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Abstract The Mesoscale Modeling System Version 5 (MMS5) was one-way nested
to the Goddard Institute for Space Studies global climate model (GISS GCM),
which provided the boundary conditions for present (1990s) and future (IPCC SRES
A2 scenario, 2050s) five-summer “time-slice” simulations over the continental and
eastern United States. Five configurations for planetary boundary layer, cumulus
parameterization, and radiation scheme were tested, and one set was selected for use
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in the New York City Climate and Health Project—a multi-disciplinary study investi-
gating the effects of climate change and land-use change on human health in the New
York metropolitan region. Although hourly and daily data were used in the health
project, in this paper we focus on long-term current and projected mean climate.
The GISS-MMS5 was very sensitive to the choice of cumulus parameterization and
planetary boundary layer scheme, leading to significantly different temperature and
precipitation outcomes for the 1990s. These differences can be linked to precipitation
type (convective vs. non-convective), to their effect on solar radiation received at
the ground, and ultimately to surface temperature. The projected changes in climate
(2050s minus 1990s) were not as sensitive to choice of model physics combination.
The range of the projected surface temperature changes at a given grid point among
the model versions was much less than the mean change for all five model config-
urations, indicating relative consensus for simulating surface temperature changes
among the different model projections. The MMS5 versions, however, offer less
consensus regarding 1990s to 2050s changes in precipitation amounts. All of the
projected 2050s temperature changes were found to be significant at the 95th percent
confidence interval, while the majority of the precipitation changes were not.

1 Introduction

Regional-scale mesocale climate models (RCMs) have been used to downscale
global climate model (GCM) output for the purpose of simulating regional climate
change (e.g, Dickinson et al. 1989; Bates et al. 1993; Giorgi et al. 1993a, b; Walsh
and McGregor 1995; Bell et al. 2004; Han and Roads 2004; Leung et al. 2004;
Liang et al. 2004; Lynn et al. 2004; Fu et al. 2005). These models can improve the
representation of regional climate change for impact studies because they employ
higher grid resolution than GCMs, have more realistic topography, better resolve
convective-scale processes, and simulate air-sea contrasts and sea-breezes (Giorgi
and Marinucci 1996; Colle et al. 2000; Mass et al. 2002; Leung and Qian 2003; Leung
et al. 2003a, b, c).

In this study we use the Goddard Institute for Space Studies Global Climate
Model (GISS GCM) (Hansen et al. 2002; Russell et al. 1995) to force the Mesocale
Modeling System, Version 5 (MMS5) (Dudhia 1993; Grell et al. 1994). The combined
model is referred to as the GISS-MMS5. The model system was used in an interdisci-
plinary study of climate change and land-use change effects on regional climate, air
quality, and health in the New York metropolitan region, the New York Climate and
Health Project (NYCHP) (Hogrefe et al. 2004; Knowlton et al. 2004; Bell et al. 2007).

As part of the development of the regional modeling system, we tested the MMS5
with different physics components (plantary boundary-layer, cumulus, and radiation
parameterizations) at two grid resolutions (108 and 36 km) to simulate current
climate in the 1990s and projected climate change in the 2050s (as suggested by
Cortinas and Stensrud (1995) and Rosenzweig and Solecki (2001)). The results of
this study allowed us to identify the model configuration that performed the best
in simulating the New York metropolitan region for the NYCHP study. Although
hourly and daily data were used in the health project, in this paper we focus on
the ability of the climate models to simulate long-term current and projected mean
climate.
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2 Description of GISS-MM5
2.1 GISS GCM

The GISS GCM, from which lateral boundary and initial conditions for the MM5
were taken, has been extensively used in climate-sensitivity studies. The version
used here is a coupled atmosphere-ocean version with horizontal grid spacing of
4° by 5°, for nine vertical atmospheric layers and 13 vertical ocean layers with
realistic bathymetry (Russell et al. 1995). Flux adjustments are not used in the GISS
GCM, which has a sensitivity to doubled atmospheric CO, of 2.5-3.0°C. Results
for the 1990s and the 2050s were taken from the GISS GCM model run with the
IPCC SRES A2 greenhouse gas and sulfate emissions scenario (IPCC 2000). The
A2 scenario is characterized by high CO, emissions (30 gt/year max), relatively
weak environmental concerns, and large population increases (15 billion by 2100).
It ranks as medium-to-high compared to other emission scenarios. The GISS GCM
simulation uses observed greenhouse gas and sulphate emissions from 1850 to 1990,
and the emissions projected by the A2 scenario thereafter.

