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[1] We present a convenient physically based global-scale fire parameterization algorithm
for global climate models. We indicate environmental conditions favorable for fire
occurrence based on calculation of the vapor pressure deficit as a function of location and
time. Two ignition models are used. One assumes ubiquitous ignition, the other
incorporates natural and anthropogenic sources, as well as anthropogenic fire suppression.
Evaluation of the method using Global Precipitation Climatology Project precipitation,
National Centers for Environmental Prediction/National Center for Atmospheric Research
temperature and relative humidity, and Moderate Resolution Imaging Spectroradiometer
(MODIS) Leaf Area Index as a proxy for global vegetation density gives results in
remarkable correspondence with global fire patterns observed from the MODIS and
Visible and Infrared Scanner satellite instruments. The parameterized fires successfully
reproduce the spatial distribution of global fires as well as the seasonal variability. The
interannual variability of global fire activity derived from the 20-year advanced very high
resolution radiometer record are well reproduced using Goddard Institute for Space
Studies general circulation models climate simulations, as is the response to the climate
changes following the eruptions of El Chichon and Mount Pinatubo. In conjunction with
climate models and data sets on vegetation changes with time, the suggested fire
parameterization offers the possibility to estimate relative variations of global fire activity
for past and future climates.
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1. Introduction

[2] Wildland fires are a global scale environmental
process, with a profound impact on global climate and air
quality through emissions of greenhouse gases and aerosols
(and their precursors), and impact on vegetation. Conversely,
changes in climate have the potential to significantly affect
fire regimes. The link between fires and climate raises the
need to incorporate this important parameter in climate
models. To represent fire occurrence on a global scale,
two general approaches are possible [Flannigan et al.,
2005a, 2005b]. One is to incorporate a suite of fire models,
each developed for a specific ecosystem. This approach
seems to be not practical for long-term global fire modeling,
since with change of climate, ecosystems for which
the specific fire model was developed and calibrated
may change and require new calibration, or even use of
an alternative fire model. Another approach, which we
incorporate here, is to develop a simpler, more general
model for all ecozones, which does not require local
calibration. Simple generalized models omit many fine
details (3D fuel distribution, different ignitability of fuels,
etc.), which are important for predicting fire behavior on

small scales. However, on a global scale these details may
introduce increasing uncertainty, as many of these parameters
are hard, or even impossible to quantify globally. A simple
model gives generalized results. But the principles of a
simple model hold globally and through time.
[3] A few models have been suggested to characterize

global fire occurrence. The fire model in the Lund-Potsdam-
Jena (LPJ) Dynamic Global Vegetation Model (DGVM)
[Thonicke et al., 2001] estimates fire activity based on
topsoil layer moisture content and dead fuel amount. The
fire module of the Canadian Terrestrial Ecosystem Model
(CTEM) DGVM [Arora and Boer, 2005] estimates the
probability of fire occurrence depending on fuel availability
and fuel moisture, and presence of an ignition source
(anthropogenic or natural). Thesemodels have been validated
only for a handful of locations, however, and substantial work
will certainly be required to use them effectively on a global
scale in general circulation models (GCMs). Venevsky et al.
[2002] suggested a model that uses the Nesterov fire danger
index, which relies on the dew-point deficit and precipitation,
to estimate the number of fires in a region. The Nesterov
index is functional only at above-zero temperatures, thus
limiting the applicability of the model both in space and time.
There is therefore a need for a global fire model that is
specifically designed for a global use, and validated on a
global scale against satellite recordswhich are the only source
of consistent information on fires on a global scale [Chuveico
et al., 2008].
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[4] Here we suggest a simple global fire algorithm for use
with GCMs. Realizing the enormous complexity of fire as a
physical process that depends on myriad parameters, it is
neither practical, nor possible to account for all details when
modeling global fires at coarse resolutions. In such a case, it
is reasonable to concentrate on the most important factors
that define fire occurrence, while also keeping in mind the
availability of reliable global information on these factors.
The model we suggest determines worldwide flammability
conditions from vegetation density and a set of meteoro-
logical parameters: precipitation, relative humidity, and tem-
perature. These parameters are readily available, and are well
verified on a global scale. Given a distribution of ignition
sources, the algorithm provides the global distribution of fire
counts, which can be verified against actual satellite multi-
year records, readily available from a number of different
sensors. We explore two ignition source distributions. One
assumes a ubiquitous ignition source. The other incorporates
both natural and anthropogenic sources, as well as anthropo-
genic fire suppression. The suggested procedure leads to a
good representation of fire occurrence on a global scale, and
can be used with climate models to examine the relative
changes in past and future global fires, and aid in estimation
of past and future trends in fire emissions.

