Wolde, On the role of ice-nucleating aerosol in the formation of ice particles in tropical mesoscale convective systems. Geophys. Res. Lett., 44, no. 3, 1574-1582, doi:10.1002/2016GL072455.
, and , 2017:Quaas, J., D. Rosenfeld, M. Andreae, G. Feingold, First results from ACPC case studies on aerosol effects on shallow and deep clouds. GEWEX News, 27, no. 2, 7-8.
, R. Kahn, P. Stier, K. Suzuki, S. van den Heever, and R. Wood, 2017:Use of cloud radar Doppler spectra to evaluate stratocumulus drizzle size distributions in large-eddy simulations with size-resolved microphysics. J. Appl. Meteorol. Climatol., 56, no. 12, 3263-3283, doi:10.1175/JAMC-D-17-0100.1.
, , , , P. Kollias, D.B. Mechem, H.E. Chandler, E. Luke, R. Wood, M.K. Witte, P.Y. Chuang, and J.K. Ayers, 2017:Zhou, X., Impacts of solar-absorbing aerosol layers on the transition of stratocumulus to trade cumulus clouds. Atmos. Chem. Phys., 17, 12725-12742, doi:10.5194/acp-17-12725-2017.
, , R. Wood, and P. Kollias, 2017:2016
Derivation of physical and optical properties of midlatitude cirrus ice crystals for a size-resolved cloud microphysics model. Atmos. Chem. Phys., 16, 7251-7283, doi:10.5194/acp-16-7251-2016.
, R. Atlas, , J. Um, G.M. McFarquhar, , E.J. Moyer, and R.P. Lawson, 2016:Krueger, S.K., H. Morrison, and Cloud-resolving modeling: ARM and the GCSS story. In The Atmospheric Radiation Measurement Program: The First 20 Years. D.D. Turner and R.G. Ellingson, Eds., AMS Meteorological Monograph 57, American Meteorological Society, pp. 25.1-25.16, doi:10.1175/AMSMONOGRAPHS-D-15-0047.1.
, 2016:Quaas, J., D. Rosenfeld, ACPC Initiative to identify signatures of aerosol-cloud interactions in high-resolution modeling and observations. GEWEX News, 26, no. 3, 5-7.
, R. Wood, G. Feingold, S. van den Heever, and P. Stier, 2016:Strapp, J.W., A. Korolev, T. Ratvasky, R. Potts, A. Protat, P. May, The High Ice Water Content Study of Deep Convective Clouds: Report on Science and Technical Plan. DOT/FAA/TC-14/31. Federal Aviation Administration.
, , P. Minnis, J. Haggerty, J.T. Riley, L.E. Lilie, and G.A. Isaac, 2016:Tao, W.-K., D. Wu, S.K. Lang, J.-D. Chern, C. Peters-Lidard, High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Part I: Comparisons between Goddard microphysics schemes and observations. J. Geophys. Res. Atmos., 121, no. 3, 1278-1305, doi:10.1002/2015JD023986.
, and T. Matsui, 2016:On averaging aspect ratios and distortion parameters over ice crystal population ensembles for estimating effective scattering properties. J. Atmos. Sci., 73, no. 2, 775-787, doi:10.1175/JAS-D-15-0150.1.
, , , and , 2016:Vertical variation of ice particle size in convective cloud tops. Geophys. Res. Lett., 43, no. 9, 4586-4593, doi:10.1002/2016GL068548.
, , , , and J. Yorks, 2016:Polarimetric radar signatures of deep convection: Columns of specific differential phase observed during MC3E. Mon. Weather Rev., 144, no. 2, 737-758, doi:10.1175/MWR-D-15-0100.1.
, , , S. Collis, J.J. Helmus, D.R. MacGorman, K. North, P. Kollias, and D.J. Posselt, 2016:Wood, R., M.P. Jensen, J. Wang, C.S. Bretherton, S.M. Burrows, Planning the next decade of coordinated research to better understand and simulate marine low clouds. Bull. Amer. Meteorol. Soc., 97, no. 9, 1699-1702, doi:10.1175/BAMS-D-16-0160.1.
, , S.J. Ghan, V.P. Ghate, P. Kollias, S.K. Kruger, R.L. McGraw, M.A. Miller, D. Painemal, L.M. Russell, S.E. Yuter, and P. Zuidema, 2016:2015
High ice water content at low radar reflectivity near deep convection — Part 2. Evaluation of microphysical pathways in updraft parcel simulations. Atmos. Chem. Phys., 15, 11729-11751, doi:10.5194/acp-15-11729-2015.