2.2 MM5

The non-hydrostatic Mesoscale Modeling System, Generation 5, MMS5 version 3.5
(Dudhia 1993; Grell et al. 1994) was chosen as the regional modeling component of
the GISS regional modeling system. The MMS5 was developed by Pennsylvania State
University and the National Center for Atmospheric Research. The standard model
includes predictions for three-dimensional wind components, temperature, mixing
ratios for water vapor, and cloud water/ice and rain/snow (using bulk parameter-
izations).

The NOAH land-surface submodel developed by Chen and Dudhia (2001a, b) was
used to calculate the lower boundary condition of the model with constant deep soil
temperature. While a constant soil temperature would not be realistic in longterm
simulations of climate change, the goal of our multiple 4-month simulations was to
highlight differences among various model configurations.

Important physics components in the GISS-MMS relevant to the sensitivity study
described here are the (1) planetary boundary layer (PBL) scheme, (2) cumulus
parameterization, and (3) radiation package. We focus on different model con-
figurations of the following components: (1) the Medium Range Forecast Model
(MRF) and Eta planetary boundary layer schemes; (2) the Betts—Miller and Grell
cumulus parameterizations; and (3) the Community Climate Model (CCM?2) and the
Rapid Radiative Transfer Model (RRTM) radiation packages (Table 1). The two
boundary layer schemes are widely used in mesoscale model studies; the cumulus
parameterization schemes are also widely used and both are designed to work at the
spatial scales of this study. The radiation packages are the two most sophisticated
available in the MMS5.

The MRF PBL is an efficient scheme based on the Troen-Mahrt representation of
the counter-gradient term and K profile in the well-mixed PBL (Hong and Pan 1996).
The MRF also includes vertical mixing in clouds, i.e., mixing along a wet adiabat. In
comparison, the Eta PBL is based on the Mellor-Yamada scheme that predicts the
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Table 1 Acronyms for the eight model configurations

List of acronyms Boundary layer scheme Cumulus parameterization Radiation package
MIBR MRF Betts—-Miller RRTM
EBR Eta Betts—Miller RRTM
MIGR MRF Grell RRTM
MIGC MRF Grell CcCCMm2
EGC Eta Grell CCM2

Boundary layer schemes: Medium Range Forecast Model (M, MRF) or Eta (E); inclusion of vertical
mixing in clouds (I); cumulus parameterizations: Betts—Miller (B) or Grell (G); radiation packages:
Community Climate Model version 2 (C, CCM2) or Rapid Radiation Transfer Model (R, RRTM)

turbulent kinetic energy (TKE). It uses the TKE to affect local mixing and does not
include vertical mixing in clouds (Janjic 1990, 1994).

The Betts—Miller scheme is based on a relaxation adjustment to a reference
post-convective thermodynamic profile over a given period (Betts 1986; Betts and
Miller 1986; Janjic 1994). In comparison, Grell uses the quasi-equilibrium assumption
of Arakawa and Schubert (Grell and Kuo 1991; Grell 1993). In this scheme, the
rate of cloud stabilization associated with moist convection balances the large-scale
destabilization rate.

The CCM2 radiation scheme accounts for multiple short-wave and spectral bands.
It includes the effects of both resolved and unresolved clouds (based on a relative
humidity-derived cloud fraction) (Hack et al. 1993). The RRTM contains both short-
wave and long-wave radiation schemes (Mlawer et al. 1997), but does not include a
relative humidity-derived cloud fraction.

3 Methods
3.1 Coupling

The one-way nesting of the MMS5 model to the GISS GCM occurred at the model
initialization and subsequently through the lateral boundaries. Six-hourly GISS
GCM data were interpolated to the lateral boundaries of the high-resolution grid.
A five-point linear time interpolation was used to make the lateral boundary data
synchronous with the MMS time steps. The sea-surface temperatures were obtained
from the GISS GCM. The land surface model was initialized at the first time step
with GISS GCM soil temperature and soil moisture, interpolated to the MMS grid.
The MMS5 model used the same carbon dioxide (CO,) gas concentrations as the
GISS GCM.