2. Flammability Estimation

[5] There are several flammability meters, or fire-danger
indices, that are in use today. These include the Keetch-
Byram drought index [Keetch and Byram, 1968], the
Canadian forest fire weather index [Van Wagner, 1987],
the Nesterov Index [Nesterov, 1949] and the McArthur fire-
danger (meter) index, quantified by Noble et al. [1980].
These rating systems were developed and calibrated for
specific geographical areas, and require calibration and/or
modification to be applied elsewhere. The Zhdanko
flammability index [Zhdanko, 1965] and the Modified
Nesterov index [Nesterov, 1949] (both show similar
performance [Groisman et al., 2007]) are based on evaluation
of the humidity deficit from the dew-point deficit and rainfall,
represented by empirically derived discrete rain coefficients
that exhibit exponential increase with rain rate. Both indices
are only functional at above-zero temperatures.
[6] In our model we have incorporated the vapor pressure

deficit, VPD as an indicator of flammability conditions.
VPD is one of the most important drivers of the evaporation
rate [Anderson, 1939; Castellvi et al., 1996; Saugier et al.,
1997], and it can be fairly easily calculated from relative
humidity, RH (in %), and temperature, T (in �K). In terms of
the saturation vapor pressure es and the actual vapor
pressure e, VPD is expressed as VPD = (es � e), and can
be rewritten as VPD = es (1–RH/100). The saturation vapor
pressure es can be calculated from the Goff-Gratch equation
[Goff and Gratch, 1946; Goff, 1957]: es = est10

Z(T), where
est = 1013.246[mb] (saturation vapor pressure at water
boiling point) and

Z Tð Þ ¼ a
Ts

T
� 1

� �
þ b � log Ts

T

� �
þ c 10d

1�Ts
Tð Þ

� 1

� �

þ f 10h
Ts
T
�1ð Þ

� 1

� �
ð1Þ

The constants are [Goff and Gratch, 1946]: a = �7.90298;
b = 5.02808; c = �1.3816 � 10�7; d = 11.344; f =
8.1328 � 10�3; h = �3.49149; and Ts = 373.16 (�K) (water
boiling point temperature). Thus:

VPD / 10Z Tð Þ 1� RH=100ð Þ ð2Þ

We assume an inverse exponential dependence of flammability
on precipitation, of the form exp(�cRR) (following Keetch
and Byram [1968], and instead of the discrete rain coefficient
used in the Zhdanko and Nesterov indices). Here R is the
surface rain rate in mm/day and cR = 2 (day/mm).
[7] Further, we introduce a vegetation density coefficient

VD, which ranges from 0 for no vegetation and to 1 for
dense vegetation. Note that VD is not a measure of vege-
tation flammability, but is solely a measure of density of
vegetation of any kind and condition. Whether this vegeta-
tion is dry or moist is determined by physical factors
affecting the vegetation.
[8] We can then write the flammability F at time step t

and grid cell (i, j) as:

F tð Þi;j¼ 10Z T tð Þi;jð Þ 1�
RH tð Þi;j
100

� �
VD tð Þi;j exp �cRR tð Þi;j

� �
ð3Þ

In this work we employ a monthly time step, which is a
reasonable timescale for representing the response of fires to
climate conditions. When using this method for finer time
steps (days, hours) one would have to use appropriate time-
averaged precipitation values to avoid unrealistically high
flammability fluctuations in time steps with isolated events
of very low, or zero, precipitation.
[9] We thus derive the flammability, a parameter which

indicates conditions favorable for fire occurrence. Although
this simple model cannot compete with local fine-scale fine-
tuned fire models in predicting small-scale features of
regional fire activity, this is not the aim. Looking at climate
change as a long-term global process, small-scale temporal
and spatial variations lose much of their importance, thus
the objective is to reproduce the general large-scale spatial
and temporal patterns of global fire occurrence.

