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HIGHLIGHTS

e Several spectral analysis techniques were used to examine spatial and temporal variability.
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¢ Cloud-free sampling by passive sensors may also decrease AOD-PM, 5 correlation.
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ABSTRACT

Due to their extensive spatial coverage, satellite Aerosol Optical Depth (AOD) observations have been
widely used to estimate and predict surface PM, 5 concentrations. While most previous studies have
focused on establishing relationships between collocated, hourly or daily AOD and PM; 5 measurements,
in this study, we instead focus on the comparison of the large-scale spatial and temporal variability
between satellite AOD and PM;5 using monthly mean measurements. A newly developed spectral
analysis technique — Combined Maximum Covariance Analysis (CMCA) is applied to Moderate Resolu-
tion Imaging Spectroradiometer (MODIS), Multi-angle Imaging Spectroradiometer (MISR), Sea-viewing
Wide Field-of-view Sensor (SeaWiFS) and Ozone Monitoring Instrument (OMI) AOD datasets and
Environmental Protection Agency (EPA) PM; 5 data, in order to extract and compare the dominant modes
of variability. Results indicate that AOD and PM, 5 agree well in terms of interannual variability. An
overall decrease is found in both AOD and PMj 5 across the United States, with the strongest signal over
the eastern US. With respect to seasonality, good agreement is found only for Eastern US, while for
Central and Western US, AOD and PM; 5 seasonal cycles are largely different or even reversed. These
results are verified using Aerosol Robotic Network (AERONET) AOD observations and differences be-
tween satellite and AERONET are also examined. MODIS and MISR appear to have the best agreement
with AERONET. In order to explain the disagreement between AOD and PM> 5 seasonality, we further use
Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) extinction profile data to investigate the
effect of two possible contributing factors, namely aerosol vertical distribution and cloud-free sampling.
We find that seasonal changes in aerosol vertical distribution, due to the seasonally varying mixing
height, is the primary cause for the AOD and PM, 5 seasonal discrepancy, in particular, the low AOD but
high PM;5 observed during the winter season for Central and Western US. In addition, cloud-free
sampling by passive sensors also induces some bias in AOD seasonality, especially for the Western US,
where the largest seasonal change in cloud fraction is found. The seasonal agreement between low level
(below 500 m AGL), all sky CALIOP AOD and PM3 5 is significantly better than column AOD from MODIS,
MISR, SeaWiFS and OML. In particular, the correlation between low level, all sky AOD and PM; 5 seasonal
cycles increases to above 0.7 for Central and Western US, as opposed to near zero or negative correlation
for column, clear sky AOD. This result highlights the importance of accounting for the seasonally varying
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aerosol profiles and cloud-free sampling bias when using column AOD measurements to infer surface

PM; 5 concentrations.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA

license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Introduction

Particulate matter (PM), or aerosol, is the fraction of air pollution
that is most reliably associated with human disease (Anderson
et al., 2012). Exposure to particles and solution droplets with di-
ameters smaller than 2.5 pm (PM;5) has serious adverse effects to
human health (Krewski et al., 2000; Schwartz and Neas, 2000; Pope
et al., 2002). Aerosols may also have significant climate effect by
altering the radiation budget, affecting atmospheric circulation and
causing changes in surface temperature (Kaufman et al., 2002;
Stocker et al.,, 2013). Therefore, particulate matter has gained
increasing attention in environmental, epidemiological and climate
studies. PMy 5 is traditionally monitored by ground based sampling
networks. Although the coverage of such monitoring networks is
dense in several countries (Al-Saadi et al., 2005), surface mea-
surements are still limited for many regions, making worldwide air
pollution monitoring a challenging task. Satellite sensors observe
aerosol optical properties from space and thus have the potential to
provide surface PM; 5 information on a global basis.

In an effort to study PM, 5 characteristics with extensive spatial
coverage, many techniques have been developed to derive PM; 5
concentrations from satellite AOD observations, such as those from
MODIS or MISR (Wang and Christopher, 2003; Liu et al., 2004; van
Donkelaar et al., 2006, 2010; Gupta et al., 2006). These studies in
general focused on building a relationship between AOD and PM; 5
concentration through empirical statistical correlation (Wang and
Christopher, 2003; Gupta et al., 2006; Kumar et al., 2007; Shaap
et al,, 2009; Kloog et al., 2011), or by taking advantage of aerosol
profile information from chemical transport models (Liu et al.,
2004, 2011; van Donkelaar et al., 2006, 2010; Wang et al., 2010;
Kessner et al, 2013). Recently, aerosol extinction profiles
observed by the CALIOP space born lidar onboard the Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observations (CAL-
IPSO) satellite have also been used to improve the PM,5 — AOD
relationship (Ford and Heald, 2013; Toth et al., 2013).

