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What is the hiatus?
Recent trends in global mean surface air temperature fall outside 
the 90% range predicted by models using the CMIP5 forcings 
and scenarios (Fyfe and Gillett 2014); this recent period of muted 
warming is dubbed the “hiatus”. #e hiatus has attracted broad 
attention in both the popular press and the scienti!c literature 
(Boyko$ 2014; Hawkins et al. 2014), primarily because of its 
perceived implications for understanding long-term trends (Lewis 
and Curry 2014; Otto et al. 2013). Many hypotheses have been 
o$ered to explain the warming slowdown during the hiatus, and 
comprehensive studies of this period across multiple variables and 
spatial scales will likely improve our understanding of the physical 
mechanisms driving global temperature change and variability. 

We argue, however, that decadal temperature trends by themselves are 
unlikely to constrain future trajectories of global mean temperature 
and that the hiatus does not signi!cantly revise our understanding 
of overall climate sensitivity. Instead, we demonstrate that, because 
of the poorly constrained nature of the hiatus, model-observation 
disagreements over this period may be resolvable via uncertainties 
in the observations, modeled internal variability, forcing estimates, 
or (more likely) some combination of all three factors. We de!ne 
the hiatus interval as 1998–2012, endpoints judiciously chosen 
to minimize observed warming by including the large 1998 El 
Niño event and excluding 2014, an exceptionally warm year. Such 
choices are fundamentally subjective and cannot be considered 

SCHMIDT, GAVIN A. (GISS-6110)



U S  C L I V A R  V A R I A T I O N S

US CLIVAR VARIATIONS   •   Summer 2015   •   Vol. 13, No. 3 26

“random”, so any probabilistic statements regarding the likelihood 
of this occurring need to be made carefully. Using this de!nition, 
the observed global temperature trend estimates from four datasets 
fall outside the 5–95% interval predicted by the CMIP5 models 
(Figure 1a). Here we explore some of the plausible explanations for 
this discrepancy, and show that no unique explanation is likely to 
fully account for the hiatus.

Is the hiatus an artifact of biases in the observations?
#e horizontal lines in Figure 1a show the 1998–2012 surface 
temperature trend in four di$erent observational datasets. #e 
le%-most vertical bar shows the 5–95% con!dence range for the 
trends in the individual CMIP5 historical simulations, each of 
which have been extended to 2012 using the relevant RCP8.5 
simulation. #e observational trends for the HadCRUT4 (Morice 

et al. 2012), GISTEMP (Hansen et al. 2010), NCDC (Karl et al. 
2015) and Cowtan and Way (2014) datasets lie well below this 
range, but if uncertainty in the trend is included, there is some 
overlap. Recent improved accounting for various biases in land 
and ocean temperature measurements have increased trends over 
those initially estimated, and corrections for Arctic coverage bias 
increase them further (Cowtan and Way 2014; Simmons and Poli 
2014). Accounting for known observational biases has revised 
global mean surface temperature trends upward in recent years, 
reducing the magnitude of the apparent anomaly that was seen 
with previous versions of the products (i.e., HadCRUT3).

Is the trend uncertain due to the short time period?
Fi%een years is a relatively short time period. We might therefore 
expect large uncertainties in 1998-2012 global mean surface 
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Figure 1: a) Estimates of 1998–2012 global mean surface temperature trends. Each vertical line derives from a different estimate (from 
OHIW�WR�ULJKW��� L�� WKH�&0,3��HQVHPEOH�� LL��D� WKHRUHWLFDO�HVWLPDWH�DVVXPLQJ�NQRZQ� IRUFLQJ� �IURP� WKH�*,66�(��5�KLVWRULFDO�VLPXODWLRQV���
median TCR, and average model internal variability; iii) as (ii) but with an augmented internal variability; iv) as (ii) but with transient 
climate response (TCR) uncertainty; v) as (ii) but with a strong coupling between the forcing and internal variability; vi) as (ii) but with 
XSGDWHG� IRUFLQJ�HVWLPDWHV��DVVXPLQJ�XQLW�HI¿FDF\� IRU�HDFK� IRUFLQJ���+RUL]RQWDO� OLQHV�DUH� WKH�REVHUYDWLRQDO�HVWLPDWHV� IURP� IRXU�GDWD�
SURGXFWV��DQG�WKH�KRUL]RQWDO�JUD\�EDQGV�VKRZ�WKH��±����FRQ¿GHQFH�LQWHUYDO�RQ�WKH�UHJUHVVLRQ�VORSH�RI�HDFK�REVHUYDWLRQDO�GDWDVHW�RYHU�
the hiatus period. b) Histogram of piControl variability in 15-year trends. c) Forcing timeseries from the GISS-E2-R historical simulations 
(gray and black lines) and an update based on more recent analyses (red line). d) Distribution of TCR uncertainty.
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temperature trends calculated using annual-average, global-
average temperatures due to the short length of the record. #e 
shaded regions in Figure 1a show the 5–95% con!dence interval on 
the regression slope of each observational dataset over the hiatus 
period, assuming no adjustment for autocorrelation in the residuals. 
Each of these regions overlaps the CMIP5 90% con!dence interval, 
indicating that the uncertainties in the observed trend for 1998-
2012 are one plausible scenario for explaining the divergence with 
the CMIP5 model trends.

