Publication Abstracts

Mrowiec et al. 2015

Mrowiec, A.A., O.M. Pauluis, A.M. Fridlind, and A.S. Ackerman, 2015: Properties of a mesoscale convective system in context of an isentropic analysis. J. Atmos. Sci., 72, no. 5, 1945-1962, doi:10.1175/JAS-D-14-0139.1.

Application of an isentropic analysis of convective motions to a simulated mesoscale convective system is presented. The approach discriminates the vertical mass transport in terms of equivalent potential temperature. The scheme separates rising air at high entropy from subsiding air at low entropy. This also filters out oscillatory motions associated with gravity waves and isolates the overturning motions associated with convection and mesoscale circulation. The mesoscale convective system is additionally partitioned into stratiform and convective regions based on the radar reflectivity field. For each of the subregions, the mass transport derived in terms of height and an isentropic invariant of the flow is analyzed. The difference between the Eulerian mass flux and the isentropic counterpart is a significant and symmetric contribution of the buoyant oscillations to the upward and downward mass fluxes. Filtering out these oscillations results in substantial reduction of the diagnosed downward-to-upward convective mass flux ratio. The analysis is also applied to graupel and snow mixing ratios and number concentrations, illustrating the relationship of the particle formation process to the updrafts.

Export citation: [ BibTeX ] [ RIS ]

BibTeX Citation

  author={Mrowiec, A. A. and Pauluis, O. M. and Fridlind, A. M. and Ackerman, A. S.},
  title={Properties of a mesoscale convective system in context of an isentropic analysis},
  journal={J. Atmos. Sci.},

[ Close ]

RIS Citation

ID  - mr04000e
AU  - Mrowiec, A. A.
AU  - Pauluis, O. M.
AU  - Fridlind, A. M.
AU  - Ackerman, A. S.
PY  - 2015
TI  - Properties of a mesoscale convective system in context of an isentropic analysis
JA  - J. Atmos. Sci.
VL  - 72
IS  - 5
SP  - 1945
EP  - 1962
DO  - 10.1175/JAS-D-14-0139.1
ER  -

[ Close ]

• Return to 2015 Publications

• Return to Publications Homepage