3. Ignition Sources

[10] Whether or not the fire will actually occur in given
conditions depends on the availability of an ignition source
(either anthropogenic or natural). There are two main sources
of ignition: lightning discharges and human activities.
Humans influence fire patterns not only by adding ignition
sources, but also by suppressing both anthropogenic
and natural fires. Both effects increase with increasing
population, to some extent canceling each other. We test
two ignition source models. One incorporates anthropogenic
and lightning ignitions, and anthropogenic fire suppression.
The other assumes a ubiquitous ignition source.

3.1. Lightning Activity

[11] Up-to-date, lightning data collected by the Optical
Transient Detector (OTD) satellite-based sensor [Christian et
al., 1996], remains the only available record of global
lightning flash rate. OTD supplies the total flash rate:
both intracloud (IC), and cloud-to-ground (CG) flashes.
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Obviously, only CG flashes can ignite a fire. Prentice and
Mackerras [1977] proposed the following widely used rela-
tion between the ratio of IC to CG flashes z, and latitude l:

z ¼ 4:16þ 2:16 cos 3lð Þ ð4Þ

Using this relation, an estimate of the number of CG flashes
can be obtained from OTD records. We use these as a
number of natural ignition sources, IN.

3.2. Anthropogenic Influence

[12] Most studies modeling anthropogenic ignitions are
dealing with small local scales [e.g., Martell et al., 1989;
Guyette et al., 2002; Martinez et al., 2008]. An exception is
the study by Venevsky et al. [2002], who utilizes the relation
between number of anthropogenic ignitions and population
density, suggested by Telitsyn [1988] for assessment of
human ignitions in Khabarovskiy Krai, Russia. Venevsky
et al. [2002] test the procedure for Peninsular Spain, but it is
suggested to be applicable globally. Following Venevsky et
al. [2002], the number of anthropogenic ignition sources per
km2 per month, IA is expressed as:

IA ¼ k PDð ÞPDa ð5Þ

Where PD is the population density; k(PD) = 6.8PD�0.6 is a
function representing different ignition potentials of humans
in areas with different population densities (assuming that
people living in scarcely populated regions interact more
with natural ecosystems, and therefore produce potentially
more ignitions); a = 0.03 (ignition sources per person per
month per km2) is the number of potential ignition sources
(not the number of ‘‘successful’’ ignitions, which depends
on flammability) produced by one human per unit time.
Such an approach allows the introduction of anthropogenic
ignition sources with respect to population density, but will
not depict intentional burning, such as seasonal land

clearing, or deforestation fires. Given that appropriate data
is available, the approach can be made more sophisticated
by allowing a and k to vary in space and time.
[13] Humans actively suppress both anthropogenic and

natural fires. Firefighting policies and their effectiveness
depend on cultural, economical, and other factors. In
general, success of fire suppression depends on early fire
detection. We assume that in highly populated areas fires are
detected earlier and suppressed more effectively than in
scarcely populated areas, and the fraction of suppressed
fires increases with increasing population density. Assum-
ing exponential dependence, we can formulate the fraction
of nonsuppressed fires, fNS as:

fNS ¼ c1 þ c2 exp �wPDð Þ ð6Þ

The fraction of fires that remain unsuppressed at the most
populated areas is expressed by c1. The maximum number
of fires that remain unsuppressed at the distant, unpopulated
regions is defined by the sum of c1 and c2, and the rate at
which the number of unsuppressed fires decreases with
increasing population density is determined by w. Owing to
the lack of global quantitative data, constant values are
selected in a rather heuristic manner: c1 = 0.05, c2 = 0.9, w =
0.05. Thus, up to 95% of fires are assumed to be suppressed
in the densely populated regions, and 95% are assumed to
remain unsuppressed in unpopulated regions. When appro-
priate global data becomes available, these constants can be
determined more accurately and can also vary across the
globe, and with time to reflect different fire suppression
capabilities in different socio-economic conditions.
[14] Figure 1 illustrates the effect of fire suppression (as