While promising results have been achieved in using satellite
AOD for surface pollution studies, uncertainties still exist due to
several factors. Aerosol vertical distribution strongly affects the
column AOD — PM;;5 relationship, since elevated aerosol layers
increase the AOD but are not observed by surface measurements
(Engel-Cox et al., 2006; Schafer et al., 2008; He et al., 2008).
Moreover, most in-situ measurements are performed at relatively
dry conditions (Collaud Coen et al., 2013) while satellites provide
information under all humidity conditions, thus, aerosol property
changes associated with increased relative humidity may also
result in discrepancies between AOD and PM; 5 (Shinozuka et al.,
2007; van Donkelaar et al., 2010; Crumeyrolle et al., 2014).
Because of this, more studies have started to integrate chemical
transport models (CTMs) and satellite-measured radiances to
retrieve AOD and surface PM2.5 at the same time, while taking
advantages of RH effect and aerosol profile/composition in CTMs
(Drury et al., 2008, 2010; Wang et al., 2010, 2012; Xu et al., 2013). On
the other hand, uncertainties and limitations in satellite AOD re-
trievals also add to the difficulty in predicting PM; 5. Comparison
between different satellite datasets against AERONET ground truth
revealed both notable bias and spread in terms of accuracy and
variability (Zhang and Reid, 2006; Li et al., 2014a,b,c), due to various

sources of uncertainty including calibration, cloud contamination,
surface parameterization and the assumptions made in the aerosol
retrieval models. Additionally, satellite retrievals are only available
under cloud-free conditions, while PM, 5 measurements can take
place in the presence of clouds. Because these factors, including
aerosol vertical distribution, relative humidity and cloud fraction,
are spatially and temporally varying, it is thus likely that the AOD —
PM, 5 relationship also varies in space and time, which needs to be
assessed specifically for different regions and seasons.

Most of the previous attempts to use AOD to derive PM;5
focused on hourly, or daily, collocated instantaneous measure-
ments for individual stations or different stations combined, which
does not explicitly reflect spatial and temporal variability of the
parameter. Another possible issue about the analysis of coincident
measurements is that random measurement noise may comprise a
significant portion of the signal. However, since this is just noise,
averaging the data reduces the noise level and enhances the signal
portion of the measurements For example, while individual AOD
measurements may agree poorly between different satellite data-
sets (Liu and Mishchenko, 2008), we find that the agreement is
much improved when comparing monthly means (Li et al., 2013,
2014a,b,c). In addition, in observation based studies, usually only
one or two satellite datasets were used to investigate AOD-PM, 5
relationship, which could be more subject to uncertainties in in-
dividual datasets. In this study, we aim to investigate how well
satellite retrieved AOD represents surface PM; 5 variability within
the continental United States, with an emphasis on spatial distri-
bution and seasonal variability. Instead of relying on a single
dataset, we use four frequently used satellite AOD datasets, namely
MODIS, MISR, SeaWiFS and OMI, and ground-based measurements
from AERONET. This multi-sensor approach reduces possible biases
from one dataset, as the common features found in all datasets are
certainly more reliable. Nonetheless, this also introduces the
complication of dealing with several multi-dimensional datasets.
For both efficient and effective spatio-temporal inter-comparison,
we apply our newly developed Combined Maximum Covariance
Analysis (CMCA, Li et al., 2014c). This technique builds upon
Combined Principal Component Analysis (CPCA, Li et al., 2014b)
and Maximum Covariance Analysis (MCA, Li et al., 2014a), and
effectively incorporates both spatially mapped satellite data and
scattered ground observations into the spectral decomposition.
This analysis efficiently reduces the comparison to the first or first
few dominant modes that account for the bulk of the variance in
the data matrix. Moreover, since the dominant modes will maxi-
mize the covariance between satellite fields and ground observa-
tion, the coherency as well as discrepancy are readily observed by
comparing the spatial modes and temporal correlation. Li et al.
(2014c) demonstrated the usage of the CMCA in the comparison
of spatio-temporal variability between different satellite datasets
and AERONET. This paper extends its usage to AOD — PM, 5 rela-
tionship and serves as another example of the usefulness of this
technique.

