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ABSTRACT

A statistical–stochastic model of the complete life cycle of North Atlantic (NA) tropical cyclones (TCs) is

used to examine the relationship between climate and landfall rates along the North American Atlantic and

Gulf Coasts. The model draws on archived data of TCs throughout the North Atlantic to estimate landfall rates

at high geographic resolution as a function of the ENSO state and one of two different measures of sea surface

temperature (SST): 1) SST averaged over theNAsubtropics and the hurricane season and 2) this SST relative to

the seasonal global subtropical mean SST (termed relSST). Here, the authors focus on SST by holding ENSO to

a neutral state. Jackknife uncertainty tests are employed to test the significance of SST and relSST landfall

relationships. There are more TC and major hurricane landfalls overall in warm years than cold, using either

SST or relSST, primarily due to a basinwide increase in the number of storms. The signal along the coast,

however, is complex. Some regions have large and significant sensitivity (e.g., an approximate doubling of

annual major hurricane landfall probability on Texas from22 to12 standard deviations in relSST), while other

regions have no significant sensitivity (e.g., the U.S. mid-Atlantic and Northeast coasts). This geographic

structure is due to both shifts in the regions of primary TC genesis and shifts in TC propagation.

1. Introduction

Intense tropical cyclones (TCs) are among the most

devastating natural phenomena. Estimating the poten-

tial for economic damage is a topic of high public in-

terest and cuts across meteorology, climatology, and

economics (e.g., Mendelsohn et al. 2012; Peduzzi et al.

2012). Landfall risk assessments are used by the in-

surance industry for setting rates and by governments

for establishing building regulations and planning

emergency procedures. Given the large coastal pop-

ulations in harm’s way, estimating the short- and long-

term evolution of TC hazard is crucial.

There has been much interest in ascertaining and

understanding trends in North Atlantic TC frequency

and intensity and whether any such trends are related to

anthropogenic climate change and/or natural climate

cycles. North Atlantic (NA) sea surface temperature

(SST) has risen in recent decades, driven in large part by

greenhouse gas forcing (Santer et al. 2006). Some sta-

tistical studies have suggested a link between SST and

NA TC activity (Emanuel 2005; Elsner et al. 2008),

while other studies point to the spatial structure of SST

as being more important than absolute SST (Vecchi and

Soden 2007; Vecchi et al. 2008; Villarini et al. 2010;

Ramsay and Sobel 2011; Villarini et al. 2012). Direct-

numerical and downscaled-numerical transient climate

simulations of the twenty-first century using the Intergov-

ernmental Panel on Climate Change (IPCC) models

produce widely varying TC results (Emanuel et al. 2008;

Camargo 2013; Villarini andVecchi 2012). The consensus

among the climate models that are best at representing

TCs is for reduced TC frequency by 2100 but an increased

fraction of TCs in the highest intensity categories (cat;

Bender et al. 2010; Villarini and Vecchi 2013).

Whatever are the long-term trends in large-scale

measures of TC activity, and however they are driven, it

is ultimately necessary for risk assessment to estimate

landfall rates at local geographic scales. This task is

beyond the capability of global climate models. The

most straightforward way to analyze landfall risk and its

climate dependence is to use historical landfall events.
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This approach is sound if there are a sufficient number of

events, such as are found over large sections of coast and

over many years. However, if one aims to study geo-

graphic landfall rates at high geographic resolution and

in addition use subsets of data years based on climate

state, then sampling error becomes a major issue. This

can be alleviated by exploiting data from outside the

immediate region of interest, for example by supple-

menting the local landfall wind data with overocean data

(e.g., Emanuel and Jagger 2010). Another alternative is

basinwide statistical models of the entire life cycle of

TCs to generate sets of synthetic TCs much larger than

the historical set and compute landfall probabilities

from the synthetic sets. Various such models have been

developed by private and public sector researchers

(James and Mason 2005; Vickery et al. 2006; Emanuel

et al. 2006; Rumpf et al. 2007).

An advantage of a basinwide model is that it utilizes

historical track information over the full basin: orders of

magnitude more data than just at landfall. In effect,

misses, as well as hits, inform the landfall analysis. A

disadvantage is that while reliable landfall data go back

into the nineteenth century, full-basin data are less re-

liable prior to the mid-twentieth century. In addition,

the added complexity of a full-basin model compared to

a landfall model increases the possibility of model bias.

Still, for coastal regions of historically few or no land-

falls, a basinwide model is beneficial, as seen in the

analysis of Hall and Jewson (2008), who show in out-of-

sample tests that the increased precision outweighs any

loss of accuracy. A second advantage to simulating the

TC full life cycle is that landfall changes can be de-

composed into changes in various TC components, such

as genesis, propagation, and intensity. Here, the model

initially described by Hall and Jewson (2007) is ex-

tended and used to explore the relationships between

regional landfall rates and SST.

Section 2 reviews the data on which the model is built,

and section 3 describes the statistical–stochastic model,

focusing on components that have not been documented

elsewhere. The model is evaluated in section 4, and the

landfall–SST relationships explored in section 5.