, , A. Grandlin, F. Dezitter, M. Weber, J.W. Strapp, and A. Korolev, 2015:Endo, S., RACORO continental boundary layer cloud investigations. Part II: Large-eddy simulations of cumulus clouds and evaluation with in-situ and ground-based observations. J. Geophys. Res. Atmos., 120, no. 12, 5993-6014, doi:10.1002/2014JD022525.
, W. Lin, A.M. Vogelmann, T. Toto, , G.M. McFarquhar, R.C. Jackson, and Y. Liu, 2015:High ice water content at low radar reflectivity near deep convection — Part 1. Consistency of in situ and remote-sensing observations with stratiform rain column simulations. Atmos. Chem. Phys., 15, 11713-11728, doi:10.5194/acp-15-11713-2015.
, , A. Grandlin, F. Dezitter, M. Weber, J.W. Strapp, and A. Korolev, 2015:Jackson, R.C., G.M. McFarquhar, The dependence of cirrus gamma size distributions expressed as volumes in N0-λ-μ phase space and bulk cloud properties on environmental conditions: Results from Small Ice Particles in Cirrus Experiment (SPARTICUS). J. Geophys. Res. Atmos., 120, no. 19, 10351-10377, doi:10.1002/2015JD023492.
, and , 2015:Lin, W., Y. Liu, A.M. Vogelmann, RACORO continental boundary layer cloud investigations. Part III: Separation of parameterization biases in single-column model CAM5 simulations of shallow cumulus. J. Geophys. Res. Atmos., 120, no. 12, 6015-6033, doi:10.1002/2014JD022524.
, S. Endo, H. Song, S. Feng, T. Toto, Z. Li, and M. Zhang, 2015:Properties of a mesoscale convective system in context of an isentropic analysis. J. Atmos. Sci., 72, no. 5, 1945-1962, doi:10.1175/JAS-D-14-0139.1.
, O.M. Pauluis, , and , 2015:Quaas, J., D. Rosenfeld, Workshop on the Aerosols-Clouds-Precipitation and Climate (ACPC) Initiative. GEWEX News, 25, no. 2, 11-12.
, and R. Wood, 2015:Vogelmann, A.M., RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings. J. Geophys. Res. Atmos., 120, no. 12, 5962-5992, doi:10.1002/2014JD022713.
, T. Toto, S. Endo, W. Lin, J. Wang, S. Feng, Y. Zhang, D.D Turner, Y. Liu, Z. Li, S. Xie, , M. Zhang, and M. Khairoutdinov, 2015:Wang, S., A. Sobel, Simulations of cloud-radiation interaction using large-scale forcing derived from the CINDY/DYNAMO northern sounding array. J. Adv. Model. Earth Syst., 7, no. 3, 1472-1498, doi:10.1002/2015MS000461.
, Z. Feng, J.M. Comstock, P. Minnis, and M. Nordeen, 2015:2014
Klein, S., J. Petch, C. Bretherton, Global Atmospheric System Study Panel (GASS) activities at the 7th International GEWEX Conference. GEWEX News, 24, no. 3, 8-9.
, A. Lock, E. Morrison, R. Pincus, P. Siebesma, B. Shipway, G. Svensson, S. Woolnough, C. Morcrette, and K. Van Weverberg, 2014:Ovchinnikov, M., Intercomparison of large-eddy simulations of Arctic mixed-phase clouds: Importance of ice size distribution assumptions. J. Adv. Model. Earth Syst., 6, no. 1, 223-248, doi:10.1002/2013MS000282.
, A. Avramov, A. Cheng, J. Fan, , S. Ghan, J. Harrington, C. Hoose, A. Korolev, G.M. McFarquhar, H. Morrison, M. Paukert, J. Savre, B.J. Shipway, M.D. Shupe, A. Solomon, and K. Sulia, 2014:Petch, J., A. Hill, L. Davies, Evaluation of intercomparisons of four different types of model simulating TWP-ICE. Q. J. Roy. Meteorol. Soc., 140, 826-837, doi:10.1002/qj.2192.
, C. Jakob, Y. Lin, S. Xie, and P. Zhu, 2014:A flexible parameterization for shortwave optical properties of ice crystals. J. Atmos. Sci., 71, no. 5, 1763-1782, doi:10.1175/JAS-D-13-0205.1.