Is the hiatus compatible with model-estimated internal 
variability?
#e observed global temperature trend may simply be attributable to 
a particular realization of a mode (or modes) of internal variability 
(Huber and Knutti 2014; Marotzke and Forster 2015; Meehl et al. 
2014; Roberts et al. 2015; Watanabe et al. 2014). We do not expect 
free-running coupled models to simulate this exact realization; a 
model may produce hiatus-like trends, but the chances of doing so 
over the period 1998–2012 are very small. Moreover, the CMIP5 
models over 1998–2012 do not constitute perfect ensembles 
designed to incorporate all possible manifestations of internal 
variability. Arguably, the far longer CMIP5 preindustrial control 
(piControl) simulations provide a more comprehensive picture 
of internal variability. Concatenating piControl temperature 
anomalies from multiple models (e.g., Santer et al. 2009) yields a 
single time series of over 6,000 years in duration.1 We calculate 15-
year overlapping trends in this long concatenated time series and 
obtain a probability distribution of trends (Figure 1b). #e width 
σc=0.06°C per decade of this distribution constitutes a reasonable 
estimate of the CMIP5 model ensemble internal variability, or 
noise.2 For individual models, the width ranges from 0.04°C to 
0.14°C per decade.

Suppose that all model climates experienced identical radiative 
forcing, which we will approximate using the RF time series for 
the GISS model (Figure 1c).3 Suppose, moreover, that every model 
has the same transient climate response (TCR) to 2xCO2 of 1.8°C 
(the CMIP5 multimodel mean). In this case, every model would 
experience an identical temperature response to forcing, and any 
intermodel di$erences would be attributable to internal variability. 
To approximate this “model average internal variability,” we add 
to samples drawn from a distribution, where μ=0 and σc is drawn 
from concatenated piControl runs to the expected forced change. 
#e resulting 5–95% interval (second vertical line in Figure 1a) 
appears di$erent from the forced CMIP5 trends, due to unknown 
di$erences in forcing (not all models used the same forcings as 
GISS), known di$erences in response (TCR varies across models), 
and the presence of speci!c manifestations of internal variability 

such as ENSO or the Paci!c Decadal Oscillation (PDO) in the 
historical CMIP5 models. However, given this “best-guess” forcing 
and response, the observed trend overlaps the 90% con!dence 
interval produced by internal variability alone.

Do models underestimate the amplitude of internal 
variability?
It is possible that the 1998–2012 global mean surface temperature 
trend results from some mode of internal variability that is 
poorly simulated by the models. CMIP5 models may collectively 
underestimate the amplitude of internal variability such that the σc 
obtained from the concatenated control runs is an underestimate 
of the true internal variability. If we calculate the 15-year trend 
distribution on a model-by-model basis, we !nd that the GFDL-
CM3 model has the largest standard deviation (i.e., the widest trend 
distribution) with σGFDL= 0.14°C per decade. Replacing σc with the 
larger σGFDL expands the 90% con!dence interval such that the 
observed trend is comfortably within the nominal model spread 
(third vertical line in !gure 1a).  Here, we assume that the short 
term climate results from the superposition of a forced trend and 
white noise. #ere are of course other statistical models one could 
use (red noise, ARMA etc.) which would result in a larger spread 
in internal variability; the white noise assumption is therefore a 
conservative one.