3.2 Simulation experiments

The MMS5 model was driven with NCEP reanalysis data for the summer of 1993
to test model performance and to evaluate consistency with the GISS GCM driven
results. In these simulations the reanalysis data were used to initialize and to set the
lateral boundary conditions for the MMS model. While 1 year is not enough to fully
evaluate the ability of the MMS5 model driven by NCEP reanalysis data to replicate
observed climate, the results are indicative of similar tendencies in both sets of runs.
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The GISS-MMS5 was run for five summers in the 1990s and the 2050s. (Time
and resource limitations prohibited further simulations.) Simulations with the GISS-
MMS5 model were first run at 108 km grid resolution for a domain that covered
the continental US (see Fig. 1a for model domain and grids). Thirty-five vertical
layers were used, with finer grid resolution in the lower troposphere to allow the
model to better simulate boundary-layer processes. The time step was 270 s, and
each simulation was run from May 1st to Sept 1st, to allow spin-up before the start of
the analysis on June 1st in each summer. Although allowing only 1 month for GISS-
MMS5 model spin-up time is less than ideal, the purpose of the work was to examine
model differences rather than actual values. Although the simulated soil moisture
and temperature evolve in response to radiation, wind, and precipitation forcing,
soil temperature and moisture distribution from the GISS GCM used to initialize
the model can leave a residual signal during the development of summertime
meteorology (Dirmeyer 2002). All of the sets of runs were done using the same
MMS basic code, initial conditions, and climate forcings. Our goal was to highlight
differences between the various model configurations given the limitations of the
model version used.

After testing the model configurations at the 108 km resolution, we selected the
MIBR version (with the MRF boundary-layer scheme, the Betts-Miller cumulus
parameterization, and the RRTM radiation package) to simulate the eastern United
States for five summers in the 1990s and 2050s at 36 km resolution. The 36 km grid
was a single nest with two-way interaction with the 108 km grid. For comparison, we
tested the same configuration and resolution with the Grell cumulus parameteriza-
tion scheme (MIGR). In these simulations the western edge of the nested domain
responded directly to the incoming information from the coarse, upstream, 108 km
MMS5 domain, not the GISS boundary data. The GISS boundary data elicited a
different response in the coarse domain that depended on the MMS5 physics on the
coarse grid, which manifests itself, in part, in the results we see on the nested domain.

3.3 Validation

Here we analyze how well the GISS-MMS5 model is able to reproduce the long-
term summer 1990s climatic means. Results from the model configurations de-
scribed in Table 1 were compared with observations and NCEP simulations. Model
temperature and precipitation results from the 108 km (36 km grid results from
MIBR and MIGR) were compared to the seasonally-averaged 0.5° x 0.5° gridded
observations of New et al. (2000) (hereafter New et al.) for the period 1990 to
1999 over the continental United States. Incident solar radiation at the surface
simulated by GISS-MMS5 was validated against corresponding data from the Langley
Observatory (Darnell et al. 1996). The ‘observed’ solar radiation data are derived
from a combination of satellite measurements and models.

We compared the 5 years of MMS simulations to 10 years of observed and
GISS GCM data centered on 1995 because we do not expect an exact year-to-year
correspondence between modeled and observed years, and because the larger sample
size depicts current climate more accurately. In order to see if 5 years were enough
data from which to draw conclusions we ran one configuration, EBR, for 10 years
over the entire 108 km domain. The mean domain-averaged 5- and 10-year tem-
peratures were 20.96 and 21.09°C, respectively, while the precipitation means were
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a GISS GCM, MM5 108 and 36 km Grids

© = New et al. (2000) observed point
+ =36 km MM5 gridbox mid-point
X.X = MM5 elevation (m)
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<« Fig.1 aModel grid resolutions: GISS GCM 4° x 5°; GISS-MMS5 108 and 36 km. b MM5 36 km grid-
box centers and associated elevations (m), and observed New et al. (2000) gridpoints in New York
metropolitan region 36 km domain

259.8 and 265.1 mm, respectively. These values were not significantly different from
one another. For the NCEP-driven MMS simulations, we compared 1 year (1993)
of simulated climate to those obtained from the GISS-MMS5, GISS GCM, and New
et al. observations for that same year.