In addition to the AOD observations by passive sensors, the
space born lidar — CALIOP offers unique 3-D structures of the at-
mospheric aerosol distribution and has drawn increased attention
from air quality related studies. In particular, the vertical extinction
profiles provided by CALIOP allows the examination of the impact
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of aerosol vertical distribution on the AOD — PM3 5 correlation and
can be used to improve PMj 5 prediction. For example, Ford and
Heald (2013) compared coincident CALIPSO vertical extinction
profiles with chemical transport model, and Toth et al., 2013
compared cloud-free CALIPSO extinction profiles integrated for
different levels with PM, 5 concentration. Furthermore, CALIOP is
capable of measuring aerosol extinction for both cloudy and cloud-
free skies, thereby providing the opportunity to examine the effect
of cloud-free sampling by the passive sensors, i.e., an investigation
of the clear—sky bias introduced through the use of AOD mea-
surements, a topic that is not covered by the previous two studies.
In this paper, CALIOP Level 2 aerosol profile products are used to
investigate the disagreement between satellite AOD and PMa 5
concentration associated with both aerosol vertical distribution
and cloud-free sampling.

In Section 2, we introduce the AOD, PM, 5 and CALIOP aerosol
profile datasets used in the study. Section 3 describes the spectral
analysis procedure, including CMCA and MCA. The results are
presented in Section 4. A summary of the results and a brief dis-
cussion are given in Section 5.

2. Datasets
2.1. Satellite AOD data

Many space born sensors have been developed to retrieval
aerosol properties, with different instrumental design, viewing
geometry and retrieval algorithms. Here we use four validated,
frequently used, AOD datasets retrieved by MODIS, MISR, SeaWiFS
and OMI, respectively. The advantage of multi-sensor approach is
that the observed phenomena can be better verified using different
measurements, and the strengths and weaknesses of each sensor
can also be examined through the intercomparison. Li et al. (2013,
2014b, c) have detailed examples of multi-sensor data comparison.

The MODIS instrument is a multi-spectral radiometer, designed
to retrieval aerosol microphysical and optical properties over land
and ocean (Tanré et al., 1997; Levy et al., 2007). The 2330 km swath
width of the MODIS instrument produces a global coverage in 1 or 2
days and captures most of aerosol variability due to this high
sampling frequency. The MODIS on Aqua platform is used here, as
Terra MODIS AOD is not as complete as Aqua over desert regions
and bears calibration issues (Levy et al., 2013). The official Level 3
monthly mean AOD product at 1° x 1° resolution is used for this
study (MYDO8_M3, collection 5.1, available from ftp://ladsweb.
nasacom.nasa.gov/allData/51/MYD08_M3). We use QA weighted
average (“*QA_Mean_Mean” variables, Hubanks et al., 2008) dark
target (Levy et al, 2010) retrievals for the continental US. The
MODIS AOD is interpolated to 500 nm using measurements at
470 nm and 660 nm in order to match OMI AOD reporting
wavelength.

The MISR is a multi-angle sensor with nine pushbroom cameras
on the EOS Terra platform. The zonal overlap of the common swath
of all nine cameras is at least 360 km in order to provide multi-
angle coverage in 9 days at equator, and 2 days at poles (Diner
et al,, 1998). Compared to MODIS, the multi-angle view of MISR
performs better over bright surfaces (Kahn et al., 2005, 2010), while
its lower sampling may not fully resolve short scale variability. In
this study, we use version 31 Level 3 gridded monthly products,
available from http://eosweb.larc.nasa.gov. The original 0.5 x 0.5°
data resolution has been rescaled to 1 x 1°. The rescaling is per-
formed by assigning equal weights to each sub-grid, and the final
1° x 1° grid is considered valid only when more than half of the
sub-grids have valid data. The data are also interpolated to 500 nm
using measurements at the four MISR wavelengths of 446 nm,
555 nm, 672 nm and 865 nm.

The SeaWiFS instrument was launched on the SeaStar spacecraft
in 1997. It is also a wide view imager with a swath width of 1502 km
and covers the global in approximately 2 days. The SeaWiFS over-
land aerosol retrieval uses the deep blue algorithm developed by
Hsu et al. (2004, 2006). The AOD data over land has been validated
using AERONET measurements (Sayer et al., 2012). Here we use the
standard Level 3 monthly mean AOD product Version 004, available
from http://mirador.gsfc.nasa.gov/). The data are converted to
500 nm using the reported AOD values at 412 nm, 490 nm and
670 nm.