defined in equation (6)) on the number of potential anthro-
pogenic sources (defined in equation (5)). Fire suppression
starts to take effect, decreasing the number of potential
ignition sources, at densities of �1 person/km2, and above.
The number of unsuppressed ignition sources, fNSIA, peaks
at population density of �10 person/km2, and then falls, due
to increased fire suppression. At population densities over
�100 person/km2 the number of unsuppressed sources
starts to rise again. This behavior is conditioned by the
assumption of a maximum 95% fire suppression rate, which
is quite uncertain. However, in places with such dense
population, there is limited fuel availability. Thus, despite
the increasing number of ignition sources, the actual number
of fires will still be low.
[15] The number of fires (fire counts) in a time step per

km2, Nfire is determined as a product of flammability F, the
sum of anthropogenic and natural ignition sources, and the
fraction of unsuppressed fires:

Nfire ¼ F IN þ IAð ÞfNS ð7Þ

In the ubiquitous model, the number of sources is constant,
and there is no fire suppression.

4. Input and Reference Data

[16] The following input parameters are used in the
model: precipitation, temperature, relative humidity, vege-
tation density, population density and lightning flash rate,
derived from monthly climatology OTD data.

Figure 1. Number of potential anthropogenic ignition
sources per km2 per month as a function of population
density. The plot shows both total number of anthropogenic
sources (gray), and those that will potentially remain
unsuppressed (black).

D16115 PECHONY AND SHINDELL: FIRE PARAMETERIZATION ON A GLOBAL SCALE

3 of 10

D16115



[17] We used precipitation data from the Global
Precipitation Climatology Project (GPCP) version 2 monthly
2.5� 	 2.5� resolution merged satellite and rain gauge data
set [Adler et al., 2003], distributed by National Climatic
Data Center (NCDC). The GPCP version 2 data combines
precipitation estimates from Special Sensor Microwave
Imager (SSM/I) emission and scattering algorithms, GOES
Precipitation Index (GPI), Outgoing longwave Precipitation
Index (OPI), rain gauges, and TOVS sounders on NOAA
polar orbiting satellites.
[18] Temperature and relative humidity monthly data at

2.5� 	 2.5� resolution was obtained from the National
Centers for Environmental Prediction (NCEP)/National
Center for Atmospheric Research (NCAR) reanalysis
[Kalnay et al., 1996].
[19] Population density was obtained from the Gridded

Population of the World Version 3 (GPWv3) [CIESIN,
2005].
[20] As a proxy for vegetation density we have used

annual mean normalized (by its maximum) Leaf Area Index
(LAI) derived from the Moderate Resolution Imaging
Spectroradiometer (MODIS) Terra MOD15A2 product
[Garrigues et al., 2008]. The original 0.25� 	 0.25�
resolution was downscaled to 2.5� 	 2.5� to match the
resolution of the GPCP and NCEP/NCAR data. LAI gives
an estimate of the total green leaf area, and its annual
variations reflect the varying greenness of the vegetation in
the area: dry grass and foliage produce low LAI values. In
our model vegetation density reflects only the amount of
potential fuel; its state (dry or moist) is determined by
ambient conditions. We therefore averaged LAI values to
obtain an approximate representation of the global vegeta-
tion density. Note that to account for changes in vegetation
density with time, the fire model can be coupled to a
DGVM or use vegetation density data either from a DGVM
or derived from land use change data sets such as those used
as boundary conditions in many climate models that do not
contain DGVMs (e.g., as in the IPCC AR4 simulations) or
in many paleoclimate studies.
[21] As reference data we used MODIS/Terra monthly