2. Data sources

We use the Atlantic hurricane database (HURDAT)

best-track data from 1950 to 2008 (Javinen et al. 1984) to

build the statistical model. These data include position,

central pressures, and maximum sustained wind speeds

(Vmax) every 6 h along a TC’s trajectory. We restrict

attention to named TCs. The date 1950 represents

roughly the start of the era of routine aircraft re-

connaissance. Moreover, Vecchi and Knudson (2011)

have estimated that prior to 1950 the number of TCs

missed by undersampling increases substantially. Im-

portantly, all HURDAT storms that survive less than

2 days are excluded from the analysis. There is evidence

that changes in the frequency of such short-lived storms

are spurious, due to underreporting earlier in the record

(Villarini et al. 2011), and we wish to avoid such ambi-

guity in the results. As part of the track propagation

component of the model we use a composite annual

cycle of 500-mb zonal wind, which has been constructed

from 1950 to 2008 6-hourly National Centers for Envi-

ronmental Prediction (NCEP) wind data.

We employ SST and the Southern Oscillation index

(SOI) as independent predictor variables, both of which

are known to influence TC activity. In this study, we

focus on SST and hold SOI to a neutral value for all

experiments. Other factors have been shown to in-

fluence NA TC activity as well [e.g., the solar cycle and

the North Atlantic Oscillation (NAO); Elsner et al.

2006; Elsner and Jagger 2008].

There has been considerable debate as to how SST

should be viewed in relation to NA TC activity (Vecchi

et al. 2008). The question is of enormous importance for

long-range projections of TC activity, given the robust

projections of increased SST over the next several de-

cades. Recent work has emphasized the importance of

spatial structure in SST, rather than SST directly, as

being the best indicator for TC activity based on physical

arguments and numerical simulations (Vecchi et al.

2008). In particular, relative SST (relSST), the NA SST

compared to the global tropical mean SST, has been

shown to be at least as good a statistical predictor of NA

TC counts as SST directly (Villarini et al. 2010; Vecchi

and Knudson 2011; Villarini et al. 2012). There is no

reason to expect a robust signal in relSST due to the ra-

diative forcing of well-mixed greenhouse gases, though

aerosol forcing is known to have affected the NA dis-

proportionately in the twentieth century (Villarini and

Vecchi 2012). One physical argument for relSST is that it

is a proxy for potential intensity (PI; Vecchi and Soden

2007): a measure of the upper limit of TC intensity

(Holland 1997; Emanuel 2000) and a factor in TC genesis

(Camargo et al. 2007).

For an analysis of recent trends and near-term pro-

jections, however, the choice between SST and relSST is

less important than it is for long-range projections. In

the near term, natural variability dominates anthropo-

genic trends, NA SST and relSST are well correlated,

and either one may be acting as a convenient proxy

variable for modes of climate variability that affect TCs

via several mechanisms. In this study, we perform sep-

arate analyses using as independent variables SST di-

rectly and relSST. Gridded SST data are obtained from
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the Met Office Hadley Centre (Rayner et al. 2003) and

are averaged over the North Atlantic main development

region (MDR) and the hurricane season July–October

(JASO) to obtain annual values. For relSST, JASO 208S
to 208Nglobal averages are subtracted fromMDR–JASO

SST. As will be shown from the perspective of modeling

current climate TC landfall rates statistically, use of SST

and relSST yield similar results because SST and relSST

are well correlated (Fig. 1). At several key points in the

paper we show results for both SST and relSST.

3. Methodology

The goal of this study is to estimate the sensitivity of

local landfall rates along the North American coast to

NA SST and relSST. This is difficult using solely TC data

at landfall because there are too few such data on a local

basis. Instead wemake use of an SST-sensitive statistical–

stochastic model for TCs over the full NA (i.e., a sta-

tistical model of TCs from birth to death that draws on

basinwide data). In this way, much more data are ex-

ploited than just landfall. In effect, information from

data over the full basin is projected onto the coast. Once

constructed, the model is run to generate ‘‘event sets’’ of

synthetic TCs that are much larger than the historical set,

and these synthetic TCs are used to compute landfall

rates. Large event sets and corresponding landfall rates

are generated for a range of fixed SST and relSST. The

model components also depend on SOI; in this study we

focus on the SST effects and hold SOI at a constant

neutral value (zero anomaly value) for all experiments.

The four components of the TC model are 1) genesis,

2) propagation, 3) lysis, and 4) intensity. The genesis,

propagation, and lysis components are similar to those

described by Hall and Jewson (2007), with updates de-

scribed by Yonekura and Hall (2011, 2013, manuscript

submitted to J. Appl. Meteor. Climatol.). The intensity

component is new. The basic scheme for generating

a synthetic TC is to first simulate a genesis event. Then,

from the genesis location the TC is propagated in 6-hourly

increments. At each 6-h position, the model determines

whether or the not the storm suffers lysis (terminates),

continuing until lysis occurs. For the TC intensity, a time

series of the maximum sustained wind speed (Vmax) is

placed on the track. The model components are discussed

individually below, with the most detail reserved for the

new intensity scheme.

a. Genesis

The genesis component is identical to that described in

Yonekura and Hall (2011) for the northwestern Pacific,

which in turn is a generalization of the Hall and Jewson

(2007) steady-state kernel density genesis to the case of

climate-dependent variation. We perform local Poisson

regression of the annual number of TC genesis events on

SST or relSST and SOI. In a data circle of radius L cen-

tered on location r, an annual time series of genesis counts

is Poisson regressed on SST and SOI, and the resulting

Poisson rate is divided by the area of the circle to obtain

FIG. 1. Time series of NA MDR JASO mean SST (red) and NA

MDR JASO mean relative SST (blue).