We compared GISS-MMS5 modelled mean summer 1993-1997 temperatures and
precipitation for each model configuration to observed and GISS GCM 1990-1999
values. The modelled means were interpolated to the observed data-points using
a simple two-dimensional interpolation method in which weights are assigned by
the inverse of the distance from the model grid points to the observed New et al.
gridpoints. An initial search radius was increased until at least three model data
points were found. For the 36 km comparison, GISS GCM and GISS-MMS5 108 km
results were interpolated onto the 36 km grid.

Modelled and observed temperatures and precipitation were averaged over the
entire domain for each summer. Statistical tests were then performed on these
summer-time averages (n =1,5, or 10 summers). Means, standard errors, and
student t-tests for independent samples (unpaired) were performed to test for
significance at the 95th percent confidence interval. In addition, a spatial test was
performed by first obtaining the modeled summer means over the whole time series
at each gridpoint (n = 3062) and then computing the RMSEs at each point. All of
the above validations were then repeated over a much smaller region, the New York
City metropolitan area (Fig. 1b), both with the 108 km configurations and the 36 km
configurations for MIBR and MIGR.

4 Results
4.1 Current climate simulations

Figure 2 shows temperature and precipitation biases that were obtained by compar-
ing simulations driven by NCEP reanalysis data for 1993 to New et al. observations
from that same year. Because the NYCHP study focused on the effects of heat stress
and air quality, good comparison to observed temperature was our main criterion for
model selection. While the model configurations generally produced temperatures
that were too cold, the NCEP-MIBR temperatures were closest to observations.
Most of the simulations were dry compared to observations, except in the mid-US,
where they were too wet.

Figure 3 shows that the physics configurations had similar effects in the GISS-
MMS compared to the NCEP simulation (with the caveat that the NCEP simulation
was for only 1 year). Simulated temperature in the GISS-MIBR was closest to the
New et al. observations just as in the NCEP-MIBR; MIBR was also the warmest
and wettest configuration in both sets of simulations. However, each of the GISS-
MMS5 model configurations exhibits regional biases in surface temperatures and
precipitation. For example, MIBR was too warm in the southern United States, while
MIGR had a cool bias in areas outside of the southeast. MIGR (like MIBR) was too
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Fig. 2 Model minus observed errors in JJA 1993 2 m mean surface temperature (left) and
precipitation (right) over the continental US GISS GCM (4° x 5°) and NCEP-MMS5 (MIBR, EBR,
MIGR, MIGC, EGC) (108 km) interpolated to New et al. (2000) observations (0.5° x 0.5°)

wet in the Plains States, while most of the GISS-MMS5 simulations were too dry in
the southeast. The GISS GCM was too cold in the eastern and western US and too
warm in the middle of the country; the GISS-MMS simulations did not follow that
pattern.

All of the GISS-MMS configurations and the GISS GCM itself were found
to be significantly different from observations (Fig. 4). Most of the GISS-MMS5
configurations produced mean temperatures that were significantly different from
one another and most were different from the GISS GCM as well. The GISS-
MMS simulations that used the MRF boundary layer scheme and the Betts—Miller
cumulus parameterization produced warmer mean temperatures than those with
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Fig. 3 Model minus observed errors in 1990s JJA 2 m mean surface temperature (left) and
precipitation (right) over the continental US GISS GCM (4° x 5°) and GISS-MMS5 (MIBR, EBR,
MIGR, MIGC, EGC) (108 km) interpolated to New et al. (2000) observations (0.5° x 0.5°). GISS
GCM and New et al., 10-year averages; GISS-MMS, 5-year averages

the ETA boundary layer scheme and the Grell cumulus parameterization scheme,
respectively.