, , , and , 2014:Variation of ice crystal size, shape and asymmetry parameter in tops of tropical deep convective clouds. J. Geophys. Res. Atmos., 119, no. 20, 11809-11825, doi:10.1002/2014JD022385.
, , , and , 2014:Varble, A., E.J. Zipser, Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations. Part 2: Precipitation microphysics. J. Geophys. Res. Atmos., 119, no. 24, 13919-13945, doi:10.1002/2013JD021372.
, P. Zhu, , J.-P. Chaboureau, J. Fan, A. Hill, B. Shipway, and C. Williams, 2014:Varble, A., E.J. Zipser, Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations. Part 1: Deep convective updraft properties. J. Geophys. Res. Atmos., 119, no. 24, 13891-13918, doi:10.1002/2013JD021371.
, P. Zhu, , J.-P. Chaboureau, S. Collis, J. Fan, A. Hill, and B. Shipway, 2014:2013
Mace, G.G., D.O. Starr, R. Marchand, S.A. Ackerman, S.E. Platnick, Contemplating synergistic algorithms for the NASA ACE Mission. In Remote Sensing of Clouds and the Atmosphere XVIII and Optics in Atmospheric Propagation and Adaptive Systems XVI, 23-26 Sep. 2013, Dresden, Germany. A. Comeron, E.I. Kassianov, K. Schäfer, K. Stein, and J.D. Gonglewski, Eds., Proc. SPIE, vol. 8890, doi:10.1117/12.2030206.
, S. Cooper, D.G. Vane, and G.L. Stephens, 2013:Rio, C., J.-Y. Grandpeix, F. Hourdin, F. Guichard, F. Couvreux, J.-P. Lafore, Control of deep convection by sub-cloud lifting processes: The ALP closure in the LMDZ5B general circulation model. Clim. Dyn., 40, 2271-2292, doi:10.1007/s00382-012-1506-x.
, , S. Bony, N. Rochetin, R. Roehrig, A. Idelkadi, M.-P. Lefebvre, and I. Musat, 2013:Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements — Part 2: Application to the Research Scanning Polarimeter. Atmos. Chem. Phys., 13, 3185-3203, doi:10.5194/acp-13-3185-2013.
, , , , and T.J. Garrett, 2013:2012
A comparison of TWP-ICE observational data with cloud-resolving model results. J. Geophys. Res., 117, no. D5, D05204, doi:10.1029/2011JD016595.
, , J.-P. Chaboureau, J. Fan, W.W. Grabowski, A. Hill, T.R. Jones, M.M. Khaiyer, G. Liu, P. Minnis, H. Morrison, L. Nguyen, S. Park, J.C. Petch, J.-P. Pinty, C. Schumacher, B. Shipway, A.C. Varble, X. Wu, S. Xie, and M. Zhang, 2012:A FIRE-ACE/SHEBA case study of mixed-phase Arctic boundary-layer clouds: Entrainment rate limitations on rapid primary ice nucleation processes. J. Atmos. Sci., 69, 365-389, doi:10.1175/JAS-D-11-052.1.
, , , , , H. Morrison, P. Zuidema, and M.D. Shupe, 2012:Hallar, A.G., J.A. Huffman, and Biological aerosol effects on clouds and precipitation. Eos Trans. Amer. Geophys. Union, 93, no. 51, 539, doi:10.1029/2012EO510011.
, 2012:Analysis of cloud-resolving simulations of a tropical mesoscale convective system observed during TWP-ICE: Vertical fluxes and draft properties in convective and stratiform regions. J. Geophys. Res., 117, no. D19, D19201, doi:10.1029/2012JD017759.
, C. Rio, , , , O.M. Pauluis, A.C. Varble, and J. Fan, 2012:Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements. Part I: Methodology and evaluation with simulated measurements. Atmos. Meas. Tech., 5, 2361-2374, doi:10.5194/amt-5-2361-2012.
, , , , , P. Yang, and B.A. Baum, 2012:Evaluation of hydrometeor phase and ice properties in cloud-resolving model simulations of tropical deep convection using radiance and polarization measurements. J. Atmos. Sci., 69, 3290-3314, doi:10.1175/JAS-D-11-0314.1.
, , , and , 2012:Zhu, P., J. Dudhia, P. Field, K. Wapler, A limited area model (LAM) intercomparison study of a TWP-ICE active monsoon mesoscale convective event. J. Geophys. Res., 117, no. D11, D11208, doi:10.1029/2011JD016447.