The OMI sensor (Levelt et al., 2006) on the EOS Aura satellite
has been providing global aerosol measurements since October
2005. The OMI instrument also has a wide swath of 2600 km and
produces daily global coverage. The AOD data used here are
derived from the UV algorithm (OMAERUV, Torres et al., 2007).
OMAERUV makes use of the instrument's two near-UV channels to
retrieve AOD and single scattering albedo at 388 nm, and the
500 nm AOD reported in the standard product is converted ac-
cording to the spectral dependence of the assumed aerosol model
(Torres et al., 2007, 2013; Ahn et al., 2008). While the reliability of
the 500 nm AOD is affected by aerosol model assumptions, com-
parison with AERONET, MODIS and MISR showed reasonable
agreements (Torres et al., 2007; Ahn et al., 2008). Moreover, the
upgraded OMI algorithm by Torres et al. (2013), which makes use
of aerosol layer information derived from CALIPSO and AIRS,
produces noticeable improvements in the retrieval of dust and
smoke aerosols. And the evaluation work by Ahn et al. (2014) on
the upgraded algorithm indicated improved agreement with
ground based observation and comparable accuracy with MODIS
deep blue algorithm and MISR retrieval over arid and semi-arid
areas. Here we use Collection 003 data from the upgraded algo-
rithm at 1 x 1° spatial resolution, available from Goddard Earth
Sciences Data and Information Services Center (http://mirador.
gsfc.nasa.gov/).

The period of study is chosen to be January 2005 to December
2010, which represents the longest overlapping record for all four
datasets.

2.2. AERONET AOD

In order to verify the results obtained from satellite data, AER-
ONET ground-based AOD measurements are employed as the
ground truth. AERONET (Holben et al., 1998) is a ground-based sun-
photometer network with over 400 stations globally. The AERONET
AOD is derived from direct beam solar measurements (Holben
et al,, 2001) at two UV and five visible channels. The data used
are the Version 2 Level 2 quality assured and cloud screened
(Smirnov et al., 2000) monthly mean AOD product, available at
http://aeronet.gsfc.nasa.gov/. Since AERONET is also used in the
spectral analysis which requires the construction of the temporal
covariance matrix, we select 52 stations in the US primarily based
on the completeness of the temporal record from January 2005 to
December 2010. Usually we require at least 8 monthly observations
per year from 2005 to 2010. However, several stations in the Central
and Western US are manually added to produce a seasonable
spatial coverage. Gaps in the data are filled by linearly interpolating
the de-seasonalized time series and then adding back the multi-
year averaged seasonal cycle. A comparison between the interpo-
lated and original time series suggests no obvious error caused by
the interpolation (figures not shown). The AERONET AOD is con-
verted to 500 nm using measurements from 380 nm to 870 nm by
applying a 2nd order polynomial fitting of In (AOD) vs. In (wave-
length), as recommended by Eck et al. (1999).
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2.3. PM;;5 data
The PM,5 concentrations are measured using the Federal

Reference Method (FRM), and the data are obtained from the EPA
Technology Transfer Network (TTN) Air Quality System (AQS)
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Fig. 1. The first mode of CMCA analysis between MODIS (a), MISR (b), SeaWiFsS (c) and
OMI (d) AOD and surface PM,s. This mode explains ~60% of the total variance and
captures the bulk of the variability in the datasets. The number on the top right corner
of panels a to d is the exact variance explained by this mode. The “R” value on panel e is
the correlation coefficient between the two time series (PCs). Both time series exhibit
distinct summer-winter seasonal cycles. The spatial maps indicate good agreement
over the Eastern US but less agreement for the Central and Western US.

database (http://www.epa.gov/ttn/airs/airsaqs/). The data are 24-
hr observations and we calculate monthly means for all months
with more than 10 total measurements. Again, to meet the need of
constructing the temporal covariance matrix, only sites with a
complete record (no missing data) from 2005 to 2010 are selected.
By an initial check of the distribution of the stations, we find the
density of the sites much higher for Eastern US than for Central and
Western US. This uneven distribution may result in biases in the
spectral analysis, i.e., the variability for the Eastern US will
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Fig. 2. Mode 1 of CMCA analysis of de-seasonalized data. The spatial patterns (a—d)

agree very well. The PC time series (e) are also highly correlated, and exhibits a
continuous decrease from 2007 to 2010.
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outweigh that of Central and Western US. To avoid this issue, we
further consolidate Eastern US sites by averaging the data and
location of all sites that fall within each 1 x 1° satellite grid. The
final PM, 5 dataset consists of monthly mean data from 98 sites/
grids. Their distribution can be seen from the maps in the results
section, in particular, Fig. 5.