1� 	 1� resolution Active Fire Product V004 (MOD14CM1)
published by NASA NEESPI Data and Service Center
[Leptoukh et al., 2007]. MODIS data has global coverage.
In addition we used the Tropical Rainfall Measuring Mission
(TRMM) Visible and Infrared Scanner (VIRS) 0.5� 	 0.5�
resolution monthly fire product [Giglio et al., 2003]. VIRS
data set coverage is between 40N and 40S latitudes. Both data
sets were downscaled from the original resolution to 2.5� 	
2.5� to match the resolution of the input data sets. We also
examined fire data from the Along Track Scanning Radiometer
(ATSR), but found it to differ strongly from the other two
sensors, especially in the northern latitudes. This is in
general agreement with results published by Kasischke et
al. [2003], who showed that ATSR data do not represent an
unbiased sample of fire activity, and its monitoring scheme
does not seem to be effective at higher latitudes. Hence, we
use only MODIS and VIRS data for evaluation. The satellite
records provide fire counts as the number of recorded fire
events in a pixel. As such, persistent fires can be counted
more than once, and short-tem fires may be omitted.
Nevertheless, at present, satellite fire count records are the

most consistent and reliable proxy of global fire occurrence
[e.g., Chuveico et al., 2008; Giglio et al., 2006].
[22] Calculations presented below were performed for the

years 2001–2005, the years for which data from all sensors
overlap. Over this short period, vegetation density was
considered constant. We parameterized fires on a monthly
basis, with 2.5� 	 2.5� resolution (the resolution of the
input data). Then, annual and seasonal averages were
calculated for years 2001–2005.

5. Results

[23] Figure 2 shows MODIS and modeled 2001–2005
annual mean fire counts as a function of population density.
Model results are shown for three source distributions:
ubiquitous, lightning-only, and lightning and anthropogenic.
The inserts on each plot show the mean fire count as a
function of population density. MODIS fire counts increase
with increasing population, peak at 10–20 (persons/km2),
and then decrease. Lightning fires show small values for all
population densities. Ubiquitous ignition model reasonably
reproduces MODIS fire behavior, showing increase in fire
counts toward 10–20 (person/km2) but the peak is less
pronounced. Introducing anthropogenic effect further
improves the correspondence. The peak is more pronounced
than in the ubiquitous ignition model, closer to MODIS
records. The following decrease of fires with population is
also sharper than in the ubiquitous ignition model, closer to
MODIS records. The model produces on average about
10 times more human-caused than lightning-caused fires,
corresponding to the range of anticipated values [e.g., Price,
1994; Wotton et al., 2003; Martı́nez et al., 2008].
[24] The spatial distribution of the 2001–2005 annual

mean fires is shown in Figure 3. Satellite estimates provide
information on fire patterns, but the values of fire counts
differ strongly between different instruments, therefore the
results are presented in normalized (to their maxima) fire
counts. Both models reproduce the major patterns of global
fire activity in good agreement with distributions observed
by MODIS and VIRS sensors. India and Myanmar (Burma)
are clearly overestimated in the ubiquitous model, but are
well reproduced when anthropogenic effect is accounted for.
India and southeastern Myanmar are two of the world’s
most densely populated areas, where most vegetation is
actively managed by humans (crop production maps in the
work of Foley et al. [2007]). The ubiquitous model that
does not account for anthropogenic effects cannot depict the
fire activity in a region with such overwhelming human
influence. Taking into account fire suppression allows the
model to properly reflect the level of fire activity in this
area. Representation in other regions does not appear to be
notably affected by accounting for anthropogenic influence.
[25] The scatterplot in Figure 4 shows parameterized

fires and VIRS records plotted as a function of collocated
MODIS fire counts. This plot allows quantitative estimation
of the model performance. The correlation between
the modeled and MODIS fires is r = 0.71 for ubiquitous
source model and r = 0.74 for model incorporating anthro-
pogenic effects. This is comparable to the correlation
between the two recorded data sets, MODIS and VIRS,
which is r = 0.77.
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Figure 2. The 2001–2005 annual mean fire counts as a function of population density: MODIS and
modeled with ubiquitous source, lightning sources and lightning and anthropogenic sources.