, A. Varble, E. Zipser, J. Petch, M. Chen, and Z. Zhu, 2012:2011
Towards ice formation closure in Arctic mixed-phase boundary layer clouds during ISDAC. J. Geophys. Res., 116, D00T08, doi:10.1029/2011JD015910.
, , , , G. Botta, K. Aydin, J. Verlinde, A.V. Korolev, W. Strapp, G.M. McFarquhar, R. Jackson, S.D. Brooks, A. Glen, and M. Wolde, 2011:Botta, G., K. Aydin, J. Verlinde, Millimeter wave scattering from ice crystal aggregates: Comparing cloud model simulations with X- and Ka-band radar measurements. J. Geophys. Res., 116, D00T04, doi:10.1029/2011JD015909.
, , , G.M. McFarquhar, and M. Wolde, 2011:Estimating the sensitivity of radiative impacts of shallow, broken marine clouds to boundary-layer aerosol size distribution parameter uncertainties for satellite retrieval requirements. J. Atmos. Ocean. Technol., 28, 530-538, doi:10.1175/2010JTECHA1520.1.
, and , 2011:Morrison, H., P. Zuidema, Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE-ACE. J. Adv. Model. Earth Syst., 3, M06003, doi:10.1029/2011MS000066.
, , G. de Boer, J. Fan, , T. Hashino, J.Y. Harrington, Y. Luo, M. Ovchinnikov, and B. Shipway, 2011:Influence of humidified aerosol on lidar depolarization measurements below ice-precipitating Arctic stratus. J. Appl. Meteorol. Climatol., 50, 2184-2192, doi:10.1175/JAMC-D-11-037.1.
, , and , 2011:Varble, A., Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations. Precipitation and cloud structure. J. Geophys. Res., 116, D12206, doi:10.1029/2010JD015180.
, E. Zipser, , J.-P. Chaboureau, J. Fan, A. Hill, S. McFarlane, J.-P. Pinty, and B. Shipway, 2011:2010
Bretherton, C., GCSS workshop on microphysics and polar/precipitating clouds. GEWEX News, 20, no. 4, 17-19.
, H. Morrison, and B. Shipway, 2010:ARM/GCSS/SPARC TWP-ICE CRM Intercomparison Study. NASA-TM-2010-215858. National Aeronautics and Space Administration.
, , J. Petch, P Field, A Hill, G. McFarquhar, S. Xie, and M. Zhang, 2010:2009
Klein, S.A., R.B. McCoy, H. Morrison, Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single-layer cloud. Q. J. Roy. Meteorol. Soc., 135, no. 641, 979-1002, doi:10.1002/qj.416.
, , G. de Boer, M. Chen, J.N.S. Cole, , M. Falk, M.J. Foster, , J.-C. Golaz, T. Hashino, J.Y. Harrington, C. Hoose, M.F. Khairoutdinov, V.E. Larson, X. Liu, Y. Luo, G.M. McFarquhar, S. Menon, R.A.J. Neggers, S. Park, M.R. Poellot, J.M. Schmidt, I. Sednev, B.J. Shipway, M.D. Shupe, D.A. Spangenberg, Y.C. Sud, D.D. Turner, D.E. Veron, K. von Salzen, G.K. Walker, Z. Wang, , S. Xie, X.-M. Xu, F. Yang, and G. Zhang, 2009:An evaluation of ice formation in large-eddy simulations of supercooled Arctic stratocumulus using ground-based lidar and cloud radar. J. Geophys. Res., 114, D10203, doi:10.1029/2008JD011198.
, , , E.W. Eloranta, and G.M. McFarquhar, 2009:2008
Quinn, P.K., T.S. Bates, E. Baum, N. Doubleday, A.M. Fiore, M. Flanner, Short-lived pollutants in the Arctic: Their climate impact and possible mitigation strategies. Atmos. Chem. Phys., 8, 1723-1735, doi:10.5194/acp-8-1723-2008.
, T.J. Garrett, D. Koch, S. Menon, , A. Stohl, and S.G. Warren, 2008:Sayres, D.S., J.B. Smith, J.V. Pittman, E.M. Weinstock, J.G. Anderson, G. Heymsfield, L. Li, Validation and determination of ice water content - radar reflectivity relationships during CRYSTAL-FACE: Flight requirements for future comparisons. J. Geophys. Res., 113, D05208, doi:10.1029/2007JD008847.