The GISS-MMS5 model configurations also produced precipitation values that
were significantly different from one another and different from the GISS GCM
in most cases. The EGC GISS-MMS5 configuration produced precipitation that
was close to the observed value. With the exception of GISS-MIGC, the warmer
scenarios were wetter and the drier scenarios were cooler. The MRF boundary layer
scheme and the Betts—Miller cumulus parameterization tended to produce wetter
simulations.
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Fig. 4 Mean and standard errors (95th percent confidence interval) of simulated 1990s JJA 2 m
mean surface temperature (C) (fop) and precipitation (mm/summer) (boftom) over the continental
US GISS GCM (4° x 5°) (10 years); GISS-MMS5 (MIBR, EBR, MIGR, MIGC, EGC) (108 km)
(5 years); Observations: New et al. (2000) (0.5° x 0.5°) (10 years). RMSEs were calculated at each
point and then averaged over the study area

Figure 5 indicates which GISS-MMS5 model physics combinations had the lowest
average temperature and precipitation errors at each 0.5° x 0.5° grid point. The
MIBR had the smallest temperature biases over most areas of the country outside
of the southeast; in the southeast, EBR and MIGR performed best. MIGR and EGC
generally did well in simulating precipitation. In summary, it appears that model
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Fig. 5 GISS-MMS physics combination with lowest average JJA 2 m surface temperature (top)
and precipitation (bottom) error at each 0.5° x 0.5° grid-point over the continental US (MIBR,

EBR, MIGR, MIGC, EGC) 1990s (108 km) (5 years). Observations: New et al. (2000) (0.5° x 0.5°)
(10 years)

configurations with the Betts—Miller cumulus parameterization (especially those with
the MRF boundary-layer scheme) produced more realistic surface temperatures than
those that used Grell. On the other hand, model configurations that used Grell
produced more realistic precipitation.
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Fig. 6 Simulated hourly NCEP-MM5 (MIBR and MIGR) 1993 JJA convective precipitation (fop);
non-convective precipitation (middle); and incident solar radiation at the surface (bottom) over the
continental US

@ Springer



Climatic Change (2010) 99:567-587 579

GISS GCM

Observed

MM5 (108 km)

100 125 150 175 200 225 250 275 300 325 350 375
Solar Radiation (W/m2)

Fig. 7 Simulated and observed 1990s JJA mean incident solar radiation at the surface over the
continental US GISS GCM (4° x 5°) (10 years); GISS-MM5 (MIBR and MIGR) (108 km) (5 years);
observations (10 years) derived from satellite data and models (Darnell et al. 1996)

Figure 6 shows the hourly-averaged summer convective precipitation, non-
convective precipitation, and the incident solar radiation at the surface for NCEP-
MIBR and NCEP-MIGR for the summer of 1993, averaged over the continental
US. These figures show that the Betts—Miller cumulus parameterization scheme
produced a higher percentage of convective precipitation than did the Grell cumulus
parameterization scheme. Lynn et al. (2004) showed that the Grell scheme produces
too frequent and too light precipitation, contributing to a radiation deficit. On
the other hand, the Betts—Miller scheme produces less frequent but more intense
convective precipitation, which can lead to a large positive bias in precipitation
amounts without large effects on surface temperatures. This behavior is related to
differing assumptions related to each configuration, as described in greater detail
in Lynn et al. (2004). Figure 7 shows the simulated incident shortwave radiation
from the GISS GCM, MIBR and MIGR; observations are shown for comparison.
Although both MIBR and MIGR had negative solar radiation biases, MIBR was
closer to the observations, while MIGR was extremely low. The simulated radiation
from MIGR was, relatively speaking, lower than that of MIBR, which led to a cool
bias when it was used with other combinations of model physics.
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Fig. 8 a Range (hottest/wettest minus coldest/driest) of 1990s, JJA 2 m mean surface temperature
and precipitation simulated by GISS-MMS5 configurations at each (0.5° x 0.5°) gridpoint over the
continental US (MIBR, EBR, MIGR, MIGC, EGC) (108 km) (5 years). b Same as Fig. 8a, except
for the 2050s. ¢ Same as Fig. 8a, except for the projected temperature and precipitation changes
(2050s minus 1990s) at each gridpoint