FIG. 2. Genesis rates and mean annual count (inset numbers) for SST 5 (left) 22, (middle) 0, and (right) 12 in units of standard

deviations in JASOMDRSSTover 1950–2009. Contour intervals are 0.003, 0.006, 0.009, 0.012, 0.015, and 0.018 annual counts per 1-degree

longitude–latitude box from light blue to dark red. White regions correspond to values below 0.003.
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a rate per area. We then multiply by the area of a 18 box
about r to obtain a grid of Poisson rate coefficients spanning

the domain of interest (58–558N, 1008W–08). During simu-

lations the appropriate value of SST and SOI aremultiplied

by the local coefficients to obtain local rates. The Poisson

distributiondefinedby this rate is then sampled randomly to

obtain a count of genesis events for the grid box for the year.

The counts are almost always 0 or 1, given the small region,

though in principle higher counts can occur.

The radius L of the local data circle in which historical

counts are included for regression is determined by out-of-

sample likelihoodmaximization and is equal to 700km for

FIG. 3. As in Fig. 2, but for those dependent on relative SST.

FIG. 4. The annual cycle of formation rates from an optimized space-date kernel density. Spatial fields are shown for 10-day windows

centered on the day of year shown above each panel. For plotting, the kernel density is scaled to have the unit maximum, and the contour

intervals are 0.1, 0.2, … , 0.9, blue to red. White regions correspond to values below 0.1.
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the 1950–2008 period. This course scale blurs the sharp

latitudinal gradient of the formation rate at the southern

flank of the MDR. The Poisson coefficient fields are ‘‘re-

focused’’ by forcing the local rates to conform to a steady-

state kernel density field calculated from the 1950–2008

data, which has an optimized bandwidth of 210km. In ef-

fect, though the climate dependence of the genesis is less

well resolved, the mean rates at least are constrained by

the better-resolved historical averages. Genesis is pro-

hibited over land on physical grounds. Overland power

that results from the isotropic-averaging kernel is trun-

cated and redistributed nearby over ocean.

Figure 2 shows the genesis rate distribution for SST

standardized anomalies of 22, 0, and 12. There is an

approximate doubling of the basinwide mean formation

rate fromSST522 to12 (7.6 to 14.6TCs yr21). The rate

does not increase uniformly. Rather, there is a greater

increase in the MDR, resulting in an effective shift

southeastward of the center of genesis activity. This

genesis site shift has also been identified by Kossin and

Vimont (2007) andWang et al. (2011), who argue that it

is a consequence of an eastward shift of the Atlantic warm

pool [and by extension and increased MDR July–

September (JAS) SST], as well as associated reductions in

wind shear, possibly connected to the Atlantic meridional

mode (AMM; Kossin and Vimont 2007). Figure 3 shows

the same genesis maps but now with relSST as the in-

dependent variable. The resulting sensitivity is similar to

SST, with a 10% reduced overall formation rate change

(8.1 to 14.2 TCs yr21). (There is a small component of

the relSST series that is linearly related to SOI: SOI

explains about 20% of the variance in relSST. When we

use a ‘‘corrected’’ relSST signal—relSST with this linear

component removed—the results are not significantly

different than Fig. 3.)

We also include seasonality in the genesis model (i.e.,

the date during the year the event occurred). This is ac-

complished with a 3D (longitude, latitude, and date) ker-

nel density. The date dimension of the kernel density is

randomly sampled at each location to provide a date for

the genesis event. Figure 4 shows cuts of the spatial density

at 25 10-day windows spanning the hurricane season.

FIG. 5. Illustration of the dependence of track propagation on the annual cycle of 500-mb zonal winds. (a) His-

torical tracks (blue) and a sample local regression region (red) in the Gulf. (b) Scatterplot of 6-houly zonal propa-

gation speed vs the concurrent 500-mb annual cycle wind speed and the regression line (red). (c) Time series of the

annual cycle zonal wind over the region. (d) Time series of the track speed predicted by the regression (red) and the

actual track speeds (symbols).
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b. Propagation

TC propagation is identical to that described by

Yonekura and Hall (2011) for the NWP, which is a gen-

eralization of the Hall and Jewson (2007) track model.

Given a TC at location r, the two vector components of

the 6-hourly increment dr to the new position r 1 dr are

determined by linear multiple regression of nearby (to be

determined objectively) HURDAT increments on SST

(or relSST), SOI, and 500-mb zonal wind speed from an

NCEP-based composite annual cycle. Regression on this

composite, illustrated in Fig. 5, provides seasonal de-

pendence of the propagation. The residuals are stan-

dardized, assuming a generalized anisotropic correlated

normal process, as illustrated in Fig. 3 of Yonekura and

Hall (2011). The standardized residuals are modeled by

lag-one autoregression [AR(1)]. HURDAT contribu-

tions to the regression at r are weighted inversely with

distance from r using a Gaussian kernel whose length

scale is optimized by an out-of-sample likelihood max-

imization. The 500-mb wind-independent variable is

used because midlevel winds are known to steer TCs.

The annual cycle provides a mechanism to reproduce

seasonality in tracks.

There is a statistically significant relationship between

SST and track propagation in parts of the domain, as

illustrated in Fig. 6. Tracks have large stochastic com-

ponents, and launchingmany tracks from a fixed point in

themiddleMDR leads to a wide and overlapping spread

of tracks, from which it is difficult to discern any impact

of SST. When track-point density is contoured on the

domain, there appears to be a slight shift away from the

North American coast from cold to warm years. This

shift is seen more clearly when just the mean tracks are

plotted (i.e., the stochastic component is set to zero).

However, alone it is not clear if this difference is sig-

nificant. To test the significance we perform a general-

ized jackknife test. The regression of HURDAT tracks

on the independent variables is performed 100 times,

each time dropping a random 14 (;20%) of the 69 data

years. (The fraction 20% is an arbitrary compromise

between two competing factors: the fraction should be

large so that there are many possible permutations for

the subset years from the full set, and the fraction should

FIG. 6. (top left) The 1000 synthetic tracks for 12 (red) and 22 (blue) SST emanating from a single point. (top

right) The SST 12 and 22 mean tracks (red and blue curves, respectively and the track-point density above

a threshold (orange and light blue, respectively) about the 12 and 22 means. (bottom left) The 12 and 22 mean

tracks (red and blue, respectively) for a 100-member jackknife uncertainty set. The means are significantly dif-

ferent to the extent the distributions of means across the jackknife set are distinct, which they clearly are. (bottom

right) Red (green) indicates regions of significant westerly (easterly) shift in mean track vectors with increased

SST. In other regions, the propagation–SST relationship is not significant. Significance is determined by the same

jackknife procedure.
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be small so that there are many data within the subset to

perform regressions.) For each 55-yr subset, the mean

tracks are simulated from the selected point for SST512

and 22. The result is shown in Fig. 6 (lower left).

Clearly, the jackknife hot and cold sets are distinct, and

the shift in mean track with SST is significant, at least

from this selected location. Finally, the jackknife pro-

cedure is repeated for each location on a 18 by 18 grid,
using single-step (6 h) mean tracks. The lower right

panel of Fig. 6 shows regions where the SST depen-

dence is significant: red indicating an eastward shift in

propagation and green indicating a westward shift in

propagation.

Wang et al. (2011) find a similar effect of SST on track

propagation using dynamical simulations. They argue

that a large Atlantic warm pool (and by extension

a warmer MDR JAS mean SST) leads to a stationary

wave pattern that weakens the NA subtropical high. A

weakened subtropical high in turn induces an eastward-

steering flow anomaly in the western Atlantic off the

North American coast. Similarly, Colbert and Soden

(2012) note an increase in recurving versus straight-

moving TCs from the MDR with a weakened sub-

tropical high, a change in propagation that they also

associate with the AMM. The weaker relationship we

find between track and relSST (not shown) may simply

be a signature of the track–SST relationship, via the

SST–relSST correlation.

c. Lysis

At each 6-h position r, along a simulated track, the TC

has a probability of terminating. The probability P is

derived from analysis of the historical TCs that have

terminated near r, as described in Hall and Jewson

(2007):

P5
�
term

e2(r2r
i
)2/L

�
all

e2(r2r
i
)2/L

, (1)

where the sum in the denominator is taken over all TC

points, and the sum in the numerator is taken only over

terminal TC points. The length scale L determines how

locally the sums should be weighted and is determined

by out-of-sample log-likelihood maximization. The

meteorological mechanisms for TC dissipation over

water and land are very different. Therefore, land and

ocean lysis probabilities are strictly separated using

a 0.18 land–ocean mask.

Note that in formulation (1) the TC’s intensity does

not appear. However, the time series of Vmax that gets

placed on simulated tracks (see below) is constrained by

the lysis location such that intensity at lysis is realistic.

d. Intensity

Themodel component for time series of themaximum

sustained wind speed (Vmax) is different in character

than the other components. Instead of regression, we

employ a scheme to resample the HURDAT Vmax time

series. First, a track is simulated using the genesis,

propagation, and lysis schemes described above. Then,

a Vmax series is selected among the HURDAT series by

a weighted random draw, and this series is placed on the

simulated track, with rescaling in time to match the

duration of the simulated track. Finally, a random per-

turbation to themaximumVmax along the series is made,

and the entire series is rescaled to match the new per-

turbed maximum Vmax but holding the first and last

points unchanged.

The random draw of a HURDAT TC’s Vmax series is

weighted toward HURDAT TCs whose tracks are

similar to the simulated track on which theVmax series is

to be placed. Similarity is defined by several criteria: 1)

the proximity of the simulated and historical genesis

sites, 2) the proximity of the simulated and historical

lysis sites, and 3) the proximity of the amount of time

that simulated and historical TCs spend in different

latitude bands. If a track makes one or more landfalls,

then it is broken into overocean and overland segments,

and separate weighted Vmax random draws are made for

each segment. In such landfalling cases additional sam-

pling weights are used: 4) the proximity of the simulated

and historical landfall locations and 5) the proximity of

the last overocean Vmax value to the first overland Vmax

value. If the simulated TC reemerges over the ocean,

FIG. 7. Root-mean-square forecast error inmaximumVmax along

tracks as function of SST anomaly scale. A shallow minimum

occurs at S 5 0.5.
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then the newVmax series are selected for the reemergent

TC, again using proximity weights at the point of re-

emergence. The transition from one Vmax series to an-

other ocean to land and land to ocean is made smooth by

rescaling the new segment to match the prior segment at

the transition point.

We want to allow for direct sensitivity to the inde-

pendent climate variables in the Vmax selection. (There

is already indirect sensitivity. The genesis sites change

with SST and SOI, and different Vmax series will be

preferentially selected.) Therefore, a final selection

weight is added: the proximity of the SST (or relSST)

anomaly from the year of the candidate Vmax series to

the SST (or relSST) anomaly of the current simulation

year. That is, in the random draw a candidateVmax series

i gets weighted by exp[2(SSTsim 2 SSTi)/L], where

SSTsim is the SST anomaly of the simulation year, SSTi is

the SST anomaly of the year of the candidate Vmax se-

ries, andL is a scale to be determined. (The quantityL is

dimensionless, as the SSTs are expressed as standard-

ized anomalies.)

Does the addition of such an SST weight lead to im-

provement in model forecast or overconstrain the model?

To answer this, we perform an out-of-sample year opti-

mization of the scale L used to define SST proximity. On

the one hand, if it turns out that the optimal L is infinite,

then Vmax series from all years, regardless of SST (or

relSST), should be used equally, and preferential weight-

ing by SST is overconstraining. On the other hand, if the

optimal L is finite, then the SST (or relSST) state is im-

portant enough to warrant selecting from a Vmax dataset

effectively smaller than the full set.

The procedure is as follows:

1) Pick an SST anomaly scale L.

2) Pick an out-of-sample year in 1950–2008 and loop

through the historical tracks of that year.

3) For each track, select a Vmax series from the remain-

ing years.

FIG. 8. (a)–(c) Three randomly selected examples from 1950–2010 simulations, (d) along with the HURDAT tracks. Blue corresponds to

cat-0–2, yellow cat-3–4, and red cat-5.
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4) Compute the difference of the maximum Vmax of the

selected series from the maximum Vmax of the

historical series.

5) Accumulate the squared differences and record the

root-mean-square average as the out-of-sample fore-

cast error for the anomaly scale.

6) Minimize the error in L.

This type of optimizing is similar to the optimization

performed in the selection of scales defining the locality

of regression in the track, genesis, and lysis models

(Hall and Jewson 2007). There is a balance between

two competing factors: 1) a large L includes as much

data as possible, thereby reducing sampling error; and

2) a small L resolves underlying meteorological de-

pendence of TC intensity on SST. Figure 7 shows the

error as a function of the SST anomaly scale. There is

a shallowminimum atL5 0.5, indicating thatVmax has

enough sensitivity to SST to warrant the inclusion of

SST as a weight, despite the increased sampling error.

In this resampling scheme for Vmax, the maximum

intensity possible for a simulated storm is the maximum

intensity recorded in the HURDAT database. This is

a limitation and is not in keeping with the stochastic

nature of the other model components, which are not

bounded by historical values. To remedy this we add

random perturbations to the maximum Vmax values

achieved along TCs [lifetime maximum intensity

(LMI)], rescaling each storm’s Vmax series accordingly,

such that the first and final Vmax values are unchanged.

This rescaling, however, needs to be done carefully, so

that the distributional character of the resulting set of

LMI is unchanged. We do not want the resulting set of

simulated LMI to have a frequency distribution differ-

ent in character than the historical set of LMI.

First, we perform a simulation and store the set of as

yet unperturbed LMI. This unperturbed simulation set

has a frequency distribution of LMI that matches the

historical distribution, assuming the track simulations

are realistic, so that an unbiased sample of the Vmax

series is selected. Following Casson andColes (2000), we

model the LMIwith a generalized extreme value (GEV)

distribution fit to the historical LMI. GEV is the ap-

propriate distribution for the maximum in a series of

FIG. 9. Map illustrating 87 coast segments along the Caribbean, Atlantic, and Gulf Coasts. The segments are approximately 100 km in

length. They are divided into 10 regional categories, through color codes and labels.
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random values. The GEV distribution is then converted

to normal bymatching cumulative distribution functions

(CDFs). (That is, eachmaximumVmax value in theGEV

has a CDF value Y. The quantity X is found, such that

the standard normal CDF at X equals Y.) The elements

of the normal set are perturbed with a normal random of

zero mean and standard deviation s, which is de-

termined objectively by an out-of-sample minimization

of the LMI forecast error. The perturbed normal set is

then standardized. Finally, the standard normal per-

turbed set is converted back to GEV, again by CDF

matching. This results in a set of Vmax series on simu-

lated tracks whose maximum Vmax is not bounded by

the highest observed Vmax but whose frequency distri-

bution has a form that matches that of the historical

maximum Vmax.

FIG. 10. Landfall return-period curves for the full coast and each of the 10 regions, as labeled. Yellow curves are shown for each of the

5000 simulations of the 59-yr (1950–2008) period. The orange curves indicate the lower and upper bounds of the inner 95% across the 5000

simulations. The red curve is obtained by combining the 5000 simulations in series (i.e., a 295 000-yr simulation). The blue curve is

obtained directly from HURDAT landfalls. Model landfall is unbiased to the extent that the blue curve falls inside the orange curves.
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4. Evaluation

Before using the TC model to estimate landfall rate

sensitivity to SST and relSST, it is important to evaluate

the model. The 1950–2010 period is simulated 5000

times and the results compared to the historical TCs.