2.4. CALIOP aerosol profile product

Aerosol extinction profiles provided by the CALIOP instrument
are used to gain an understanding of aerosol vertical distribution as
well as all sky vs. clear sky sampling. 532 nm extinction profiles
from the Version 3.01 CALIOP Level 2 5 km Aerosol Profile
(L2_05kmAProf, Winker et al., 2007, 2013) for the four years from
2007 to 2010 are utilized. The data are filtered following the criteria
used to create gridded Level 3 products (Winker et al., 2013).
Specifically, negative extinction near the surface that are
below —0.2 km™, noisy spikes (detection of 80-km aerosol layer),
and isolated aerosol layer above 4 km that are adjacent to ice clouds
are removed. Cloud aerosol distinction (CAD) scores and extinction
quality control flags (QC) are also ensure data quality, and only
layers with CAD scores between —20 and —100 and QC equals 0, 1,
16 or 18 are considered as reliable aerosol signals. In order to obtain
low level AOD, we first convert the above mean sea level (AMSL) to
above ground level (AGL), by extracting the mean of DEM Surface
Elevation from the standard AMSL of each aerosol layer. We then
integrate the extinction coefficients vertically from 0 to 500 m AGL.

a

I L]

(

Fig. 3. The first mode of MCA analysis between PM; 5 (a) and AERONET (b). The spatial
pattern of PM, s highly resembles that shown in Fig. 1. The AERONET data also exhibit
similar spatial patterns to the satellite datasets shown in Fig. 1. Their PC time series (c)
are also highly correlated at 0.91.

a %, T T T
S ’."__2;"’”

Fig. 4. The first mode of MCA analysis for the de-seasonalized PM, 5 (a) and AERONET
AOD (b). The two spatial modes and time series also highly resemble those in Fig. 2,
with a high temporal correlation (c).

Before determining the use of 500 m AGL, we carried out a sensi-
tively test using different heights from 100 m to 900 m with 200 m
intervals. We found that 300 m, 500 m and 700 m results are quite
similar. The 100 m level tends to be influenced by surface extinction
and also has much fewer samples, while the seasonal variability for
0—900 m integrated AOD are too close to the total column. We
therefore choose 500 m AGL to roughly represent low level AOD.
The low level AOD fraction is then defined as the fraction of this low
level AOD in the total column AOD. For cloud-free sampling, we
exclude any profile that has at least one cloud layer detected, whose
CAD score ranges between 20 and 100 and Vertical Feature Mask
(VFM) indicates the type as cloud. A cloud fraction dataset is also
generated simultaneously. Note that the cloud fraction referred to
here is really the “aerosol cloud fraction”, because it is used to
assess the impact of cloud layers on aerosol detection. We first
count the total number of profiles that contain aerosol layers, and
then the number of profiles that contain both aerosol and cloud
layers. The ratio of the latter to the former is then considered as
cloud fraction. Calculated CALIOP total column AOD, low level AOD
fraction and cloud fraction are gridded into 2.5 x 2.5° spatial res-
olution for better display purposes (CALIPSO sampling is sparse so
finer resolution will result in holes in the spatial maps).

3. Spectral analysis methods — CMCA and MCA

Spectral decomposition methods are both effective and efficient
in finding the major spatial and temporal variability in one or more
high dimensional datasets. They have the advantages of not only
reducing data dimension, but also allowing the simultaneous
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Fig. 5. Difference between satellite modes and AERONET mode for full dataset (left) and de-seasonalized dataset (right). The differences are in general larger for the full dataset than
de-seasonalized dataset (as evidenced by the red and blue points), indicating good agreement on interannual variability but less agreement on seasonal variability. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

examination of both spatial and temporal variability. Here, the MCA
is used to find the dominant modes between AERONET AOD and
PM, 5 datasets, while CMCA is applied to the combined satellite
AOD data field and PM; 5. The detailed mathematical description of
these two methods can be found in Li et al. (2014a, 2014c),
respectively, and here we only briefly describe these two methods.