, and , 2008:2007
Barth, M.C., S.-W. Kim, C. Wang, K.E. Pickering, L.E. Ott, G. Stenchikov, M. Leriche, S. Cautenet, J.-P. Pinty, C. Barthe, C. Mari, J. Helsdon, R. Farley, Cloud-scale model intercomparison of chemical constituent transport in deep convection. Atmos. Chem. Phys., 7, 4709-4731, doi:10.5194/acp-7-4709-2007.
, , V. Spiridonov, and B. Telenta, 2007:Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment (M-PACE): Part II, Model results. J. Geophys. Res., 112, D24202, doi:10.1029/2007JD008646.
, , G. McFarquhar, G. Zhang, M.R. Poellot, P.J. DeMott, A.J. Prenni, and A.J. Heymsfield, 2007:McFarquhar, G.M., G. Zhang, M.R. Poellot, G.L. Kok, R. McCoy, T. Tooman, Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment (MPACE): Part I, Observations. J. Geophys. Res., 112, D24201, doi:10.1029/2007JD008633.
, and A.J. Heymsfield, 2007:2006
Lopez, J.P., CO signatures in subtropical convective clouds and anvils during CRYSTAL-FACE: An analysis of convective transport and entrainment using observations and a cloud-resolving model. J. Geophys. Res., 111, D09305, doi:10.1029/2005JD006104.
, H.-J. Jost, M. Loewenstein, , T.L. Campos, E.M. Weinstock, D.S. Sayres, J.B. Smith, J.V. Pittman, A.G. Hallar, L.M. Avallone, S.M. Davis, and R.L. Herman, 2006:2005
Heymsfield, A.J., L.M. Miloshevich, C. Schmitt, A. Bansemer, C. Twohy, M.R. Peollot, Homogeneous ice nucleation in subtropical and tropical convection and its influence on cirrus anvil microphysics. J. Atmos. Sci., 62, 41-64, doi:10.1175/JAS-3360.1.
, and H. Gerber, 2005:Jensen, E.J., J.B. Smith, L. Pfister, J.V. Pittman, E.M. Weinstock, D.S. Sayres, R.L. Herman, R.F. Troy, K. Rosenlof, T.L. Thompson, Ice supersaturations exceeding 100% at the cold tropical tropopause: Implications for cirrus formation and dehydration. Atmos. Chem. Phys., 5, 851-862, doi:10.5194/acp-5-851-2005.
, P.K. Hudson, D.J. Cziczo, A.J. Heymsfield, C. Schmitt, and J.C. Wilson, 2005:2004
Evidence for the predominance of mid-tropospheric aerosols as subtropical anvil cloud nuclei. Science, 304, 718-722, doi:10.1126/science.1094947.
, , E.J. Jensen, A.J. Heymsfield, M.R. Poellot, D.E. Stevens, D. Wang, L.M. Miloshevich, D. Baumgardner, R.P. Lawson, J.C. Wilson, R.C. Flagan, J.H. Seinfeld, H.H. Jonsson, T.M. VanReken, V. Varutbangkul, and T.A. Rissman, 2004:Xueref, I., C. Cerbig, Combining a receptor-oriented framework for tracer distributions with a cloud-resolving model to study transport in deep convective clouds: Application to the NASA CRYSTAL-FACE campaign. Geophys. Res. Lett., 31, L14106, doi:10.1029/2004GL019811.
, J.C. Lin, S.C. Wofsy, B.C. Daube, , J.E. Smith, D. Sayres, J. Vellovic, D.G. Baumgardner, D. Wang, E. Weinstock, A.E. Andrews, E.W. Gottlieb, and J.G. Anderson, 2004:2003
Point and column aerosol radiative closure during ACE 1: Effects of particle shape and size. J. Geophys. Res., 108, no. D3, 4094, doi:10.1029/2001JD001553.
, and M.Z. Jacobson, 2003:2000
A study of gas-aerosol equilibrium and aerosol pH in the remote marine boundary layer during the First Aerosol Characterization Experiment (ACE 1). J. Geophys. Res., 105, 17325-17340, doi:10.1029/2000JD900209.
, and M.Z. Jacobson, 2000:Analysis of gas-aerosol partitioning in the Arctic: Comparison of size-resolved equilibrium model results with field data. J. Geophys. Res., 105, 19891-19904, doi:10.1029/2000JD900257.
, M.Z. Jacobson, V.-M. Kerminen, R.E. Hillamo, V. Ricard, and J.-L. Jaffrezo, 2000: