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We present an algorithm for the retrieval of cloud droplet size distribution parameters (effective radius and
variance) from the Research Scanning Polarimeter (RSP) measurements. The RSP is an airborne prototype for
the Aerosol Polarimetery Sensor (APS), which was on-board of the NASA Glory satellite. This instrument
measures both polarized and total reflectance in 9 spectral channels with central wavelengths ranging
from 410 to 2260 nm. The cloud droplet size retrievals use the polarized reflectance in the scattering angle
range between 135° and 165°, where they exhibit the sharply defined structure known as the rain- or

gfg’cvgizgneﬁc scattering cloud-bow. The shape of the rainbow is determined mainly by the single scattering properties of cloud par-
Polarization ticles. This significantly simplifies both forward modeling and inversions, while also substantially reducing
Mie theory uncertainties caused by the aerosol loading and possible presence of undetected clouds nearby. In this
Rainbow study we present the accuracy evaluation of our algorithm based on the results of sensitivity tests performed

Optical particle characterization
Remote sensing

using realistic simulated cloud radiation fields.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Understanding of cloud optical and microphysical properties and
their influences on the interaction of clouds with solar radiation is
essential for accurate climate projections. Cloud optical properties
are determined by their liquid water content and droplet size distri-
bution, which vary within clouds. Accurate and robust remote sensing
estimates of droplet sizes for different cloud types, especially for bro-
ken clouds, are crucial for studies of indirect aerosol effects, which are
focused on relationships between aerosols and cloud properties (such
as cloud cover, height and particle size).

Satellite remote sensing methods in the solar spectral domain can
use both total and polarized reflectance measurements for cloud drop-
let size retrievals. However, those currently operational are based on
the multispectral measurements in absorbing and non-absorbing
bands by e. g., the Moderate Resolution Imaging Spectroradiometer
(MODIS), and do not include polarization (Nakajima & King, 1990;
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Platnick et al., 2003). These retrievals have certain limitations owing
to the influence of the 3D structure of clouds (especially broken cumu-
lus and stratocumulus) on the reflected radiation, which is not
accounted for in the 1D radiative transfer models used in the retrieval
algorithms (Marshak et al., 2006; Zinner et al., 2010). In particular,
Marshak et al. (2006) found that ignoring sub-pixel cloud variability
produces a negative bias in the retrieved effective droplet radius,
while ignoring cloud inhomogeneity at scales larger than a pixel
scale, on the contrary, leads to overestimation of the average droplet
size. The 3D shadowing and illumination effects also introduce depen-
dence of the retrieval results on solar and viewing geometries.
Vant-Hull et al. (2007) found that when 3D clouds are viewed near
the backscatter geometry, the retrievals based on a plane-parallel
model underestimate the effective radius, while the reverse is true
when the satellite is far from the backscatter position. The satellite
data survey by Girolamo et al. (2010) found that the retrieved cloud
reflectance is indistinguishable from plane-parallel clouds in only
24% of cases, mostly limited to regions dominated by stratiform clouds
at solar zenith angles less than 60° (for other regions or solar angles
this frequency drops sharply to as low as a few percent). Nakajima
et al. (2010) found that the cloud droplet sizes retrieved from
MODIS data would be strongly influenced by the vertical inhomogene-
ity of droplet size, hypothesizing the existence of small cloud droplets
at cloud top as the reason for small droplet size retrievals using the
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3.7-um channel and large drizzle drops influencing 2.1- and 1.6-pm
channels. The sensitivity of MODIS particle size retrievals to drizzle
formation was not, however, corroborated by Zinner et al. (2010).
The gaseous (water vapor) absorption inside the cloud also creates
uncertainties (positive bias) in retrievals of water cloud effective radi-
us from total reflectance measurements (Platnick & Valero, 1995) and
a similar effect can result from the presence of an absorbing aerosol
layer above the cloud (Coddington et al., 2010; Haywood et al., 2004).

Retrieval of cloud droplet size from polarized observations of the
reflected light in the rainbow region (at scattering angles between
135° and 165°) allows many of the uncertainties associated with 3D
effects and unknown aerosol loadings to be avoided. This advantage
results from the shape of the rainbow being dominated by single
scattering of light by cloud particles, even though its amplitude can be
affected by aerosols and the geometric structure of clouds. The domi-
nance of single scattering as a determinant of the structure of the rain-
bow simplifies both forward modeling and inversions. The retrievals are
just as accurate over land, or ocean (no surface albedo issues), and are
valid independent of the optical depth down to unity (i.e. they work
for common low water path clouds).

Another potential use of this technique is in combination with lidar
measurements of cloud-top extinction. The polarimetric retrievals
of effective radius and variance provide accurate estimates of the
extinction cross-section of cloud droplets that, when divided into the
extinction coefficient, allow the number concentration of cloud droplets
to be determined. This quantity, unlike the optical characteristics, is
directly related to aerosol effects on clouds (Brenguier et al., 2003).
Hu et al. (2007) introduced a method for derivation of droplet number
concentration from CALIPSO satellite lidar data combined with MODIS
droplet size retrievals. Their approach used an empirical relationship
between depolarization and cloud extinction coefficient (obtained
using Monte Carlo simulations) and derived the extinction cross-
section from the MODIS 3.7-um channel size retrieval. However, since
the MODIS dataset does not provide effective variance of the droplet
size distribution there are non-negligible uncertainties in the estimate
of extinction cross-section that affect the droplet number concentra-
tion. This obstacle would not affect a study where polarimetric
retrievals of droplet size distribution are used.

The polarized rainbow technique has previously been used to
retrieve cloud droplet effective radii from the Polarization and Direc-
tionality of the Earth's Reflectances (POLDER, Deschamps et al., 1994)
measurements (Bréon & Doutriaux-Boucher, 2005; Bréon & Goloub,
1998). The inter-comparison study by Bréon and Doutriaux-Boucher
(2005) found high correlation between POLDER and MODIS products
over the oceans (with MODIS biased high by about 2 um). This corre-
lation, however, breaks down over most of the continental and
polluted oceanic areas, where POLDER retrieves smaller droplets
(less than 7 um effective radius).

While RSP allows both total and polarized reflectance methods to
be used simultaneously, in this study we focus only on the polarized
rainbow technique. Here we present the results of tests performed
on the output from 1D and 3D radiative transfer models that are
used to simulate the polarized reflectance of both simplified and real-
istic cloud scenes. Our retrievals from actual RSP measurements
performed during two field campaigns (to be published elsewhere)
appear to be consistent with the correlative in situ observations
within 50-100 m of the cloud top.

2. RSP measurements

The RSP (Cairns et al., 1999) is an airborne prototype for the satel-
lite Aerosol Polarimetery Sensor (APS), which was built as part of the
NASA Glory Project (Mishchenko, 2006; Mishchenko et al., 2007).
This instrument measures I, tQ, and U components of the Stokes
vector (cf. Hansen & Travis, 1974; Mishchenko et al., 2006) in 9 spec-
tral channels with center wavelengths of 410, 470, 555, 670, 865, 960,

1590, 1880 and 2260 nm. The total and polarized reflectances (R and
R, respectively) are then derived from these Stokes parameters as
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where Iy is the extraterrestrial solar irradiance, and i is the cosine of
the solar zenith angle (SZA). The Stokes parameter Q in Eq. (2) is
defined with respect to the scattering plane containing both solar
and view directions (parameter U in this plane is negligibly small).
In our notation the polarized reflectance is positive when the polari-
zation direction is parallel to the scattering plane and negative
when it is orthogonal to that plane. (Note, that this notation is the
opposite to that adopted by Bréon and Goloub (1998) and Bréon
and Doutriaux-Boucher (2005).

The RSP scans its 14 mrad field of view over +60° from nadir
(starting at forward direction) and making samples at 0.8° intervals,
with additional calibration measurements being made in other parts
of the scan. Thus, the observational data obtained in each scan
consists of around 150 instantaneous Earth viewing measurements.
Usually the RSP is oriented to scan along the aircraft track. In this con-
figuration the data from the actual RSP scans can be aggregated into
“virtual” scans consisting of the reflectance at the full range of view-
ing angles at a single point on the ground, or at the cloud top
(Fig. 1). This aggregation can be done using either the aircraft attitude
data (altitude, speed, pitch and crab angles), or the RSP measure-
ments of brightness contrast between small clouds and the surface.

In this study we focus on liquid water clouds with cloud tops
warmer than 0 °C. For colder cloud tops, the cloud thermodynamic
phase (ice, water or mixed-phase clouds) can be determined by ana-
lyzing the magnitude of the main rainbow feature (Goloub et al.,
2000; van Diedenhoven et al., 2012b). Besides liquid water cloud
properties RSP measurements can be used for accurate retrievals of
ice cloud parameters (Ottaviani et al., 2012; van Diedenhoven et al.,
2012a), aerosol optical depth, size, and refractive index (Cairns et
al., 2009; Knobelspiesse et al., 2011a, 2011b; Waquet et al., 2009),
as well as for characterization of the ground surface (Knobelspiesse
et al., 2008). Over ocean, in addition to aerosol retrievals, chlorophyll
concentrations are simultaneously estimated from the atmospheri-
cally corrected ocean color measured by the RSP (Chowdhary et al.,
2005, 2006, 2012; Gilerson et al., 2006).

3. Retrieval algorithm

For cloud droplet size retrievals we use the scattering angle
dependences of the polarized reflectance. In this study we mostly
use the 865 nm spectral channel, however, other RSP channels can
also be used (except for 960 and 1880 nm channels affected by
water vapor and/or CO, absorption). Our technique is focused on
the sharply defined structure (rainbow) in the polarized reflectance
of clouds within the scattering angle range between 137° and 165°
(Fig. 2). The dependence of the rainbow signature on the cloud drop-
let effective radius has the form of a dilation of the curve along the
scattering angle axis, while increase of the effective variance results
in smoothing of the curve making the extrema less pronounced
(until their eventual disappearance).

To analyze the shape of the polarized rainbow, we first perform a
rotation from the measurement coordinate frame to that of the scat-
tering plane (cf. Hansen & Travis, 1974). Since the rainbow shape is
determined mainly by the single scattering, this procedure results
in an increase in magnitude of the Stokes parameter Q, while the
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Fig. 1. Schematic illustration of the RSP data aggregation process: the data from the actual scans is aggregated into “virtual” scans, each consisting of all reflectances (at different

viewing angles) from a single point at the cloud top.

parameter U becomes an order of magnitude smaller than Q (U would
become 0 in the case of complete absence of multiple scattering).
Then, we fit the polarized reflectance computed according to Eq. (2)
by functions from the following parametric family:

R,(Y) = APY (Y + 6: Ty, Vegr) + Brcos™y + C. 3)

Here vy is the scattering angle, re and veg are respectively the
effective radius and variance of the cloud droplet size distribution
(cf. Hansen & Travis, 1974), which is assumed to have the form of a
gamma distribution. The phase matrix elements P{}"® are computed
using Mie theory for a grid of effective radius and variance values,
while A, B, and C are empirical fitting parameters accounting for contri-
butions to the polarized reflectance from everything beyond single
scattering by cloud droplets, such as multiple scattering, Rayleigh scat-
tering, aerosol extinction, ground surface reflectance for thin clouds, as
well as effects caused by rotation to the scattering plane. Furthermore,
the effect of overlying cirrus clouds is expected to be largely mitigated

by incorporating these empirical fitting parameters in the procedure
(B in particular), since measurements indicate that natural ice clouds
generally have featureless polarized reflectances, which are near-
linear as a functions of scattering angle (C.-Labonnote et al., 2000;
Knap et al., 2005; van Diedenhoven et al., 2012b). Small fitting parame-
ter § is supposed to compensate for angular errors (shifts) in measured
and simulated reflectances. The cos®y term is included to capture any
Rayleigh scattering contributions to the observations. Our tests showed
that this parameterization provides a slightly better fit to simulated data
than the parameterization of Bréon and Goloub (1998), which uses a
term linear in 7. Note, however, that the difference between the two
parameterizations is small since in the rainbow region cos*y can be
closely approximated by a linear function of vy (plus a constant).

We use a pre-calculated look-up table (LUT) of P{}i®) values with
0.2° resolution in the scattering angle. The grid values of reg used in
this LUT range from 5 to 20 um with 0.5 um increments, while the
grid for veg starts with the values 0.01, 0.03, 0.05, and then becomes
regular with 0.025 increments and maximum value of 0.35. Our
fitting technique consists of 2 steps: first, we count minima and
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maxima in the observed rainbow signature and match these numbers
(give or take one) with those from the corresponding LUT; after that
we directly look for the best fit (according to Eq. 3) among the plau-
sible subset of forward modeled curves selected on the first step.
After the best fit cloud size model is determined we perform a refine-
ment procedure in its neighborhood on a 10 times denser grid in
effective radius and variance. The first step can be skipped for analysis
of simulated data, unless noise and/or measurement artifacts are
deliberately introduced into the simulations.

4. Tests on 1D plane-parallel simulations

To justify our (semi-empirical) method, we need to demonstrate on
simulated data that the parameterization (3) adequately separates the
cloud single scattering contribution from other factors providing high
accuracy retrievals. We use a vector multiple scattering radiative trans-
fer (RT) model to simulate RSP measurements of polarized reflectances
emerging from a cloud field with known microphysical parameters.
Then we derive cloud droplet size from these data using our retrieval
algorithm, and compare the retrieved values of the droplet effective
radius and variance with those assumed in the simulations.

The modified vector doubling/adding code (Cairns et al., 1997)
used for forward modeling of reflectances for plane-parallel (1D)
atmospheres is essentially the same as that presented by Hansen
and Travis (1974) with modifications based on the work of de Haan
et al. (1987). The simplicity of this RT model allowed us to perform
several numerical experiments in order to study the sensitivity of
the retrieval accuracy to various factors, such as the scene geometry,
presence of a thick aerosol layer above the cloud, and composition of
the cloud itself. We do not investigate the influence of the ground sur-
face, since its polarized reflectance is generally smooth as a function
of scattering angle and should be eliminated by the regression (3).
All simulations described below were made for the 865 nm wave-
length, unless specified otherwise.

We start with the most straight-forward numerical experiment,
when the RSP data is simulated for the measurements in the principal
plane (containing the Sun direction and the normal to the surface). In
this case the Sun is directly ahead or behind the aircraft (so that the
relative solar azimuth is either 0° or 180°). The RSP measurements
in this case cover the maximal scattering angle range for the given
SZA. No transformation of the Stokes vector is needed, since in this
situation the scattering plane corresponding to each viewing angle
coincides with the principal plane. Thus, no errors are introduced in
association with such a transformation. We performed this experi-
ment on an extensive grid of realistic cloud size parameters, with
Tege Values of 5, 7.5, 10, 12.5, 15, and 17.5 um, and veg values of 0.01,
0.05, 0.1, and 0.2. In all cases SZA was 60°, and the cloud optical
depth (COD) was five, which is effectively infinite for the generation
of polarization. We allowed the angular shift fitting parameter 6 to
vary within +0.2° (which is the resolution of both the forward
model and the LUT used for inversions) with 0.01° increments. The
fitting errors are computed as the standard deviations of the differ-
ences between the simulated and fitting values on the angular grid.
Examples of the simulated and best fit (according to Eq. (3)) polar-
ized reflectance are shown in Fig. 3 by respectively red and green
curves for reg=7.5, 17.5 pm, and veg=0.01, 0.2. The blue curves
show the reflectance computed assuming exactly the same size distri-
bution parameters as those used in the RT model. They are slightly
different from the best-fit curves, partly due to the small angular un-
certainties (best seen in the top right panel). The comparison between
the retrieved effective radius and variance values with those assumed in
the simulations is shown in Fig. 4 as separate scatter plots for regand Veg
and also as the difference vectors in (ref, Vegr)-plane. There the dia-
monds represent the assumed models, and the triangles are the
best-fit retrievals. We see from Fig. 4 (top) that the mean accuracy of
the reg retrievals is better than 0.1 um, while its standard deviation

has maximal value of 0.21 um at veg=0.2 (due to the single worst
case shown in Fig. 3 (top right)). While the error in the effective radius
retrievals is rather random, the derived values of veg show systematic
biases (Fig. 4 (middle)), which can be approximated by regdependent
linear functions of the assumed v (they are listed at the bottom of
the plot). We see that these biases range from 6% to 27% and generally
decrease with reg, while the largest absolute differences occur at large
Vesr, €specially 0.2. This may be explained by the lack of “structure”
(number and amplitude of oscillations) in the angular dependence of
polarized reflectance for both small sizes and large variances, as can
be seen in Fig. 2. The “smoothing” effect of multiple scattering on the
polarized reflectance, is then interpreted by the retrieval algorithm as
a bias toward larger veg, and (to a much lesser extent) to smaller droplet
size.

Similar small biases can be observed in droplet sizes retrieved
from different spectral channels. Fig. 5 shows polarized reflectances
and size retrievals for the same models as presented in the top panels
of Fig. 3 (regr="7.5 pum, vegr=0.01, 0.2), but for a shorter (410 nm) and
a longer (1588 nm) wavelength. The increasing lack of “structure” in
these curves causes some underestimation (by 0.1-0.6 um) of the
droplet rer as wavelength increases, and the larger retrieval errors
are observed for large veg. While these biases are relatively small for
simulated data, the presence of measurement noise or artifacts is like-
ly to more strongly affect the retrievals when the rainbow signature
is weak. Thus, we do not recommend using the longest RSP wave-
lengths (1588 and 2260 nm) alone. Our tests show that polarized
reflectance in a single channel is sufficient for accurate determination
of droplet size distribution parameters. However, simultaneous
retrievals using multiple spectral channels are beneficial for providing
a retrieval consistency check, as well as a quality assessment of the
measurements (particularly for airborne measurements where
pointing knowledge is unlikely to be better than £1°).

5. Effects of rotation to the scattering plane

Before describing the effect of the coordinate frame rotation on the
droplet size retrievals, we should note that the range of the observed
scattering angles also depends on solar/viewing geometry, and this is
an important factor affecting the retrieval accuracy. Obviously, good
retrievals cannot be expected, when only a small part of the rainbow
structure is seen in the data. Fig. 6 shows the dependences of the scat-
tering angle range on the relative azimuth between the Sun and aircraft
directions for three different solar zenith angles (40°, 60°, and 80°),
assuming that the viewing angle varies within +60° from nadir. The
relative azimuth intervals are classified in these plots according to the
extent (“Full”, “Partial”, or “None”) to which the rainbow region (here
140°-165°) is covered by the RSP measurements made under the
corresponding viewing geometries. These results are summarized in
the diagram in Fig. 6 (bottom right). We see from this diagram that in
the limit case, when the Sun is directly at zenith, the full rainbow
range is observed independently of the relative Sun/aircraft azimuth.
For non-zero SZA the best rainbow coverage is achieved in the principle
plane (zero relative azimuth), then, the coverage decreases with the
azimuth as it increases to 90° (values larger than 90° are not shown
due to symmetry). The coverage also gets worse with increase in SZA,
so that for SZA>75° full-range rainbow observation cannot be made
even in the principal plane while at SZA > 40° there is a relative azimuth
range, where the rainbow cannot be seen at all.

As we already mentioned, the polarized reflectance measured in
the solar principal plane is determined by the Stokes parameter Q
according to Eq. (2), while the parameter U is zero as a result of sym-
metry. In order to perform the droplet size retrievals in an arbitrary
viewing geometry the Stokes vector needs to be transformed from
the measurement coordinate frame into that of the scattering plane.
Note, that this plane is defined as the one containing both solar and
viewing directions, thus, in a generic case it is different for different
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Fig. 3. Retrievals of effective radius and variance from the polarized reflectances simulated using plane-parallel adding/doubling vector code for reg=7.5 and 17.5 pm, and
Verr=0.01 and 0.2. The simulated (using multiple scattering) reflectances are shown in red; the single-scattering fits assuming the same regr and veg that were used in the radiative
transfer model are in blue; while the best fits (assuming an angular shifts) are in shown in green. In all cases COD is 5.

viewing angles within the same RSP scan. In the case of single scatter-
ing, the transformation of the Stokes vector corresponding to the
rotation of the reference frame is linear (cf. Hansen & Travis, 1974)
and affects only its Q and U components (U=0 after this rotation).
While, strictly speaking, such a simple transformation is not valid in
the case of multiple scattering in clouds it can still be used in the rain-
bow region, where the angular structure of polarized reflectance is
dominated by single scattering. In this case the transformed U is
orders of magnitude smaller than the transformed Q which has simi-
lar structure in the rainbow to that of single scattering. The deviation
in the parameter Q from that of single scattering, resulting from
the reference frame rotation under multiple scattering conditions, is
expected to be a smooth function of scattering angle, which is
absorbed by the last two terms in the parameterization (3). This
assumption is confirmed by the excellent fits of the rotated polarized
reflectances using Eq. (3) in the numerical tests described below.
We applied our retrieval algorithm to RSP measurements simulat-
ed for 3 solar zenith angles (20°, 40°, and 60°) and the corresponding
relative azimuths (48°, 22°, and 16°) chosen to be the most distant
from 0°, while still allowing for full rainbow range observation (see
Fig. 6). This choice was made to separate the errors introduced by
the frame rotation from the loss of accuracy due to reduced angular
range. For comparison we also generated and analyzed data for the
same SZAs, but with the measurements made in the principal plane.
The cloud parameters assumed in simulations were the same in all
cases: regr=17.5 pm and veg=0.1, and COD = 5. The polarized reflec-
tances obtained after the transformation into scattering plane frame
are shown in Fig. 7. We see that the “rainbow signal” is weaker at

smaller SZA, introducing larger uncertainties in the retrievals, espe-
cially for SZA=20° (which, however are still quite good: only
0.5 um underestimation of reg, and 10% overestimation of veg). The
“U-reflectances” computed using the analog of Eq. (2), but with Q re-
placed by the residual value of U in the scattering plane are shown in
Fig. 7 (bottom right). One can see that these residues are more than 2
orders of magnitude smaller than the corresponding polarized reflec-
tances (while larger than the corresponding quantities in the princi-
ple plane simulations, which are essentially 0 (smaller than 107)).
The differences between retrievals from the “rotated” datasets and
from their principle plane counterparts (reg=17.2 um, Vegr=0.110
for SZA=20°, reg=17.5 pm, ver=0.107 for SZA=40° and reg=
17.5 pm, ver=0.102 for SZA=60°) are as little as 0.1-0.2 pym in radi-
us and a few percentage points in variance. This allows us to conclude
that the error introduced by the transformation of the Stokes vector
to the scattering plane frame and omission of U is negligible.

6. Effects of angular shifts

Angular errors, if unaccounted for, can significantly affect the
accuracy of satellite, and especially airborne measurements. In partic-
ular, inadequately recorded aircraft pitch, roll and yaw may cause an
error in the computed scattering angle. In realistic situation this error
is a non-linear function of the aircraft attitude uncertainties, which
can be large. However, if these uncertainties are small (less than a de-
gree), they result in an effective shift in scattering angle, which is easy
to model. To see the effect of such a shift on the droplet size retrievals,
we took the polarized reflectance simulated for clouds with reg=7.5
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and 17.5 ym and displaced the actual scattering angle records by
small angle Ay ranging from -0.5° to 0.5°. In all considered cases
Vesg= 0.1, COD =5, SZA is 60°, and the relative solar-aircraft azimuth
is 0°. The results of application of our algorithm (without optimiza-
tion for angular shift parameter §) to this dataset are presented in
Fig. 8 for the case of rogr=17.5 (plots in the case of reg=7.5 are sim-
ilar). A strong linear dependence of the retrieved res 0n Ay is seen in
the top right panel of Fig. 8. This seems reasonable when one con-
siders that, while the dependence of the rainbow shape on the drop-
let effective radius can be characterized as a dilation with fixed point
at 135° in scattering angle space (as reg decreases), small shifts can
also be interpreted as dilations. To see this, we can apply shift Ay
to both ends of the scattering angle interval [vyo,y1]. At each end
the shift can be interpreted as a multiplication by a factor ¢;=
1+ (Ay/7;), i=0.1. The factors ¢y and c; are identical in the case of
true dilation, while in our case they are very close as Ay <<yp<+;.

The accuracy of the numerical simulations used for these tests was
0.2°, so it is not surprising to see a discrepancy of that order between
simulated multiple- and single-scattering polarized reflectances.
In the case of rer="7.5 um the size assumed in the model can be re-
trieved when applying a -0.25° shift, while the effective radius
value retrieved without a shift was 7.2 pm. Given the linearity of
the dependence of the retrieved reg on the implied Avy, this means
that the retrieval error in this case is 1.2 pm or 16% per degree of
the shift. In the case of reg=17.5 pm (Fig. 8) a smaller —0.15° shift
was necessary to recover the assumed droplet size, while reg=
16.8 um was retrieved with Ay=0. This corresponds to 4.7 um or
27% error rate per degree of the shift. The error associated with angu-
lar uncertainty is more significant for larger particles, since the oscil-
lating structure of the rainbow generated by them has shorter angular
period than when the droplets are smaller (see Fig. 2). Thus, the same
angular shift appears to be larger relative to this period for larger
droplets, and, therefore, has stronger effect on retrievals. The effect
of the shift on the retrieved veg is weaker, and practically negligible
in the case of regr=17.5 um (Fig. 8 (middle right)).

The bottom right panel of Fig. 8 demonstrates that the uncer-
tainties in scattering angle shift can be effectively resolved if the mag-
nitude of the shift is taken as a free parameter in the fitting procedure,
since the best fits to the simulated reflectances occur with the same
Ay, for which the retrieved values of r. coincide with those assumed
in the model. This feature is implemented in our algorithm by intro-
duction of the shift parameter 6 in Eq. (3), which is allowed to vary
within 4+0.2° for simulated data tests. In the case of real airborne
data analysis, when the measurements can be affected by uncer-
tainties in aircraft attitude, we first correct the pitch angle, so that
the first (and the deepest) minimum in polarized reflectance is
between 140° and 145° and then apply fitting procedure, which
includes optimization with respect to smaller angular errors.

7. Aerosol layer over cloud

We performed a number of simulations of RSP measurements over
a mixed atmosphere consisting of a cloud and an aerosol layer on top
of it. This allowed us to study the effect of aerosols on cloud droplet
size retrievals, and also to evaluate the RSP algorithm's sensitivity to
a rainbow signal originated deep in the scattering medium. All simu-
lations were performed for the same viewing geometry (principal
plane, SZA=60°) and cloud parameters (ref=17.5 um, Ver=0.1,
and COD =5). The aerosol layer was modeled by small water particles
(n,=1.3275 (same as in cloud), regr=0.15 pm and veg=0.1), and had
varying optical depth (AOD=0, 0.1, 0.25, 0.5, 0.75, 1, and 2). The
polarized reflectance of the aerosol alone increases monotonically
with the scattering angle between 137° and 165°, and does not exhib-
it any rainbow features. Addition of the aerosol layer on top of the
cloud leads to a decrease in the “rainbow signal” magnitude, that
affects the droplet size retrieval accuracy. The dependence of the
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Fig. 5. Same as Fig. 3 (top) but for 410 nm (top) and 1588 nm (bottom) wavelengths.

retrieved droplet effective radius and variance on the thickness of the
aerosol layer is weak, and the retrieval errors are similar to the
cloud-only case: less than 0.5 pm in regr and 0.04 vegr. The largest er-
rors occur at the largest AOD value (0.75), for which retrievals were
still possible despite an increasing lack of “structure” in the dataset.

Fig. 9 illustrates a simple test characterizing the effect of the aero-
sol layer on the rainbow signal magnitude, based on the simulations
described above. We took all polarized reflectances simulated for
different AOD (top left panel in Fig. 9) and represented them in the
form similar to Eq. (3)
Rp(’y;Ta):ARp(yiTa:0)+BY+C» (4)
where 7, is AOD, and A’=A’(T,) is the magnitude of the rainbow
signal relative to the case with no aerosol presence (7,=0). Unlike
Eq. (3), this form does not imply droplet size retrievals or modeling
using Mie theory (we use prime accents for the coefficients to empha-
size this difference). The model fit (4) is good and the residues
Rp(7:Ta) —A'Ry(y;0) can be very closely fitted by linear functions of
the scattering angle 7y (Fig. 9(top right)). These residuals can be
attributed to the polarized reflectance of the aerosol layer. The depen-
dence of the signal magnitude A’ on AOD appears to be exponential
(see Fig. 9 (bottom left)), and agrees well with the Beer's law attenu-
ation model:

A/(Ta) = exp {— (i +l'%v> Ta} .

Here pis and p, are cosines of respectively the solar zenith angle 6
and the viewing angle 6,. Knowing the solar zenith angle (6s=60°)
used in our simulations, we can estimate (see Fig. 9 (bottom right))

(5)

the value of the average viewing angle (6, =29°) from Eq. (5), and
using that

v =180"—6; + 6, (6)
find the corresponding scattering angle y=149°. As one would
expect, this value is in the middle of the rainbow angular range.
Thus, our numerical experiment shows that the magnitude of the
rainbow, in polarized reflectance observations, is attenuated by over-

lying aerosols according to the Beer's law but its structure is not
changed by the overlying aerosol scattering.

8. Contribution of forward scattering to the rainbow

Our tests described in this section show that the polarized rainbow
amplitude includes contributions of both single and forward-directed
multiple scattering. The latter, does not affect the angular structure of
the rainbow, and, therefore, droplet size retrievals. However, assess-
ment of the magnitudes of various contributions will help to under-
stand the retrievals from stratified clouds described in detail in the
next section.

Let us determine the general functional form that the reflectance R
of a single-layer cloud of optical depth 7 should take in the single- or
forward-scattering case. R must satisfy the following property, when
an additional layer of COD = is attached to the top of the cloud of
COD=15:

R(7y +73) =R(7y) + u(T1)R(72). 7

Here u(T) =exp(—p7) is the attenuation factor. The exponent 3
depends on the scattering geometry and may also be influenced by
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multiple scattering in the forward direction, which depends on the
droplet size. If we look at a rather narrow scattering range (as in the
rainbow case) the explicit dependence of the attenuation factor u on
the scattering angle can be neglected, and we can assume that the
reflectance R can be factorized into a product of the T-independent
angular spectrum and an attenuation function that depends on the
optical depth only. Accepting these assumptions, it is not difficult to
show that the only functional form of R(7) satisfying the group transfor-
mation property (efeq: R—t1+1t2) is
R(r) = [1-e""] R, 8)
where R is the reflectance of semi-infinite medium with the same mi-
crophysical properties.

To test this formula, we simulated the polarized reflectance for
clouds with droplet reg=5, 7.5, 12.5 and 17.5 pm (in all cases vegr=
0.1, SZA=60°, measurements are made in the principal plane). COD
in these tests ranged between 0.1 and 0.5 with 0.1 increments. R(*)
was taken from simulations with COD =5, which is essentially infi-
nite for the generation of polarization. In all cases Eq. (8) was satisfied
with very high accuracy. This is demonstrated in Fig. 10 for the case of
Tresg= 17.5 um. The polarized reflectances generated for different COD
values were fitted by scaled R using procedure similar to Eq. (4).
The corresponding scaling factors v(7) are then used to compute the
attenuation functions u(7)=1—v(7), which appeared to have an
exponential form. The values of attenuation exponents corresponding
0 'rmefr=5, 7.5, 12.5 and 17.5 pum are respectively 8=1.91, 1.89, 1.79,
and 1.57. All these numbers are smaller than the single-scattering

airmass 3=3.14, indicating that the polarized rainbow amplitude
includes contribution from forward scattering within the phase func-
tion diffraction peak. This is also supported by the fact that the
observed 3 is smaller for larger particles, that have stronger forward
scattering. At the particle size close to that of aerosol (0.15 um), 3 is
back to the single-scattering value (as it was shown in the previous
section).

9. Stratified cloud

The size distribution of droplets in real clouds usually varies with
the altitude. This raises the question of how deep can RSP “see” into a
cloud and what its measurements represent regarding the statistics
of the cloud droplet size profile. The assumption, that the polarized
rainbow shape is dominated by single scattering, allows us to better
understand the relationship between the droplet size distribution pa-
rameters retrieved from polarized reflectance at the cloud top and the
profiles of these parameters inside the cloud.

9.1. General properties

Let us consider a vertically stratified cloud of the optical depth
Tmax and parameterize the altitude dependence of droplet size distri-
bution in it by the optical depth 7 measured from the top of the cloud
downwards (0 <7 <Tp.x). Suppose that we successfully extracted the
single-scattering component P{¥P(7y) of the polarized reflectance
measured by RSP at the cloud top. We assume that the cloud particles
contribute to P{P’(y) independently one from another, thus, it is a
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superposition of the signals coming from different depths. This allows
us to introduce the “effective” droplet size distribution np(r). This
distribution is derived from the RSP measurements, since it deter-
mines the polarized reflectance at the cloud top:

[ Ogea(N)P1 (Y, ) (r)dr

0
5 : )
[ Ogea(r)nggp(r)dr
0

top
Pi5”

()=

where Oy, (1) is the scattering cross-section. The cloud-top distribu-
tion np(r) is normalized by the condition

[ Maplr)dr =1, (10)
0

and it can be represented as a superposition of size distributions at
different optical depths:

Tinax

Niop(1) = | w(T)n.(r)dr, (11)
0
where w(T) is the weighting function normalized as
Tmnx
w(T)dr =1, (12)

and n-(r) is the droplet size distribution in the optical depth interval
[7,7+ dT]. If the latter distribution is assumed to be normalized by the
condition

fnr(r)dr =1,
0

(13)

its weight w(T) in ngp(r) is determined by two factors: the number of
particles dN. (per unit area) in the corresponding optical depth inter-
val d7, and the Beer's law attenuation factor u(7):

dN,
dr -

w(T) = Cu(T) (14)

Here C is the normalization constant derived from Eq. (12), and
G7)
——+—)ar
S lJv

where a provides a correction for the effects of multiple scattering in the
forward direction. The extinction optical depth of a homogeneous layer is

u(T) = exp|—[37] = exp , (15)

2 2
T = Ne(Oexe) = Ne(Tr* Quse(1)) = Net(Quse) (1) (16)
with N, being the 2D column particle concentration (i.e. the number of
particles in a column over a unit area), Oey and Qex: are respectively
the extinction cross-section and efficiency in the layer, and the averaging
is over a statistical ensemble of particle sizes specified by the size
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distribution. The average extinction efficiency<Qey>is defined by
Hansen and Travis (1974) as

<Qext> = <O_8Xt> = <nr2QeXt(r)>a

(mr?)

(17)

where G is the average geometric cross-section. It follows from Eq. (16)
that

dN, 1

AT 1(Qeg)r (1), (18)

where<r?> . is the second moment of the particle size distribution
n-(r). Note, that for large cloud particles<Qex >~ 2 regardless of the

specific droplet size. If particle radius is measured in microns, the
units of the concentration N, will be um 2,
While the distribution np(r) can have an arbitrary functional

shape, we can estimate its effective radius

)
(top) _ top

_ 7 (19)
et <r2>t0p
and variance
4 2
V(top) o <r >t0p<r >t0p _ (20)

=01,
ff >
¢ <r3>fop
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Fig. 9. Summary of the retrievals from the mixed atmosphere simulations. Top left: polarized reflectances vs. scattering angle for a variety of the top layer AOD. Top right: the
residues of the reflectances from top left panel remaining after subtraction of the (scaled with the fitting factor a) reflectance corresponding to AOD =0 (solid lines), and linear
fits to these residues (dashed lines). Bottom left: dependence of the fitting factor a on AOD. Bottom right: inversion of the mean scattering angle from this dependence.

which are the primary determinants of the cloud's optical properties
(cf. Hansen & Travis, 1974). The moments of the distribution (11) are

T

(M iop = [ ™ g (r)dr = 'j.ux (™), w(r)dr,
0 0

(21)

where<r™> . are the corresponding moments of the distribution
n(r).

Let us assume for simplicity that n-(r) has gamma distribution
shape (cf. Hansen & Travis, 1974)

(ab)(Zb—l)/b

- (1=3b)/b ,—r/ab
" T[(1—2b)/b]

n(r) r (22)

for every 7, and that only reg (parameter a of gamma distribution)
depends on 7, while veg (parameter b) is constant for the whole profile.
Then

b™I[(1/b)—2 + m]

oo = Tm—2 O @)

where

am = TTX a™(T)yw(r)dr, (24)
0

and a straight-forward calculation shows that

3 J—
(top) <T’ >t0p _ £
eff — /2 == (25)
<r >t0p a?
and
() Fz
r 4 2
a* a
P 2 S 1_(14b) —1. (26)

=)

Pl T

9.2. 2-layer cloud

Let us consider the simplest case of a stratified cloud consisting
of two layers. Let the top and bottom layers have droplet size
distributions with common veg=>b and different r.g respectively
a; and a, (constant within each layer). The top layer has optical
depth 7.

9.2.1. Effective radius and variance
In the 2-layer cloud case the w-moments (24) will have the form

#'max

w(r)dr +a; [ w(r)dr. (27)

Q
3
Il
Q
=3
ot—_1!
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Fig. 10. Summary of single layer simulations for res=17.5 pm and veg=0.1. Top:
polarized reflectances vs. scattering angle for a variety of the layer optical depths.
Middle: the residues of the reflectances from top left panel remaining after subtraction
of the (scaled with the fitting factor v) reflectance corresponding to T=>5= (solid
lines), and linear fits to these residues (dashed lines). Bottom right: fit of u=(1—v)
by an exponential function of 7.

Using the normalization condition (12), this expression can be
written as

am = (a7 —ay )W +dj, (28)

where we introduced the notation of the top layer weight

W= ]lw(r)dr, (29)
0

which can take values between 0 and 1. Note that the function w(7)
can be different for different 7, (i.e., w=w(7y;7), thus, generally it
is not a derivative of W(7;) with respect to 7). As follows from
Egs. (25) and (28), ref('° can be expressed through W as

33 3
r(tOP) _ <a1 az)W th ) (30)
eff (a3 —a3)W + a3

Note, that if a; = a,, the dependence on 7; disappears, as expected.
If the top layer is thin (W<<1), we retrieve r{§*? =~ a,, while r{i¢? ~ a,
when it is thick (W=1). The weight W can be expressed using
Eq. (30) in terms of the values of a;, a», and r{§¢?), and then substitut-
ed back into Eqgs. (28) and (26) to provide the relationship between

the observed effective variance and the radius:

vig? = b—(1+b)8;5,, (31)
where
(top)
T G
= eer)z (32)

eff

for i=1,2 (see Appendix A for details of these calculations). Note,
that since r{{¢?) is always in between a; and a, 6; and 6, have the op-
posite signs. Thus, their product Ita;5, <0, and consequently v{§#?’ > b.
Note that v{{f? =b in the limit case of very thick or very thin top
layer, when r{§¢is equal respectively to a; or a, (so that either &
or 8, is zero). As a function of T; (or, equivalently, of r{{g?)) v{{eP)
has its maximum value when r{§? is equal to the harmonic mean
of a; and ay:

1 1(1 1)
_1/1 1% 33
i~ 2\a >

The maximal value of v{§¢?’ is then

_ 2
max v’ — b 4 (14 b) i“’;a]g;) . (34)

9.2.2. Exponential weighting function

The results presented so far are valid for weighting function w(t)
of any shape. Let us now introduce a specific weighting function for a
2-layer cloud following Eq. (14):

s, e P, T<T,

L g 35
sy e P e BT p et 35)

w(t)=C { ,
max
where C is the normalization constant, and s; and s, reflect the rela-
tionship between droplet number concentration and optical depth
(depending on particle size). Note that for gamma distribution

e [mQee®1-b)1-20)] " (36)

and if we assume that <Qex> =2 is the same for the two layers and
so is the effective variance b, we can set

1
, and s, = —. 37
a% 2 a% ( )

(Note, that the exact values of <Qgy> can be incorporated
by rescaling: a— <Qex> "2 a.) It is convenient to introduce the
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notations u; and u, respectively for the top and bottom layer attenu-
ation functions:

uy = exp(—P17), (38)
Uy = exp[—Po(Tmax—T1)]- (39)

Using this notation

BYE T IPEE | P
e~ {p+ [Ramwgfm} -
and therefore,

1—u
W(T1)_1+(§_11) u;’ w
where

2

gzgf'%(l—uz):%'%(l_UZ) 2

Substitution of Eq. (41) into Eq. (30) yields the following expres-
sion for the effective radius:

<&> zg. (ay—ay) ™M

eyl

Note that if Ty =Tma then €=0, and r{f? =a,. If 7, =0, then
exp(—B171)=1, and P =a,. If the coefficients s; are specified
according to Eq. (37) and 3; =3, =/, then Eq. (43) takes the form

(43)

(top) e_BTl _e_ﬁ"max

Teff =01 + (ay—ay), (44)

1 _e*ﬁTmax
which is especially simple in the case of semi-infinite medium:

(top) -
Teg =01 +¢€

P (ay—ay). (45)
The 2-layer distribution (35) can be naturally generalized to the

case of a continuous profile, characterized by the dependences of

s=r2yand the attenuation coefficient 3 on the optical depth 7:

w(T) = Cs(T)exp {—}ﬁ(r)rdr}, (46)
0

where the normalization constant C is determined from the condition
(12).

9.2.3. Numerical results

We conducted a series of numerical tests involving 2-layer clouds.
In these tests simulated RSP measurements were made in the princi-
pal plane for a SZA of 60°. In all simulations the total optical depth of
the 2-layer cloud was 5 (that is practically infinite for polarized re-
flectance), while the top layer COD took the values of 0, 0.1, 0.2, 0.3,
04,0.5,0.7, 1, 1.5, 2.5, 4, and 5. The layers had different res (7.5 and
17.5 um) and the same veg=0.1. Two series of tests were conducted.
In the first series (“Test A,” Fig. 11 (left)) the layer with 17.5 um drop-
lets was on top, while in the second series (“Test B”, Fig. 11 (right))
the layer with smaller 7.5 um droplets was on top. The RSP-type re-
trievals of r{¢? and v{{?P are summarized in Table 1 and Fig. 12 (in
the Figure, the nominal values of reg and veg were used instead of re-
trievals at large 7; and at 7, =0). The maximum value of v allowed
in the retrievals was 0.35. The top left plot in Fig. 12 shows that, as the
top layer optical depth increases to 7;~1-1.5, the retrieved value of

r{eP) reaches its limit value, which would be retrieved in the absence

of the bottom layer. This convergence is apparently slower in Test A,
where the top layer consists of larger particles. This means that
even at the same optical depth the top layer with larger particles is
more transparent than that with smaller ones, allowing for stronger
influence of the bottom layer composition on the retrieved droplet
size. This is consistent with the conjecture that small-angle multiple for-
ward scattering events contribute to formation of the rainbow. Fig. 11
shows that even when the observed polarized reflectance is a mixture
of contributions from the 2 layers, and the effective size distribution
Niop i essentially bimodal (e.g., at 71 =0.5), the Mie-theory-based LUT
assuming a monomodal gamma distribution can still provide an ade-
quate fit to the results, although a larger effective variance is retrieved.
The bottom plots in Fig. 12 show that the width of the observed size dis-
tribution first increases with the increase of the top layer optical depth
(since now both top and bottom layers contribute to the observations),
and then decreases as the influence of the bottom layer diminishes
by 7;~1.5. The dotted lines in this plot show the values of v{gP
reconstructed from the corresponding r{P) series using Eq. (31), which
are in a reasonably good agreement with the direct numerical results.
The theoretical maximum of vE*°P) is 0,31 according to Eq. (34). It
occurs (see Eq. (33)) at 1P =105 pm, that, corresponds to 7, =0.34
for Test A, and to 7; =0.41 for Test B. We see that, as we already pointed
out above, our direct retrievals of veg show a high bias. However, the
positions of the maxima of the apparent effective variance in the direct
retrievals are within 0.1 in optical depth of their theoretical estimates.

Comparisons between analytical estimates and numerical results
from Fig. 12 are presented in Fig. 13. The plots in this Figure compare
the dependency on the top layer optical depth of the analytical esti-
mates for the retrieved droplet effective radius r&¢®, the retrieved
effective variance and the top layer weights W(7;) with their numer-
ical values obtained using Eq. (A.1). The bottom right plot in Fig. 13
shows the relationship between numerical and analytical values of
the large (17.5 um) mode weight from the Tests A and B combined.
While the values of the above described parameters retrieved from
simulated data are in general agreement with the analytical predic-
tions, certain systematic differences are clearly observed in Fig. 13.
In particular, the numerical retrievals of r{fP) show slower than
predicted change in the retrieved r{¢?) with increase of the top
layer COD when the latter is small, and faster saturation when it is
large. Also, the retrieved maximal values of vieP) are larger than
predicted and occur at different top layer CODs. These discrepancies
are consistent with the errors associated with fitting the results
generated with a bi-modal size distribution using LUT computed as-
suming that the distribution is mono-modal. Fig. 14 demonstrates
these effects on fitting of both single-scattering polarized reflectances
(left panels), and the size distribution shapes themselves (right
panels). The retrievals here are presented as functions of the large
(17.5 um) mode statistical weight, thus, the plots of ri¢? and v{{P)
are similar to those in Fig. 13 corresponding to Test A. The bottom
plots in Fig. 14 directly correspond to the bottom right plot in
Fig. 13. All these plots show that least square fit algorithms tend to
retrieve the parameters of the dominant mode in the bi-modal distri-
bution rather than the averages over the whole distribution (that
were computed analytically in these tests).

10. Tests on 3D Monte Carlo simulations

We used Monte Carlo simulations to study the influence of 3D ra-
diative effects on RSP-type droplet size distribution retrievals. The ra-
diative transfer model MYSTIC (Monte Carlo code for the phYSically
correct Tracing of photons In Cloudy atmospheres; Mayer (2009))
was used for the simulation of RSP measurements for a 3D cloud
field. MYSTIC is operated as one of several radiative transfer solvers
of the libRadtran radiative transfer package (Mayer & Kylling, 2005).
Originally, MYSTIC was developed as a forward tracing method for
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Fig. 11. RSP-type retrievals from simulated polarized reflectance of 2-layer cloud with total COD = 5. Left: Test A (top layer re¢=17.5 pm, bottom layer rg= 7.5 um). Right: Test B
(top layer regr=7.5 pum, bottom layer regr=17.5 um). In both tests veg= 0.1 for both layers. The top layer COD of is 0.1 (top), 0.5 (middle), and 1 (bottom). Red curves correspond to
the actual multiple scattering simulations, while green curves show the best solution from the RSP retrieval algorithm.

the calculation of irradiances and radiances in 3D plane-parallel at-
mospheres. Recently, the model has been extended to include spher-
ical geometry and a backward tracing mode (Emde & Mayer, 2007). In
addition the model has been extended by Emde et al. (2010) to in-
clude polarized radiation from scattering by randomly oriented parti-
cles, i.e. clouds, aerosols, and molecules. MYSTIC includes variance
reduction methods (Buras & Mayer, 2011) which are required for ef-
ficient unbiased radiative transfer simulations in cloudy atmospheres.

This model was applied to a realistic cloud field obtained from a
large-eddy simulation (LES) of shallow, maritime convection. The
LES model (Ackerman et al., 2004) treats three-dimensional fluid dy-
namics of the atmosphere and incorporates a bin microphysics model

that resolves the size distributions of aerosol and cloud droplets in
each grid cell. It also includes a two-stream radiative transfer model
that treats the vertical transport of radiation in each model column.
The LES dataset used in this study is based on idealizations of mea-
surements obtained during the Rain in Cumulus over the Ocean pro-
ject (RICO, vanZanten et al., 2011), which was chosen to maximize
the likelihood of observing 3D cloud effects on retrieved droplet
sizes. This simulation has 100 m horizontal and 40 m vertical resolu-
tion. To simplify the comparison between Monte Carlo computations
and 1D RT model, the actual bin-by-bin LES size distributions in
each horizontal layer were replaced by gamma distributions with
the same reg, as in the microphysical model, and the effective variance
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Table 1

Results of RSP-type retrievals from simulated polarized reflectances of a 2-layer cloud
with various top layer optical depth (total COD of both layers is 5). Test A: top layer
Tesr=17.5 pm, bottom layer reg="7.5 um; Test B: vice versa. In all cases veg=0.1 for
both layers.

Top 7 Test A Test B

Top: reg=17.5 pm Top: reg=7.5 um

Bot.: reg=7.5 um Bot.: refr=17.5 um

1P, um viieP) TP, um ViR
0 745 0.117 17.8 0.100
0.1 7.55 0.160 16.8 0.162
0.2 8.70 0.285 15.1 0.285
0.3 9.90 0.350 12.2 0.350
0.4 113 0.350 10.6 0.350
0.5 135 0.350 9.65 0.322
0.7 15.2 0.292 8.25 0.192
1 16.7 0.167 7.50 0.137
1.5 17.5 0.117 7.45 0.120
25 17.8 0.102 7.50 0.120
4 17.8 0.100 7.45 0.117
5 17.8 0.100 7.45 0.117

uniformly set to 0.1. The simulations of RSP measurements were
made assuming that the instrument is flown in the solar principal
plane (coinciding with the y-axis of the LES grid) at 2.4 km above
ground. The solar zenith angle used in the model run was 40°, the sur-
face was modeled as a Lambertian reflector with a 5% albedo and the
measurement wavelength was 554 nm. The US standard atmosphere
was used for the pressure and trace gas profiles.
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To evaluate the effect of the 3D nature of the radiative fields as op-
posed to the 1D vertical structure, we also simulated the corresponding
reflected radiation using an independent pixel approximation (IPA)
(Cahalan et al,, 1994) applied to the vertical profiles of cloud droplet
sizes and concentrations provided by the LES model. A total of 35 cloudy
pixels (optical depth greater than 0.5) along two transect lines
(corresponding to two RSP-like “trajectories”) were originally selected
for this comparison. The top left panel in Fig. 15 shows an example of
the geometric shape of one of the cumulus clouds used. This shape is
the cross-section along the transect line of points with droplet concen-
trations greater than 20 cm >, The horizontal position of a “pixel” used
for the comparison between 1D and 3D retrievals is depicted by the
dashed line. The RSP reflectance simulated with the 3D RT model output
was aggregated to the point where this dashed line crosses the cloud
top boundary. The corresponding 1D simulations were made for a
plane-parallel cloud with vertical profiles identical to those of the LES
dataset along the dashed line. The profile of layer's rg is shown in the
left middle panel of Fig. 15, while the corresponding 1D and 3D simulat-
ed polarized reflectance is presented in the top right panel together
with the results of RSP-type droplet size retrievals (the corresponding
fits are depicted by dotted curves). The values of size distribution pa-
rameters retrieved for this pixel in the 1D and 3D cases are close: ritop)
of respectively 13.2 and 13.5 um, and v{{’P of respectively, 0.11 and
0.12. These retrievals are consistent with r{§fP) =13.75 um computed
directly from the LES model using a weighting function of the form
given by Eq. (46).

It is seen from the top right panel of Fig. 15 that the magnitude of
3D polarized reflectance is substantially larger than that of its 1D
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Fig. 12. Results of RSP retrievals made from simulated polarized reflectance of a 2-layer cloud. The data for Tests A and B are shown respectively in red and blue. Top left: depen-
dence of the retrieved droplet effective radius r{&E).s on the top layer optical depth. The values of re for each single layer are shown by dashed lines. Top right: The top layer
weights W(r;) (from Eq. (A.1)). Bottom: dependence of the retrieved effective variance on the top layer optical depth. Dashed curves depict the values of v{{?P computed from

r{$eP) according to Eq. (31).
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Fig. 13. Analytical estimations of the RSP retrievals in 2-layer cloud case (thick curves). The numerical results from Fig. 12 are shown by thin lines with diamonds depicting the
actual data points. The data for Tests A and Bare shown respectively in red and blue. Top left: Dependence of the retrieved droplet effective radius r{¢P on the top layer optical
depth computed according to Eq. (30) with W from Eq. (41) and attenuation coefficients from Section 8. Top right: Retrieved effective variance computed according to Eq. (31)
as function of the top layer optical depth. Bottom left: The top layer weights W(7;) analytical values are from Eq. (41) , the numerical values are obtained using Eq. (A.1). Bottom
right: relationship between numerical and analytical values of the large (17.5 um) mode weight from Tests A and B. Here the analytical weights are sampled at the data points of
numerical simulations, the green curve represents a 5-degree polynomial fit to the numerical data.

analog. This enhancement is due to the contribution of light entering
the cloud from its sides in the 3D case. However, this enhancement
has an effect only on the pixels on bright sides of clouds, which are
exposed to the direct sunlight. For the pixels on the shadowed side
of the clouds the opposite takes place: 3D simulations produce a
smaller reflectance than the corresponding plane-parallel models.
Since the polarized reflectance on the shadowed side of the cloud
is often too small to exhibit a rainbow structure, we restrict further
1D - 3D comparisons only to bright pixel cases. The middle right
panel of Fig. 15 shows the histogram (for the set of all 35 cloudy
pixels) of the ratio between 3D and 1D polarized reflectances (taken
at their minimum around 141°), where the bright pixel cases are
separated from those in shadow by a dashed line. We see that for
the most part bright pixel 3D polarized reflectance exceeds its 1D
counterpart by a factor of between 1.25 and 2. The bottom plots pres-
ent comparisons between effective radius and variance retrievals
from the 1D and 3D radiative fields in 24 bright pixel cases. While
no significant bias is seen between 1D and 3D values of r{{fP)
(0.2 um mean difference and 0.73 um standard deviation of the dif-
ference), the corresponding vi#P’ values are systematically larger in
the 3D case than in the 1D case. The 3D values range within 0.13 £+
0.02, while in the 1D case v{§£P is close to 0.1, which is the uniformly
assumed single layer's veg in the forward computations. This differ-
ence can be explained by the larger penetration depth of light into
the cloud in 3D cases, which results from the previously noted illumi-
nation of the cloud from its sides. This effect causes a larger part of the

non-uniform droplet size profile (cf. middle left panel) to contribute
to the cloud-top retrievals, with a consequently wider droplet size
distribution.