Figure 3. The 2001–2005 annual mean fires recorded by MODIS and VIRS, and model
parameterization with ubiquitous and lightning and anthropogenic ignition sources.
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[26] Figure 5 shows the zonal average fire counts. Both
ubiquitous and anthropogenic plus lightning source models
reproduce the distribution of global fire activity with
latitude reasonably well. The plot clearly illustrates fires
in India and Myanmar that are overestimated in ubiquitous
model, but are ‘‘corrected’’ by including anthropogenic
effect. Another region that deviates from both sensors is
the sub-Sahara Sahel. Here both models reproduce the
general picture very well, but the parameterized fires do
not drop off moving northward as rapidly as in the satellite
observations. This could be due to several reasons. Slightly
wider Sahara borders than depicted by LAI data would be
sufficient to produce this effect. In addition, this region is
one of the most intensively used for agriculture (crop
production maps in the work of Foley et al. [2007]), and
the fire regimes are, to a large extent, defined by local
agricultural habits. Fires in Siberia are underestimated by
both models, comparing to MODIS records (VIRS obser-
vations do not extend this far north). Siberia, one of the least
populated places on Earth, experienced a great increase in
the number of fires over the past years [Soja et al., 2007].
This was initially suggested to be a manifestation of climate
change in the region [Dale et al., 2001; Schiermeier, 2005].
However, further analysis indicated that a vast part of this
increase is directly induced by human activity [Mollicone et
al., 2006]. The human impact on fires significantly in-

creased in the post-Soviet period owing to lack of control,
new socioeconomic conditions and the Siberia oil boom
[Dienes, 2004]. During the years 2002–2005, the density of
fire events in Siberia regions subject to intense human
influence was an order of magnitude higher than in the
neighboring regions of intact forest [Mollicone et al., 2006].
This suggests that majority of Siberian fires are directly
related to anthropogenic activity, conditioned by extraordi-
nary socio-economic factors, and not by climatic conditions,
or population densities. As such, these fires cannot be
depicted by the ubiquitous model, or by introducing popu-
lation density-dependent anthropogenic effects. Overall
both models show high correlation coefficients of 0.80–
0.89 with MODIS and VIRS records (summarized in
Figure 5) which is comparable to the correlation between
the two recorded data sets, MODIS and VIRS (r = 0.87).
Examination of correlations for individual continents
(Table 1) demonstrates that in most cases the anthropogenic
model improves correspondence with one of the sensors,
while decreasing correspondence with the other. In North
America the ubiquitous model shows significantly better
correspondence with both sensors. This could be due to
fire management policies that should be reflected with a
different set of coefficients for equations (5) and (6). The
relative contribution of each continent to global fires is well
depicted by both models (Figure 6).

Figure 4. Scatterplot of 2001–2005 annual mean fire counts in collocated grid boxes: model
parameterization with ubiquitous, lightning and anthropogenic ignition sources, and VIRS records versus
MODIS records. Solid lines show least squares linear fit.

Figure 5. The 2001–2005 annual mean zonal average fires recorded by MODIS and VIRS, and model
parameterization with ubiquitous and lightning plus anthropogenic ignition sources. Correlation
coefficients are summarized on the plot (correlation coefficients for model with anthropogenic effect
are underlined).
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[27] Seasonal latitudinal drift of dominant fires is equally
well reproduced with both models, though correlations with
observations are slightly larger in winter and fall with the
anthropogenic and lightning source model (Figure 7). Both
seasonal variations and the relative magnitude of fires are
well depicted (the values are normalized to the maximal
value of the four seasons). The model underestimates the
magnitude of September–October–November burning in
South America, which is largely intentional burning for land
clearing during this season (and as such cannot be depicted
by ubiquitous model or by introducing effects depending
on population density). The correlation between the
parameterized and observed fires is high for all seasons
(summarized in Figure 7), with lower correlations in
March–April–May, the season with lowest global fire
activity, and the least pronounced fire pattern.
[28] The changes between ubiquitous and anthropogenic

plus lightning models are not significant, in some regions
improving correspondence with one of the sensors, while
decreasing correspondence with the other. Fires modeled
with ubiquitous ignition source are not related to population
density, or lightning distribution, and only reflect the
flammability conditions. Their similarity to satellite fire
records suggests that on a global scale fire distribution is
determined predominantly by flammability conditions
(which eventually define both success of ignition and
effectiveness of fire suppression). Spatial variations in
source abundance are, to some extent, canceled out by
differences in effectiveness of fire suppression.