MCA is also known as Singular Value Decomposition (SVD)
analysis (Bretherton et al., 1992; Bjornsson and Venegas, 1997). It
finds the coupled modes of variability between two datasets of the
same or different physical parameters, through the orthogonal
decomposition of their cross covariance matrix. Each mode consists
of a spatial pattern and a time series (PC) for each dataset. Similar to
the traditional EOF method, this is a dimensionality reduction
technique as the leading modes with largest singular values can
recover most of the covariance in the two high dimensional data-
sets. In addition, maximizing the covariance implies that the
leadings modes from the two data fields both have reasonably high
correlation and respectively describes a large fraction of the vari-
ance in the two datasets. Moreover, this method is particularly
suitable for scattered ground-based observations, as it has no re-
striction on the spatial resolution or mapping of the two data fields
being decomposed.

CMCA is a novel technique based on MCA and Combined Prin-
cipal Component Analysis (CPCA, Li et al., 2014b). It is developed to
bridge the gap between multi-sensor satellite observations and
ground observations in spectral analysis. Because MCA can only be
applied to two data fields while we hope to incorporate all available

satellite datasets, the multiple satellite datasets are first combined
into one large data matrix as:

§MODIS
Xsat= leSR ) (1 )
SeaWiFS
MI

where Xsa¢ is the combined data matriX, Xyvopis, Xmisr: XseaWiFs
and Xgpy are the four satellite data matrices, respectively. Next,
MCA is performed on this combined data field and surface PM; 5
data. In this way, the major common modes of variability from
different satellite datasets as well as PM, 5 data will be extracted.
Note that the combining of different datasets as Equation (1) re-
quires equal weight of each data field. It is therefore not suitable to
combine satellite with ground observations, or two different pa-
rameters such as AOD and PMy 5. Detailed explanation of this pre-
requisite is given in Li et al. (2014b, c).

MCA and CMCA are performed both on full dataset with the
seasonal cycle left in, in order to examine seasonal variability, and
on the anomaly dataset to compare interannual variability. The
anomaly dataset is constructed by removing the multi-year aver-
aged seasonal cycle from the time series at each location, and the
terms “de-seasonalized” and “anomaly” will be used interchange-
ably in the rest of the paper to refer to this dataset. The coherency
and discrepancy between AOD and PM; 5 datasets are reflected in
the correlation of the time series, and in the agreements and dis-
agreements between the spatial patterns of each mode.
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4. Results
4.1. CMCA results for satellite AOD and PM 5

CMCA is first performed on the full dataset. Because aerosol
variability is usually dominated by distinct seasonal cycles, the
leading modes will reflect seasonal variability. Note that for full
data analysis the observation at each location is still centered by
removing the temporal mean.

The first mode is shown in Fig. 1. This mode accounts for ~60% of
the total variance, while the variance drops to 12% for mode 2 and
to below 10% for other higher order modes (figure not shown). We
therefore only examine Mode 1 as the dominant component. Each
CMCA mode comprises of a spatial pattern for each satellite data
field as well as PM> 5 data field, a shared time series for all satellite
data fields and a time series for PMj 5. The spatial mode for PM, 5 is
superimposed on top of the satellite spatial patterns for direct
comparison. We first note that the correlation between the time
series of satellite AOD (black curve in the bottom panel of Fig. 1) and
that of PM, 5 (red (in web version) curve in the same panel) are
highly correlated at 0.89. This is an indication of coherent temporal
variability. We then turn to the spatial patterns. The spatial distri-
bution of the PM; 5 signal in general exhibits three clusters: Eastern
US which has strong positive signals, Central to Central Western US
(East to California) showing mild negative signals, while strong
negative signals are found for US West Coast. Because PC 1 is
associated with a distinct summer-winter seasonal cycle, the PM; 5
spatial distribution suggest that PM, 5 variability over Eastern US
bears the same seasonality as PC 1 with summer peaks. For Central
US, the seasonality may be slightly out of phase as PC 1 or has
additional peaks, which results in its weak projection on this PC
and will be further examined. While for Western US, the seasonal
cycle is likely opposite to that of PC 1. With respect to the satellite
AOD, less spatial variability is found in all of the four spatial maps.
Despite some internal differences, the four satellite datasets all
indicate strong positive signals for Eastern US, which is consistent
with PM; 5. MISR and OMI also show positive signals for the rest of
the continent, while MODIS and SeaWiFS have positive anomalies
in the West Coast but neutral signals elsewhere. In addition, OMI
appears to have a high bias throughout the study domain, which
indicates that this dataset may exhibit an overall stronger seasonal
variability for the entire continental US. In short, comparison be-
tween satellite AOD and PM, 5 only reveals agreement for Eastern
US. For Central and Western US, AOD and PM, 5 show different or
even opposite seasonal variability. Differences are also found
among satellite AOD themselves. These issues will be examined in
detail in the next few sections.