Tracks from three such simulations are shown in Fig. 8,

along with the historical tracks. The model performs

well according to a specified diagnostic to the extent that

the historical diagnostic value appears as a typical

member of the much larger synthetic set of diagnostic

values. The focus here is hurricane landfall, and we use

landfall rates to evaluate the model. For each simula-

tion, landfalls are computed in 100-km segments along

the Atlantic–Caribbean coast from the Yucatan Pen-

insula through Maine (Fig. 9). For each 1950–2008

synthetic set the landfalls are used to construct return-

period curves, which are the average times between

successive landfalls above aVmax threshold as a function

of the threshold. Because of the stochastic nature of the

simulations, a return-period curve is a statistic, and no

two return-period curves are identical. These synthetic

curves can be compared to the return-period curves

computed directly from historic landfalls over the same

period. The model is unbiased if the historic return-

period curve falls within the inner 95% of the simulated

curves. Figure 10 shows these return-period curves, with

one panel for each of the 10 regions as labeled. In most

regions at most intensity thresholds, the model is in-

deed unbiased by this standard. There is some evidence

for a low bias at low Vmax thresholds in the northern

Gulf Coast.

Figure 11 shows the landfall rates (counts yr21) along

the full coast, Yucatan to the U.S. Northeast, in each

intensity category separately. Shown are the model

means across the 5000-member 1950–2008 simulation

set, the 95% band about this mean, and the rates com-

puted directly from HURDAT. For all categories but

one, the HURDAT rate falls well inside the uncertainty

range about the model mean, indicating the model

landfall over the full coast is not biased for these in-

tensities. For cat-1 landfalls, the HURDAT rate sits

FIG. 11. Annual landfall rates (counts yr21) over the full coast (Yucatan through U.S. Northeast) of Fig. 10

separately in each intensity category 0 to 5. The red symbols are the mean of the 5000-member 1950–2008

simulation set. The orange bands show the 95% ranges about these means. The blue symbols are the rates

directly computed from HURDAT.
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right at the top of the range, indicating a marginal low

model bias for this category.

We further evaluate the model with an out-of-sample

test of its forecast ability. The model has been con-

structed using HURDAT 1950–2008, but the 2-yr period

2009/10 has also been included in the simulations. We

compare these simulations to 2009/10 observations. In

other words, given observed 2009 and 2010 values for

the independent variables SST and SOI, we test the

model’s probabilistic forecast of these years, which were

not used in its construction. (A full forecast would re-

quire predictions for SST and SOI, as well; here, just the

TC model is being tested.) The year 2009 was moder-

ately unfavorable for NA TCs, with an SST anomaly of

20.4 and an SOI anomaly of 0.9 (El Ni~no), while 2010

was extremely favorable, with an SST anomaly of 3.1

and an SOI anomaly of 21.9 (La Ni~na).

Figure 12 shows the 2009 and 2010 distributions over

the 5000-member simulation ensemble of NA-wide

count of (i) all named TCs and (ii) all TCs that some-

where achieve major hurricane status (cat-31).

Although there is overlap between the 2009/10 distri-

butions, there is a clear shift to more TCs in 2010. The

ensemble-mean total TC counts are 9.6 (2009) and 18.3

(2010), and the ensemble-mean major hurricane counts

are 2.1 (2009) and 5.8 (2010). The numbers that occurred

in these years, shown as symbols in the figure, are 9

(2009) and 19 (2010) for total TCs and 2 (2009) and 5

(2010) formajor hurricanes. These values are right at the

peaks of the forecast probabilities, indicating good

model forecasts.

Figure 13 shows the 2009/10 distributions over the

5000-member simulation ensemble of Yucatan-to-Maine

landfalls of all named TCs and major hurricane status

(cat-31). The model does equally well for landfall fore-

cast as for basinwide storm count. The mean forecast for

all landfalls in 2009 is 3.8 and in 2010 is 7.2. The actual

occurrence was 2 and 8, both values near the peaks of

their probabilistic forecasts. The mean forecast for major

hurricane landfalls in 2009 is 0.4 and in 2010 is 1.1, while

the actual occurrencewas 0 and 1 (HurricaneKarl in 2010

on the Mexican Gulf Coast), again near the peak prob-

abilistic forecast.

5. Landfall and SST

The primary goal of this study is to estimate the re-

lationship between SST (or relSST) and landfall rates.

For each of the five fixed values of SST anomaly (22,21,

0, 11, and 12) we perform 10000-yr simulations. The

FIG. 12. Probability forecasts of NA TC counts in 2009 (blue curve) and 2010 (red curve) for

(a) all named TCs and (b) major (cat-31) hurricanes. The symbols indicate the actual numbers

that occurred in 2009 (blue) and 2010 (red).

FIG. 13. As in Fig. 12, but for landfalling TCs along the full segmented coast shown in Fig. 9.
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long duration is necessary for the mean landfall rates at

the 100-km resolution to converge sufficiently and long

return period to be estimated. We then compare mean

landfall rates along the coast between the extreme 12

and 22 states.

It is crucial to estimate the uncertainty of the mean

rates. A landfall rate difference between two SST states

may be found, but is it significant? Uncertainty bounds

about the means are determined with a generalized

jackknife test. For each value of SST we perform 100

versions of the 10 000-yr simulation. In each version, all

model components are reconstructed on a random 80%

subset of the data years 1950–2008 (i.e., a random 47 of

the 59 years). This tests the sensitivity of the results to

the finite nature of the underlying data on which the

results are based. With this test we can say that the dif-

ference in mean landfall rates on some coastal region

between the SST 5 12 and SST 5 22 states are sig-

nificantly different (or not) if the inner 95% of the set of

100 differences excludes (or does not exclude) zero.

Figure 14 shows the probability of TC landfall at any

intensity per year per 100-km along the coast from the

eastern Yucatan to Maine for warm (12) and cold (22)

years. Also shown is the hot–cold difference. There is

considerable geographic structure in the probabilities.