6. Interannual Variations

[29] There are few long-term records of global fire
activity. The most long-term estimates are offered by
Mouillot and Field [2005] reconstruction, which combines
perhaps all possible sources of information on past century
fires. Being an excellent source of reference on records of
historical fires worldwide, other use of data presented in that
work should be made with caution. The estimates are based
on scattered, mostly qualitative, and often contradictory,
records, and disregarding climate variations. Another rela-
tively long-term data set is the AVHRR-derived burnt area
estimates for 1982–2000 [Riano et al., 2007]. Though these
estimates do not provide meaningful absolute values, they
do supply useful information on temporal trends [Riano et
al., 2007; D. Riano, personal communication]. We therefore
exploit the 20-year AVHRR burnt area record to evaluate
interannual variability and response to volcanic-induced
climate change in the model results.

[30] We estimate burnt areas from modeled fire counts,
incorporating the Van der Werf et al. [2003] approach.
Burned area, BA, is assumed to be proportional to fire
counts, FC, as BA = wFC, when w is a function representing
the dependence of effective burned area per fire count on
vegetation density, giving more weight to fire counts
detected in sparsely vegetated areas, where fires spread
rapidly, and the effective burnt area per fire count is the
largest. As a proxy of global burnt area we used the 2001–
2005 Global Fire Emissions Database (GFED) inventory
burned area product [Van der Werf et al., 2006]. We derived
the function w, as a mean ratio of 2001–2005 annual mean
MODIS fire counts and the GFED burned areas, as a
function of vegetation density (Figure 8), and applied it to
the modeled fire counts.
[31] Figure 9 shows interannual variations of global

burned area from the GFED inventory, based on the MODIS
fire and burned area data [Van der Werf et al., 2006], L3JRC
estimates, based on the SPOT VEGETATION reflectance
data [Tansey et al., 2007], and ubiquitous ignition model
results. Note, that not a calendar year, but a fire year (April–
March) is considered, to allow consistent comparison with
the L3JRC record. The correspondence between modeled
and GFED burned area is quite good, though modeled
values vary slightly less than GFED estimates. Both GFED
and model estimates are markedly different from the L3JRC
record. These results should be treated with caution. On a
short time period of 4 years, no clear trend can be identified
that could be caused by climate variations, and therefore
should be reproduced by our model. Furthermore, the
interannual variations of global burnt area are relatively
small: at most �8% deviation from the mean for GFED
estimates and slightly higher, �12% variations for L3JRC.
Given uncertainties associated with burnt area estimates,
these variations are highly tentative. It can be roughly said,
that over this short period both GFED and L3JRC, and the
model, show rather small interannual variations in global
burnt areas.
[32] For comparison with the AVHRR record we used the

ubiquitous ignition model with meteorology from GISS
GCM historical climate simulations [Hansen et al., 2007].
Following the desert definition of Tucker et al. [1991]

Figure 6. Relative contributions of individual continents
to 2001–2005 annual mean global fire activity: MODIS
measurements and model simulations.

Table 1. Annual Correlation Coefficients for Individual

Continentsa

Measurements
Ubiquitous
Model

Anthropogenic
Model

Africa 0.94 0.84 0.77 0.75 0.83
Australia 0.97 0.94 0.93 0.82 0.89
South America 0.86 0.86 0.99 0.87 0.97
North America* 0.85 0.87 0.86 0.62 0.74
Eurasia* 0.87 0.68 0.90 0.72 0.86

aBetween MODIS and VIRS measurements, model and MODIS (regular
font), and model and VIRS (italic font). Asterisks indicate that VIRS
coverage in North America and Eurasia is partial.
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vegetation density was set to zero when annual precipitation
was less than 200 mm/a, to avoid overestimating burning in
regions that may have been arid in the past. The min-max
difference in AVHRR burnt areas exceeds by far the
variations seen in L3JRC and GFED estimates. For both
AVHRR and model data we have subtracted the mean value
and normalized each data set to their min-max difference to
examine relative variations around the mean. The results are
shown in Figure 10 (AVHRR data is partially missing for
the years 1994 and 2000). The model reproduces the
interannual variations reasonably well. It also depicts a
slow increase of global fire activity, of which there is a
suggestion in the AVHRR records as well. The model also
reproduces the large deviations that follow the eruptions