Next, we continue to examine the representation of AOD in
terms of PMy 5 interanual variability through CMCA decomposition
of the de-seasonalized dataset. Similar to the full dataset, the first
mode for the anomaly data is dominant, explaining ~34% of the
variance, while the variance decreases to 7% for Mode 2. The spatial
patterns and time series associated with Mode 1 are shown in Fig. 2.
The two PCs, plotted on the bottom panel of Fig. 2, again suggest
high correlation. This PC exhibits a decreasing trend, especially for
the latter half of the time period from 2007 to 2010. In addition,
AOD and PM3 5 also agree on many peaks, such as those in 2006 and
2007, as well as many weaker anomalies. The agreements between
the spatial patterns of AOD and PM, 5 shown in Fig. 2 appear much
better than that of the full dataset (Fig. 1). The spatial patterns
(upper four panels of Fig. 2) clearly highlights the eastern part of
the US where strong positive signals are observed in both AOD and
PM, 5, while no obvious projection of this PC is found for the rest of
the continental US. The time evolution of this mode, shown in the
lowest panel of Fig. 2, exhibits a decreasing tendency, especially

from 2007 to 2010. The spatial pattern combined with the PC in-
dicates a decrease in both column AOD and surface PM, 5 concen-
tration for Eastern US. Mode 1 for different satellite datasets largely
agrees, with MODIS, MISR and SeaWiFS showing nearly identical
spatial variability. The OMI signal is also comparable with the other
three datasets for Eastern US, although it still has an overall high
bias for Western US. MODIS appears to have a slightly high bias for
Eastern US, which suggests a stronger temporal decrease for MODIS
AOD.

4.2. MCA results for AERONET AOD and PM 5

In the previous section, we noted both agreements and dis-
agreements between AOD and PM, 5, as well as between the indi-
vidual satellite datasets. Because satellite data are subject to various
sources of uncertainty, it is necessary to verify the satellite data
using more accurate ground-based measurements. Therefore, in
this section, we present spectral decomposition analysis between
AERONET AOD and PM; 5 and compare the results with those for
the satellite datasets.

Fig. 3 shows the dominant mode of MCA analysis between
AERONET AOD and PMj3 5, which explains ~65% of the variance. It is
clearly seen that the PM, 5 spatial pattern are quite similar to Mode
1 of Fig. 1, with the same three clear regional clusters: strong
positive signals for Eastern US, weak negative signals for Central US
and strong negative signals for Western US. With respect to the
AERONET spatial pattern, almost all sites indicate positive anoma-
lies, and the signal is strongest for the Eastern US. This feature is
also largely consistent with the spatial patterns of the satellite
datasets shown in Fig. 1. Moreover, the PCs of AERONET AOD and
PM, 5 are also highly coherent with a 0.91 correlation.

The first mode of the de-seasonalized AERONET AOD and PM, 5
dataset is presented in Fig. 4. This mode accounts for ~36% of the
variance, which is significantly higher than that for the other high
order modes. Again, it is encouraging that both the spatial patterns
and time series of this mode highly resembles those for the de-
seasonalized analysis between the satellite and PM; 5 data previ-
ously shown in Fig. 2. The AERONET AOD and PM; 5 spatial vari-
ability also agrees well, both having strong positive anomalies over
the Eastern US and neutral signals over Central and Western US.
The correlation between the PCs is 0.73, slightly lower than the
satellite result but still significant. This might be due to some
interpolation in order to fill the gaps in the AERONET time series for
certain stations. Nonetheless, the agreement between Figs. 2 and 4
confirms the variability represented by the satellite datasets.