4.2 Climate change simulations

Figure 8a shows the range at each gridpoint of the 1993-1997 summer-averaged
GISS-MMS configurations. This range is defined as the value of the simulation
with the model configuration that produced the hottest five-summer mean average
temperature/wettest (i.e., highest) precipitation minus the value of the simulation
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Fig. 9 Projected changes in 2050s JJA 2 m mean surface temperature (°C) (left) and precipitation
(%) (right) over the continental US GISS GCM (4° x 5°) (10 years); GISS-MM5 (MIBR, EBR,
MIGR, MIGC, EGC) (108 km) (5 years)

with the model configuration that produced the five-summer mean coldest average
temperature/driest (i.e., lowest) precipitation. Figure 8b shows this same range
for the 2050s. The patterns of the ranges across the model physics configurations
are similar in the 1990s and 2050s with a slight amplification in the later decade.
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Figure 8c shows the same range for the projected differences (2050s minus 1990s),
i.e., the configuration with the highest temperature (precipitation) change minus the
configuration with the lowest temperature (precipitation) change. This figure shows
that the ranges of the projected differences across the model configurations are, for
the most part, noticeably smaller than the ranges of the 1990s or 2050s themselves.
Figure 9 shows the temperature and precipitation changes for the 2050s for the
model configurations. For temperature, the warming projected by the GISS-MM5
simulations is slightly higher than the GISS GCM and is more variable spatially.
The precipitation projections show increases on a national scale with a great deal
of localized variability.

The mean simulated range of summer climate at each gridpoint for the 1990s for
the five GISS-MMS5 model configurations is about six times greater than the mean
range of projected changes in 2050s temperature; the simulated 1990s precipitation
range is about four times larger than the projected change in 2050s precipitation
range. Thus the choice of model physics configuration produced a very large range
of simulated current climate (1990s) temperature and precipitation. The projected
climate changes (2050s minus 1990s) were more uniform, and less sensitive to
model configuration. This is particularly true for temperature changes; precipitation
changes tended to still have relatively large localized projected ranges at some
locations.

At most locations across the US, the range (model configuration with the highest
temperature change minus the model configuration with the lowest temperature
change at each gridpoint) of the 2050s temperature changes (mean of 0.63°C)
was much less than the mean change (mean of 2.46°C), suggesting a model-based
consensus for the projected temperature change. The projected temperature changes
were significantly greater than two standard deviations from the simulated 1990s tem-
peratures at almost all locations (average 2 x SD = 0.43°C). Precipitation changes,
on the other hand, were more variable, but were generally less than two standard
deviations (2 x SD = 84 mm) away from their 1990s mean values, indicating that
most changes were not statistically significant.

4.3 Present and future regional climate

Here we focus on differences in long-term simulated current and projected climate
change in summer using different model configurations. Hogrefe et al. (2004) an-
alyzed the temperature data described here in greater detail since the New York
metropolitan region air quality and health impact assessment used hourly and
daily data from the MIBR simulations. For example, they constructed summertime
cumulative distribution functions of daily maximum temperature over the entire
36 km grid for MIBR. They found that the GISS-MMS5 lowest/highest yearly value
of the 97.5th percentile of summertime daily maximum temperature was 35.2/37.2°C
compared to 34.4/36.7°C for the observations. These differences were found to be
not statistically significant.

Figure 10 shows the means, standard errors, and RMSEs of the model configura-
tions for the New York metropolitan region. For this analysis there were a total of 17
New et al. observed gridpoints within our 31-county New York metropolitan region
(see Fig. 1b). All of the GISS-MMS configurations produced local temperatures that
were significantly different from both the observations and the GISS GCM, with the
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exception of MIBR, which was found to be significantly related to the observations.
We selected MIBR and MIGR to downscale to 36 km because they performed the
best for temperature. Of these two versions, MIBR was used to obtain simulated
temperatures for the health impacts project.