In either hot or cold years, the eastern Yucatan and the

northern Gulf Coasts have the greatest exposure, while

the western Yucatan has almost no probability of a di-

rect landfall. (Storms crossing the Yucatan east to west

can do heavy damage on the west side of the peninsula.

The diagnostic here counts storms as they actually cross

ocean to land.) Figure 15 shows the same landfall prob-

abilities but now for major hurricane landfalls (cat-31).

The geographic structure is similar to TC landfall at any

intensity, though there is increased weight toward the

Gulf and away from the U.S. East Coast and Northeast.

Figure 16 shows the same major landfall probabilities

but now with relSST as the independent variable. The

results are very similar to SST, the biggest difference

being western Florida, where the warm-year increase is

marginally significant for SST but is insignificant for

relSST.

With increased SST (or relSST), there is increased risk

of landfall on the eastern Yucatan, on Texas, on the

FIG. 14. (top) Probabilities along theU.S. andMexican coasts (as

labeled) of one or more TC landfalls of any intensity (cat-01) per

year per 100 km of coastline in 12 sigma SST years (red) and

22 sigma SST years (blue). (bottom) Difference in such proba-

bilities hot minus cold. In each curve, the spread is a measure of

significance, representing the inner 95% of results in a generalized

jackknife test. In this figure, all of the model components genesis,

propagation, and intensity are sensitive to SST.

FIG. 15. As in Fig. 14, but for major hurricanes (cat-31).

FIG. 16. As in Fig. 15, but the independent variable is relative

SST (NA MDR JASO mean minus global northern subtropical

JASO mean), with red 12 sigma and blue 22 sigma.
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north Gulf Coast, and (for SST) marginally on the

Florida Gulf Coast. The biggest increase is seen on the

eastern Yucatan, where the probability of a cat-31
landfall is 2 to 3 times larger for 12 SST than 22 SST. In

Texas, the increase in landfall rate from 22 to 12 SST

(or relSST) is roughly a factor 2. Interestingly, the U.S.

East Coast from Florida through New England shows no

significant sensitivity to SST or relSST. This is explored

further below.

Figure 17 shows the SST 5 12 and 22 landfall–Vmax

return-period curves for the full coast of Fig. 9 and for

the individual regions. The spread for each SST state

corresponds to the jackknife 95% confidence bounds.

The eastern Yucatan coast has a reduction in return

periods (increase in landfall frequency) that is significant

at all intensities. That is, the red and blue regions are

distinct at all intensities. Other Gulf Coast regions dis-

play a more varied SST sensitivity, typically showing

a significant reduction in warm-year return periods for

some intensities but not others. For example, Texas has

significant return-period reduction for Vmax less than

40 kt (1 kt 5 0.514 44m s21) and Vmax between 80 and

120 kt. This complex signal is due to the tendency for

warm-year return-period curves on the Gulf to become

more vertical in the cat-2–3 intensity range, consistent

with the observation that cat-2 and cat-3 landfall rates

differ by relatively little (see cat-2 and cat-3 landfall

rates in Fig. 11). The U.S. East Coast, from Florida

FIG. 17. Return-period curves for the fixed SST states12 (red) and22 (blue). The spread for each state indicates

the 95% confidence bounds from the jackknife uncertainty test. The first panel includes the entire segmented coast of

Fig. 9, while subsequent panels represent the smaller coastal regions of Fig. 9, as labeled. Note the different year

range on the x axis for the FULL COAST panel.

1 NOVEMBER 2013 HALL AND YONEKURA 8435



through New England, shows no significant changes in

landfall return periods at any intensity. Summed up for

the full coast, there are significant reductions in return

periods for all intensities up to about 120 kt, except for

a small range around cat-2.

To help interpret the different sensitivities to SST

along the coast, the entire analysis is repeated but now

making only subsets of genesis, propagation, and in-

tensity sensitive to SST. Figure 18 is similar to Fig. 15,

except that only genesis is sensitive to SST. (That is,

there is no SST regression in the propagation compo-

nent, and the Vmax sampling scheme now considers all

years equally, independent of SST.) With only genesis

sensitive to SST, there is marginally significant landfall

increase everywhere along the Caribbean and Gulf

Coasts through Florida. The increase on the U.S. East

Coast is marginally insignificant. If TC genesis increased

uniformly over the NA with SST (or relSST) then,

without SST dependence in any other model compo-

nent, we would expect the landfall rate change to be

uniform along the coast. The modest geographic struc-

ture observed in the genesis-only landfall rate change

must be because NA genesis does not change uniformly.

Instead, the center of genesis shifts southeastward in

warm years (Figs. 2 and 3).

When SST sensitivity is added to the track propaga-

tion (Fig. 19), the landfall profile looks more like that of

the full model. The Yucatan shows no additional effect,

the warm-year increase on the Mexican Gulf and Texas

is exaggerated, and the rest of theGulf and theU.S. East

Coast no longer shows SST sensitivity. Figure 6 shows

that in warm years TCs originating in the MDR do not

reach as far west before recurving northeastward. This

reduces the odds of a U.S. East Coast landfall, buffering

the region from the overall increased TC count. Finally,

with Vmax also sensitive to SST or relSST (Figs. 15 and

16), the Yucatan and Mexican Gulf sensitivities are ex-

aggerated, Texas and the north Gulf have significant

landfall increase with SST or relSST, and western Flor-

ida has significant increase with SST (but not relSST).