of El Chichon and Pinatubo volcanoes. Large volcanic
eruptions are included as climate forcings in the past
climate simulations [Hansen et al., 2007]. They produce
large temperature changes (global mean annual average
decreases, seasonal increases in some continental interiors),
as well as some precipitation reduction and shifts, thus
influencing global fires. The model appears to capture the
observed responses reasonably well, providing an important
observation-based validation of the model’s sensitivity to
climate change.

7. Summary

[33] In this work we present a simple procedure that
allows global-scale fire parameterization based on four

Figure 7. The 2001–2005 seasonal mean zonal average fires recorded by MODIS and VIRS, and
model parameterization (ubiquitous and anthropogenic). Correlation coefficients are summarized on the
plot (correlation coefficients for model with anthropogenic effect are underlined).

Figure 8. Burned area per fire pixel as a function of
vegetation density (derived from 2001 to 2005 GFED
burned area and MODIS fire counts).

Figure 9. Interannual variations of global burned area
(April–March): GFED and L3JRC estimates, and model
results.
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physical parameters: precipitation, relative humidity,
temperature, and vegetation density. Two models are tested:
one with ubiquitous source and the other including lightning
sources and anthropogenic influence. The anthropogenic
effect includes both ignition and suppression of fires by
humans, as a function of population density.
[34] Using GPCP precipitation, NCEP/NCAR relative

humidity and temperature, and MODIS LAI as a proxy
for global vegetation density we have modeled 2001–2005
fire activity. Both ubiquities and anthropogenic models
show good correspondence in large-scale fires with MODIS
and VIRS records, reproducing both the global fire patterns
and their seasonal variations quite well. Correlations
between modeled and measured fires are in most cases
comparable with correlation between the MODIS and VIRS
data sets. Introducing anthropogenic influence significantly
improves correspondence between model and measure-
ments in densely populated regions. Otherwise, the changes
are insignificant, often improving correspondence with one
of the sensors, while decreasing correspondence with
the other. The similarity between fires modeled in the
ubiquitous ignition source model and satellite records
suggests that distribution of global fire activity patterns are
governed primarily by flammability variations. Differences in
availability of sources are to some extent canceled out by
differences in fire suppression effectiveness.
[35] Adequate representation of anthropogenic influences

requires not only information on population densities, but
also comprehensive global socio-economic data on sources
of anthropogenic ignitions, fire suppression policies and
resources, and degrees of fire management. This informa-
tion is also necessary to estimate anthropogenic influence in
past and future simulations. At present, however, such
information is unavailable [Chuveico et al., 2008]. Hence
it is fortuitous that flammability variations alone play such
an important role in global-scale fires. Nevertheless, large
changes in population density, as well as significant changes
in socio-economic conditions, may have a considerable
effect on global fires throughout history. It is therefore
imperative to further improve our understanding of the
human influence on fires.
[36] Using input from GISS GCM historical climate

simulations, we have modeled interannual variations of
global fire activity over the 1981–2000 period, and com-
pared them to the 20-year AVHRR-based estimates [Riano
et al., 2007]. The model reasonably reproduces the AVHRR
variability and successfully captures the large deviations

that followed the El Chichon and Pinatubo eruptions. This
suggests that although the model is highly simplified, it
captures many of the key physical processes that govern the
response of fire to climate variations.
[37] The fire parameterization suggested in this work

allows a relatively simple, yet effective and physically
based representation of fire activity on a global scale. In
conjunction with climate models (potentially including
dynamic vegetation components), the fire parameterization
offers the possibility of estimating long-term variations in
global fire activity in the past and assessing possible
changes in the occurrence of fires due to changing future
climate.

[38] Acknowledgments. Our sincere thanks are due to David Riaño
for kindly sharing with us the AVHRR burnt area estimates. We thank
NASA’s Atmospheric Chemistry Modeling and Analysis Program for
supporting this work.
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