Publication Abstracts

Van Diedenhoven et al. 2016

Van Diedenhoven, B., A.M. Fridlind, B. Cairns, A.S. Ackerman, and J. Yorks, 2016: Vertical variation of ice particle size in convective cloud tops. Geophys. Res. Lett., 43, no. 9, 4586-4593, doi:10.1002/2016GL068548.

A novel technique is used to estimate derivatives of ice effective radius with respect to height near convective cloud tops (dre/dz) from airborne shortwave reflectance measurements and lidar. Values of dre/dz are about -6 micron/km for cloud tops below the homogeneous freezing level, increasing to near 0 µm/km above the estimated level of neutral buoyancy. Retrieved dre/dz compares well with previously documented remote sensing and in situ estimates. Effective radii decrease with increasing cloud top height, while cloud top extinction increases, which is consistent with weaker size sorting in high, dense cloud tops above the level of neutral buoyancy where fewer large particles are present, and with stronger size sorting in lower cloud tops that are less dense. The results also confirm that cloud-top trends of effective radius can generally be used as surrogates for trends with height within convective cloud tops. These results provide valuable observational targets for model evaluation.

Export citation: [ BibTeX ] [ RIS ]

BibTeX Citation

  author={van Diedenhoven, B. and Fridlind, A. M. and Cairns, B. and Ackerman, A. S. and Yorks, J.},
  title={Vertical variation of ice particle size in convective cloud tops},
  journal={Geophys. Res. Lett.},

[ Close ]

RIS Citation

ID  - va00300e
AU  - van Diedenhoven, B.
AU  - Fridlind, A. M.
AU  - Cairns, B.
AU  - Ackerman, A. S.
AU  - Yorks, J.
PY  - 2016
TI  - Vertical variation of ice particle size in convective cloud tops
JA  - Geophys. Res. Lett.
VL  - 43
IS  - 9
SP  - 4586
EP  - 4593
DO  - 10.1002/2016GL068548
ER  -

[ Close ]

➤ Return to 2016 Publications

➤ Return to Publications Homepage