The U.S. East Coast, however, remains insensitive to

SST or relSST,mostly due to the buffering effect of track

propagation changes, as well as the shift southeastward

in the region of primary genesis.

To further illustrate the impact on landfall of factors

beyond changes in basinwide counts, we plot in Fig. 20

the fraction of TCs of any intensity that make landfall

per 100 km along the coast. That is, we divide the

FIG. 18. As in Fig. 15, but only genesis is sensitive to SST. FIG. 19. As in Fig. 15, but only genesis and tracks (not Vmax) are

sensitive to SST.

FIG. 20. (top) The fraction of all NA TCs that make landfall per

100 km of segmented coastline for hot (red) and cold (blue) SST.

The spread indicates the inner 95% of the jackknife set. (bottom)

The inner 95% of the hot–cold difference of the landfall fraction.
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landfall rates in the hot and cold SST simulations by the

total hot and cold basinwide TC count. The landfall

fraction depends on changes in genesis location and

track with SST but not overall formation rate. From

Florida through the Northeast there is a marginally

significant decrease in landfall fraction with high SST

compared to low. In contrast, from the Yucatan through

the Mexican Gulf there is an increase warm over cold;

the increase is significant on the eastern Yucatan coast

but marginally insignificant on the Gulf Coast according

to our jackknife uncertainty criterion.

Figure 21 summarizes these results in terms of the

normalized histograms over the jackknife set of the

difference of hot over cold landfall fraction, now sum-

med over (i) the entire coast, (ii) the Yucatan through

Mexican Gulf, and (iii) Florida through the U.S.

Northeast. For the entire coast, there appears to be

a decrease in landfall fraction with high SST, but the

difference is not significant. The apparent increased

landfall fraction on the Yucatan and Mexican Gulf is

also not significant. The decrease on the region Florida

through theNortheast is significant. In summary, we find

no significant change with SST in the fraction of NATCs

making landfall anywhere from the Yucatan to the U.S.

Northeast, in agreement with Villarini et al. (2012).

However, the combined effects of shifts in genesis site

and track changes hint at a dipole landfall effect, with

a marginally insignificant increase in warm years on the

Yucatan and western Gulf Coast, and a marginally sig-

nificant decrease on the U.S. East Coast.

These results on the geographic distribution of land-

fall rate changes with SST are at least qualitatively in

agreement with the work of Kossin et al. (2010). These

authors decomposed NA TC tracks into four clusters

and regressed the annual formation rate of each cluster

on the AMM, which has a strong signature in NA SST.

The cluster of TCs originating in the MDR and propa-

gating westward to make western Gulf and Yucatan

landfall is particularly sensitive to AMM. Its formation

rate increases with increasingly positive AMM (and

hence NA SST), leading to the enhanced western Gulf

landfall rates we see in our analysis.

6. Conclusions and discussion

We have employed a statistical–stochastic model of

TCs in the North Atlantic to estimate the sensitivity of

North American TC landfall to SST and relative SST

(relSST). We find statistically significant increases in

annual major hurricane (cat-31) landfall probability in

warm years compared to cold for the eastern Yucatan,

the Mexican Gulf Coast, Texas, and the north Gulf

Coast. In addition, there is a significant increase on

western Florida for SST, though not for relSST. In-

terestingly, there is no significant landfall change on the

U.S. Atlantic coast, despite the overall increased annual

TC count. Selective removal of the SST dependence

from key model components reveals that the U.S. East

Coast is buffered from the increased TC count by a shift

with SST (and relSST) in track propagation from TCs

originating in the MDR. In warm years, these tracks

recurve to the northeast on average at a point farther

east than in cold years, thereby reducing their odds of

making East Coast landfall. Also contributing to this

East Coast buffering is southeastward in the center of

NA TC genesis and a consequent reduction in the

landfall odds.

A purely statistical study such as this can make no

statement about the physical mechanism of the SST–

landfall relationship. Kossin et al. (2010) show statisti-

cally that the SST patterns favorable for MDR TCs are

high SST in the NA and low SST in the subtropical Pa-

cific. Motivated by this and other studies we also tested

relSST, in place of SST, as the independent predictor

variable. The landfall results change little. Over the past

60 years, apparently, the climate state when SST is high,

FIG. 21. Normalized histograms across the jackknife set of the hot–cold differences in landfall fraction of all NA TCs. Blue shows the

inner 95% and red shows the upper and lower 2.5% across the jackknife set. (a) The entire coastline, Yucatan to the U.S. Northeast.

(b) The Yucatan and Mexican Gulf. (c) Florida through the Northeast.
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either absolutely or relatively, is associated with NA TC

changes that cause significant landfall increases on parts

of the North American coast. SST and/or relSST may be

acting as a proxy for other TC-influencing variables as-

sociated with natural climate modes. For example,

Kossin and Vimont (2007) discuss the Atlantic meridi-

onal mode (AMM) and its impact on the Atlantic warm

pool and wind shear. In the AMM’s positive phase, the

North Atlantic is warm, providing a link to our SST and

relSST predictors. The eastward expansion of the warm

pool shifts the center of genesis eastward, which affects

landfall rates, as TCs originating in the eastern MDR

have lower odds of making North American landfall.

Wang et al. (2011) have also argued that, via standing

wave influence on the subtropical high-pressure system,

the expanded warm pool influences TC propagation in

precisely the way seen here: less westward penetration

before northeastward recurvature, which reduces land-

fall odds.
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