Temperature (C) NYC Metropolitan Region study area
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Fig. 10 Mean and standard errors (95th percent confidence interval) of simulated 1990s JJA 2 m
mean surface temperature (°C) (top) and precipitation (mm/summer) (bottom) over the New York
City metropolitan region. GISS GCM (4° x 5°) (10 years); GISS-MMS5 (MIBR, EBR, MIGR, MIGC,
EGC at 108 km) (MIBR and MIGR also at 36 km) (5 years); observations: New et al. (2000) (0.5° x
0.5°) (10 years). RMSEs were calculated at each point and then averaged over the study area
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The GISS-MMS5 MIBR improved the simulation of surface temperature and also
better captured the spatial variability related to local topography, compared to the
GISS GCM (Fig. 11). While the use of higher grid resolution (36 km) did not have a
significant impact on the temperature skill, the local MIBR 36 km precipitation was
significantly better than its 108 km counterpart. Thus, the main advantage of using
the higher resolution is the ability to resolve finer-scale atmospheric features such as
those related to the topography of the Appalachian Mountains and the proximity of
the Atlantic Ocean. Such detail is also necessary to run simulations with air quality
models and other regional impact models.

Observed 1990s
X 1 "~

GISS GCM 2050s GISS GCM 1990s GISS GCM 2050s

a0 A

Tt
&
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\

|
T

MIBR 108 km MIBR 108 km 2050s

MIBR 108 km 1990s S
- = =

MIBR 36 km 1990s MIBR 36 km 2050s 1990s
= B

— .

19 20 21 22 23 24 25 26 260 300 340 380 420 460 500 520+
Temperature (C) Precipitation (mm / summer)

Fig. 11 Observed and simulated JJA 2 m mean surface temperature (°C) and precipitation
(mm/summer) (1990s—columns 1 and 3;2050s—columns 2 and 4) over the New York City metropol-
itan region. GISS GCM (4° x 5°) (10 years); GISS-MM5 (MIBR, MIGR) (108 km) (5 years); GISS-
MMS5 (MIBR, MIGR) (36 km) (5 years); observations: New et al. (2000) (0.5° x 0.5°) (10 years)
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5 Discussion and conclusions

This study shows that the choice of model physics configuration is very important
in selecting an RCM for use in regional climate impact studies. The combination of
the MRF boundary layer scheme, the Betts—Miller cumulus scheme, and the RRTM
radiation package gave the best modeled summer temperatures across the conti-
nental United States. Moreover, this model configuration gave the best simulated
temperature results in the New York metropolitan area. Thus, it was selected for
use in an integrated impact study of air quality and human health effects of climate
change, the New York Climate and Health Project, where the absolute values of
climate variables were needed as inputs for an air quality model. The projected
climate changes (2050s minus 1990s) were more uniform. Making current and future
simulations in which variables are later subtracted from one another lessens the
importance of the model physics configuration.

Han and Roads (2004) compared the performance of the Parallel Climate Model
(PCM) GCM with the Regional Spectral Model (RSM) driven by the PCM with grid
resolutions of 50, 180 and 250 km. They found that during the summer, there were
large differences in the precipitation produced by the PCM and the RCMs (and to a
lesser extent the temperature), and they concluded that these differences were due
to the differences in the convective parameterizations between the two models, not
because of the model grid resolution. We confirm their findings and extend them
to a comparison of model results obtained from the same model at the same grid-
resolution, but with different model physics configurations.

Giorgi (2005) suggests that a prediction is deemed to be more reliable if different
models agree on the magnitude and sign of the predicted changes. He suggested that
PDFs should be constructed and used to make probabilistic climate change forecasts.
Our five model configurations comprise a small, but meaningful sample to evaluate
the reliability of an ensemble consisting of various MMS5 model configurations. Here,
the range of the projected surface temperature changes for the model versions at a
given grid point was much less than the mean projected surface temperature change
for all five model configurations, and all of the models show warming, indicating rel-
ative consensus among the different model projections. The MMS versions, however,
offer much less consensus regarding absolute changes in precipitation, although most
models showed increases.

Our results further suggest that while the projected climate changes may be similar
across the model configurations, the range of the values themselves may be quite
large. Therefore, the choice of model physics configuration is especially important
in selecting an RCM for use in regional climate impact studies that utilize their
results directly in impact models. This should not be undertaken uncritically: higher-
resolution, better-calibrated regional climate simulations are needed to properly
address these issues.
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