Publication Abstracts

Vogelmann et al. 2015

Vogelmann, A.M., A.M. Fridlind, T. Toto, S. Endo, W. Lin, J. Wang, S. Feng, Y. Zhang, D.D. Turner, Y. Liu, Z. Li, S. Xie, A.S. Ackerman, M. Zhang, and M. Khairoutdinov, 2015: RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings. J. Geophys. Res. Atmos., 120, no. 12, 5962-5992, doi:10.1002/2014JD022713.

Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60 h case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in situ measurements from the Routine AAF (Atmospheric Radiation Measurement (ARM) Aerial Facility) CLOWD (Clouds with Low Optical Water Depth) Optical Radiative Observations (RACORO) field campaign and remote sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing data sets are derived from the ARM variational analysis, European Centre for Medium-Range Weather Forecasts, and a multiscale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in "trial" large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.

Export citation: [ BibTeX ] [ RIS ]

BibTeX Citation

  author={Vogelmann, A. M. and Fridlind, A. M. and Toto, T. and Endo, S. and Lin, W. and Wang, J. and Feng, S. and Zhang, Y. and Turner, D. D. and Liu, Y. and Li, Z. and Xie, S. and Ackerman, A. S. and Zhang, M. and Khairoutdinov, M.},
  title={RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings},
  journal={J. Geophys. Res. Atmos.},

[ Close ]

RIS Citation

ID  - vo03100n
AU  - Vogelmann, A. M.
AU  - Fridlind, A. M.
AU  - Toto, T.
AU  - Endo, S.
AU  - Lin, W.
AU  - Wang, J.
AU  - Feng, S.
AU  - Zhang, Y.
AU  - Turner, D. D.
AU  - Liu, Y.
AU  - Li, Z.
AU  - Xie, S.
AU  - Ackerman, A. S.
AU  - Zhang, M.
AU  - Khairoutdinov, M.
PY  - 2015
TI  - RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings
JA  - J. Geophys. Res. Atmos.
VL  - 120
IS  - 12
SP  - 5962
EP  - 5992
DO  - 10.1002/2014JD022713
ER  -

[ Close ]

➤ Return to 2015 Publications

➤ Return to Publications Homepage