11. Conclusions

The presented sensitivity study of the accuracy of the cloud drop-
let size retrievals from the RSP measurements demonstrated that this
technique is a potentially valuable tool for climate research.

Our algorithm retrieves the effective radius and variance of the cloud
droplet size distribution, which is assumed to have a mono-modal
gamma distribution shape. The tests were made on simulated datasets
generated using both a plane-parallel (1D) and a Monte-Carlo (3D) RT
model. We demonstrated that in the case of “measurements” made in
the solar principle plane the accuracy of regretrievals is better on average
than 0.15 pum (with the worst recorded case of 7.1 um retrieval instead of
7.5 pm at vegr= 0.2, that is a 5% error). Unlike reg, the retrieved veg shows
systematic biases (see Fig. 4) ranging from 6% to 27% and generally
decreasing with re. The largest absolute differences occur at large vegr.
This discrepancy can be explained by the “smoothing” effect on the
reflectance of multiple scattering, which is interpreted by the retrieval
algorithm as a larger ves. The droplet size retrievals in an arbitrary
viewing geometry require the Stokes vector to be transformed from the
measurement coordinate frame into that of the scattering plane. In this
case U is not identically zero and it is important to check that the param-
eter Q resulting from this reference frame rotation contains all the single
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Fig. 14. Left: The effects of fitting of single-scattering polarized reflectance computed using Mie theory for bi-modal size distribution (with the same modes, as in Tests A and
B) using LUT generated assuming mono-modal distribution model. Top: The retrieved effective radius (red) vs. the large (17.5 pm) mode weight in the bi-modal distribution.
Black curve represents the analytical values from Eq. (30). Middle: Same as top but for effective variance. Bottom: large mode weight derived from the fitted reg (top plot)
using Eq. (A.1) as function of the actual weight assumed in simulations. Right: same as left but for least square fit of size distributions themselves (rather than of derived optical

parameters).

scattering information on which our retrieval is based. We find that the
difference between retrievals from rotated datasets and their principle
plane counterparts is negligible: as little as 0.1-0.2 pm in radius and a
few percentage points in variance. Our tests showed that uncertainties
in scattering angle shift can be effectively resolved by considering the
shift as a free parameter in the fitting procedure. This feature is
implemented in our algorithm by introducing the shift parameter 6 in
Eq. (3). We also determined that the shape of the rainbow in polarized
reflectance is unchanged by overlaying aerosol scattering, although the
signal is attenuated according to Beer's law.

We demonstrated that the polarized rainbow amplitude includes
contributions from both single and forward-directed multiple scattering.

While the latter does not affect the droplet size retrievals, an assessment
of the relative magnitudes of the various contributions is instrumental in
understanding from where in a stratified cloud the remotely sensed radi-
ative properties are generated. Our tests performed on a family of 2-layer
clouds with widely different effective radii demonstrated that the param-
eters retrieved from the simulated data are generally in agreement
with the analytical predictions and show that for a typical airmass the
retrieved size distribution parameters are generated within an optical
depth of 1 from cloud top (~50 m). There are however certain systematic
differences, which indicate that the least square fit algorithm used tends
to output the parameters of the dominant mode rather than an average
over the whole bi-modal distribution. This is particularly relevant to
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Fig. 15. Results of inter-comparison between droplet size retrievals from 1D and 3D simulated radiation fields. Top left: shape of a cumulus cloud vertical cross-section from LES
output. Top right: polarized reflectances and RSP-type droplet size retrievals corresponding to the cloud section depicted by the dashed line in the top left plot. Middle left: effective
radius profile corresponding to this dashed line (from microphysical model). Middle right: frequency histogram of the ratio between 3D and 1D polarized reflectances for 35 cloudy
pixels. The dashed line separates parts of clouds illuminated by direct sunlight (bright cases) from those in shadow. Bottom left: comparison between effective radius values derived
from 1D and 3D fields (bright cases only). Bottom right: same as bottom left but for the effective variance.

understanding under what conditions small evaporating drops near
cloud top would be detected using polarization measurements. This
problem may be potentially resolved by the Rainbow Fourier Transform
(RFT), our new retrieval technique (Alexandrov et al,, 2012) which al-
lows for accurate retrieval of the size distribution shape of an arbitrary
form (including multi-modal) with very good accuracy.

Our final tests of the retrieval algorithm were applied to 1D IPA
and 3D simulations of the same cloud field consisting of shallow con-
vective clouds representative of those observed during RICO. The fact
that 3D cloud effects can increase, or decrease the magnitude of the
rainbow structure means that using a tabulation of exact 1D RT
results to reduce the bias in effective variance retrievals caused by
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multiple scattering effects is unlikely to be effective. This is because
multiple scattering effects are inherently sensitive to 3D effects.
Nonetheless we find that the effective radius retrievals from the 1D
and 3D simulations agree extremely well while the effective variance
retrieved from the 3D simulations is higher than that from the 1D
simulations. The reason for this is that for the simulated viewing ge-
ometry (SZA 40° in the principal plane) the rainbow is centered
near nadir and side illumination of the clouds means that the rainbow
is generated over a much larger depth into the clouds in the 3D sim-
ulations than in the 1D simulations. Vertical variations in effective
radius are then interpreted as an increased effective variance. This re-
sult is not “wrong” but emphasizes the importance of understanding
the vertical weighting associated with any particular droplet size
retrieval method (Platnick, 2000). Our plans for the future include
testing our algorithm on a simulated cloud fields that include thin
ice clouds above water clouds (this situation is common for measure-
ments from space or high-altitude aircraft).

In summary we find that the use of polarized reflectance observa-
tions of the rainbow to retrieve the effective radius is extremely
robust against both aerosol and 3D effects. The retrieved effective var-
iance tends to be biased high in 1D tests as a result of smoothing/
reduction in contrast of the rainbow structure caused by multiple
scattering. The increased vertical depth over which the rainbow is
generated in 3D clouds also tends to increase the retrieved effective
variance. These biases are however relatively small and well under-
stood and the retrieved effective variance is still a useful measure of
droplet size dispersion near cloud top.
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Appendix A. Relationship between effective radius and variance in
2-layer cloud

Eq. (30) can be used to express the top layer weight W through
the observed effective radius and those of the two layers:

h
W=_—"2_ A1
Ry—hy (A1)
where
3 2 2
h; = a; —a; rf:f‘f’p) =a (ai—rgf‘;p)) (A.2)

for i=1,2. In these notations the w-moments (28) take the form:
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When the expressions (A.4)-(A.6) are substituted into Eq. (26) for
viieP), the common factorsa? = a2a3(ay—ay )/ (h, —hy) cancel from the
ratio and we obtain

t
(a; + aZ)rif(f)p)_alaZ 1

(top)
Ve = (1+Db) o2 ,
(reff )

(A7)

that can also be written in the form of Eq. (31).
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