Are model responses too strong?
Due to di$erences in climate feedbacks, CMIP5 models exhibit 
di$erent values of TCR. #e 5–95% con!dence interval given by 
the IPCC is 1.0–2.5°C, with a best-guess value of 1.8°C. Several 
recent papers have argued that current temperature trends 
necessitate a revision of this range downward; however, other 
work has highlighted the need to consider the di$erent e)cacies 
of various forcing agents a$ecting temperature over the historical 
period (Hansen et al. 2005; Kummer and Dessler 2014; Shindell 
2014). Given identical forcing and uniform internal variability, 
we draw TCR samples from a lognormal distribution with 5–95% 
range 1.0-2.5°C (Figure 1d) and recalculate the con!dence interval 
for model 1998–2012 trends. Once again, the observed trend lies 
within the 90% con!dence interval (fourth vertical line in Figure 
1a).

1 Only the !rst 200 years of each model control run are used here to prevent 
assigning undue weight to models with long control runs.
2 #is estimate is likely biased slightly high because of the concatenation and 
residual dri% in the control runs.
3 #is is the only complete forcing time series as seen by any of the CMIP5 models 
(Miller et al. 2014).
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Is the hiatus caused by externally forced changes to 
internal variability?
External forcing may couple to internal variability, changing the 
amplitude or frequency of known modes such as ENSO (Cai et al. 
2014, 2015). For example, it has been posited that the observed 
widening of the tropical belt is partially attributable to a reversal 
of the PDO, aided by aerosol-forced changes to sea surface 
temperatures (Allen et al. 2014). In the piControl simulations, the 
distribution of 15-year trends are centered around zero; there is 
no a priori reason for positive or negative trends to be more or 
less likely. However, any interaction between forcings and internal 
variability may shi% the trend distribution, for instance, making 
lower 15-year trends more likely and higher 15-year trends less 
likely. In Figure 1a (!%h vertical line), we demonstrate the impact 
on the distribution of a shi% of the “noise” mean by a factor of σc  is 
roughly equivalent to assuming that negative trends are favored 5 
to 1 over positive trends (or vice versa).

Does the hiatus result from errors in the forcing?
It is di)cult to precisely calculate forcing uncertainty across 
the multi-model archive, as few modeling groups speci!ed the 
radiative forcings used in their historical simulations, and they 
are not provided as standard CMIP5 output. However, the CMIP5 
experimental design has known errors in the forcings used. All 
CMIP5 historical experiments end in 2005, a%er which simulations 
are extended through 2012 by splicing with RCP experiments (we 
use RCP8.5 here). #ese future projection experiments contain 
no volcanic aerosol loading beyond 2000 (Santer et al. 2014) and 
use projected updates to solar output or tropospheric aerosols that 
did not exactly match the real world a%er 2005 (Huber and Knutti 
2014; Kaufmann et al. 2011). Estimates of the net e$ect suggest that 

the real world had more negative forcings than projected (Schmidt 
et al. 2014). Updating the forcing (Figure 1c), but holding TCR 
and noise parameters constant, we !nd that reduced forcing can 
also reconcile observed and modeled temperature trends over the 
hiatus period (last vertical line in Figure 1a).

Moving forward
Evidently, if the hiatus is de!ned solely as a short-term temperature 
trend, there are many possible ways to reconcile models and 
observations. We suggest that, moving forward, it is more useful 
to focus on regional or seasonal characteristics of the hiatus 
mechanisms (e.g., Kosaka and Xie 2013; Trenberth et al. 2014), 
such as ocean heat uptake (Meehl et al. 2011), or signatures across 
non-temperature variables (England et al. 2014). #is is because 
attribution of climate variability is fundamentally a signal-to-noise 
problem, regardless of whether the drivers are external or associated 
with internal modes of variability. Detection and attribution studies 
have established that a deep understanding of underlying physical 
processes can lead to detailed and complex “!ngerprints” of any 
driver. Multiple coherent, physically expected processes may result 
in a stronger signal and, moreover, yield a pattern substantially 
di$erent from leading modes of natural variability, increasing 
the strength of the signal. Additionally, complex !ngerprints will 
distinguish processes that will not be apparent in a single short-
term trend in a single variable. Studying the hiatus may not tell us 
much about future climate trajectories, but if we can move beyond 
global mean temperature to a more complete understanding of 
current climate conditions, internal variability, and the physical 
mechanisms underlying decadal "uctuations in temperature, it will 
be worth the time spent.
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