A more quantitative evaluation of the satellite modes is made by
examining the difference between the satellite spatial patterns
shown in Figs. 1 and 2 and those for AERONET shown in Figs. 3 and
4, The distribution of the differences is plotted in Fig. 5. The left
column of Fig. 5 shows the difference between the modes for the
full dataset, and the right column for the anomaly data. By quickly
comparing the left and right columns of Fig. 5, we can clearly see
that the difference for the anomaly modes (right column) is much
lower that for the full dataset. The difference for the anomaly
modes varies between —0.05 and 0.05 (note this is the amplitude of
variability rather than absolute AOD value) at the majority of the
stations. This result further supports that interannual variability is
well represented by all four satellite datasets. While for the full
dataset (left column), relatively larger differences are found. In
general, MODIS and MISR agree better with AERONET than Sea-
WIFS and OMI. Nonetheless, MODIS appears to have lower signals
for Central US. Lower signals are also found for MISR but mostly lie
in Eastern US. SeaWiFS has lower variability for the Western US
except for two stations in California, while OMI has an overall high
bias for the western part. Because Mode 1 of the full dataset
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represents seasonal variability, and significant differences also
reside in the AOD and PM; 5 modes, we consider the representation
of column AOD to surface PM;5 is more uncertain in terms of
seasonal variability than interannual variability. Accordingly, the
next two sections will focus on finding the causes of the difference
in the spatial modes shown in Figs. 1 and 3 and investigating
possible sources of uncertainty.

4.3. Seasonal cycle investigation

The CMCA and MCA results point out differences in the seasonal
variability between AOD and PM; 5, as well as between different
satellite datasets and AERONET, and suggest that these differences
are mostly concentrated in the Central and Western US. However,
spectral analysis itself does not explicitly reveal the exact source of
the differences, i.e., whether the seasonal cycles for these regions
are completely out of phase, or only have phase shifts. The major
usefulness of these techniques is to efficiently identify places with
more uncertainties for further examination. Recall that the spatial
patterns of PMj 5 exhibit three regional clusters with different de-
grees of coherency with AOD, we thus divide the data into these
three groups accordingly and compare the averaged seasonal cycles
between different AOD datasets and PM,s5 concentration. The
grouping maps of the PM, 5 and AERONET stations are shown in
Fig. 6. The red (in web version) sites represent the Eastern US where
the best agreements are found between AOD and PM, 5, Central US
sites agree less well and are colored in green (in web version), and
Western US sites where the least agreement is found are colored in
blue (in web version). For the satellite data, the grid box that con-
tains the PM, 5 site is used to represent the data for that station.
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Fig. 6. Grouping of PM, 5 (a) and AERONET (b) sites. Red: Eastern US; Green: Central

US; Blue: Western US. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

The multi-year averaged seasonal cycles for the three regions:
Eastern US, Central US and Western US, are shown in Fig. 7. PMy 5
data are plotted in thick gray lines on the right axis with a different
scale. In this comparison, our emphasis is on variability, which is
reflected by the shapes of the seasonal cycles, rather than the ab-
solute values.

For the Eastern US, AOD and PM; 5 both exhibit highest values
during the summer months from June to August, and lower values
for the rest of the year. Satellite AODs uniformly reach a minimum
in winter. However, PM,5 slightly increases from October to
February, and the lowest values are found for early fall (September
and October) and spring (March to May). This phenomenon is not
seen in satellite column AOD, which suggests a possible change in
the vertical distribution of aerosols in winter.

For the Central US, the AOD and PM; 5 seasonal cycles behave
more differently. While AOD still shows a single peak in the sea-
sonal variability, PM; 5 displays a semi-annual feature, with two
peaks located in July and January, respectively. The January peak is
even higher that the July one. This behavior is responsible for the
weak negative projection of PM,5 data on the summer-winter
seasonal cycle represented by PC 1, i.e., part of the PM; 5 summer
maximum is captured by this PC, however, because the winter
maximum is stronger, the overall signal becomes negative. Also
note that the seasonal cycles for the satellite and AERONET datasets
are also not consistent and exhibit phase shifts. OMI and AERONET
both have maximum AOD in July. MISR AOD does not have evident
changes from April to July, while MODIS and SeaWiFS exhibit
spring maxima. These differences result in the disagreements be-
tween satellite and AERONET spatial modes as shown by Fig. 5.

As expected, the Western US shows the largest discrepancy
between AOD and PM, 5. For this region, the seasonal variability for
these two parameters is completely reversed. The AOD data still
indicate spring-to-summer maxima, similar to Eastern and Central
US, while PM; 5 peaks in winter. This is consistent with the infer-
ence from the MCA and CMCA modes, in which 