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ABSTRACT

The soil moisture state simulated by a land surface model is a highly model-dependent quantity, meaning

that the direct transfer of one model’s soil moisture into another can lead to a fundamental, and potentially

detrimental, inconsistency. This is first illustrated with two recent examples, one from the National Centers

for Environmental Prediction (NCEP) involving seasonal precipitation forecasting and another from the

realm of ecological modeling. The issue is then further addressed through a quantitative analysis of soil

moisture contents produced as part of a global offline simulation experiment in which a number of land

surface models were driven with the same atmospheric forcing fields. These latter comparisons clearly

demonstrate, on a global scale, the degree to which model-simulated soil moisture variables differ from each

other and that these differences extend beyond those associated with model-specific layer thicknesses or soil

texture. The offline comparisons also show, however, that once the climatological statistics of each model’s

soil moisture variable are accounted for (here, through a simple scaling using the first two moments), the

different land models tend to produce very similar information on temporal soil moisture variability in most

parts of the world. This common information can perhaps be used as the basis for successful mappings

between the soil moisture variables in different land models.

1. Introduction

Most land surface models (LSMs) used with atmo-

spheric general circulation models (AGCMs) keep

track of the moisture state of the soil with a prognostic

(state) variable called ‘‘soil moisture’’ or ‘‘soil wetness,’’

typically defined at a number of vertical subsurface

levels. Given the general dearth of in situ large-scale

observations of soil moisture, this model-generated

quantity is often made available to the scientific com-

munity as a data product. The National Centers for

Environmental Prediction–National Center for Atmo-

spheric Research (NCEP–NCAR) reanalysis, for ex-

ample, provides global ‘‘soil wetness’’ values on a T62

Gaussian grid (Kalnay et al. 1996), and the 40-yr Eu-

ropean Centre for Medium-Range Weather Forecasts

(ECMWF) Re-Analysis (ERA-40) provides volumetric

soil water in four soil layers on a roughly 18 spatial grid

(Simmons and Gibson 2000). The Japanese 25-yr reanal-

ysis (JRA-25) includes a dimensionless global data prod-

uct called ‘‘soil wetness’’ (http://jra.kishou.go.jp/JRA-25/

elements_en.html). The Global Land Data Assimilation

System (GLDAS) provides real-time estimates of soil

moisture fields derived from land model integrations of

realistic atmospheric forcing (Rodell et al. 2004).

The scientific community, in turn, is filled with po-

tential users of soil moisture data. Forecasts of weather

and seasonal climate variations in particular can benefit

from realistic initial states for the soil moisture variables

used in the forecast system (Fennessey and Shukla 1999;

Douville and Chauvin 2000; Koster et al. 2004). Models

of ecosystem and carbon cycle processes (Yuste et al.

2007; Friend and Kiang 2005) require soil moisture es-

timates as inputs since soil moisture regulates both soil

respiration and plant water stress, which affects sto-

matal conductance and carbon uptake. Agricultural

(crop growth) models similarly rely on soil moisture

estimates (Rosenzweig et al. 2002). Soil moisture esti-

mates can benefit the modeling of dust generation (Fecan
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et al. 1999) and trace gas fluxes (Holtgrieve et al. 2006)

from the earth’s surface. Groundwater resources can

be estimated from Gravity Recovery and Climate Ex-

periment (GRACE) satellite data, but only if indepen-

dent near-surface soil moisture estimates are available

to subtract from the total terrestrial water signal

(Rodell et al. 2007). Beyond the immediate scientific

community, potential users of soil moisture data include

those interested in the pricing of agricultural futures and

those monitoring agricultural drought (Narasimhan and

Srinivasan 2005).

These are but a few of many potential users of soil

moisture data. A question, then, naturally arises: are the

reanalysis and LDAS-type soil moisture products being

provided to users in a form appropriate to these appli-

cations? At first glance, one might think that they are.

The products are generally given straightforward names

(‘‘soil moisture,’’ ‘‘soil water,’’ ‘‘soil wetness’’) with

seemingly unambiguous meanings and clear-cut units

(e.g., percent volumetric water content). Uninitiated

users might reasonably assume that, once model-specific

treatments of such parameters as soil layer depth, soil

texture, and porosity are accounted for, reanalysis-

generated soil moisture products are ready to be used

directly in their own specialized models.

This, however, is not the case, as indicated to varying

degrees by a wealth of literature (e.g., Koster and Milly

1997; Chen et al. 1997; Entin et al. 1999; Schaake et al.

2004; Dirmeyer 2004). Simulated ‘‘soil moisture’’ does

not have an unambiguous meaning. It is a strongly

model-specific quantity, essentially an ‘‘index’’ of the

moisture state, with a dynamic range defined by the

specific evaporation and runoff formulations utilized by

the given model (Koster and Milly 1997), in addition to

model-specific soil parameters such as porosity, hy-

draulic conductivity, wilting point, and layer depth.

Large differences are seen in the soil moisture products

generated by different land models, even when the

models are driven with precisely the same meteorolog-

ical forcing (Dirmeyer et al. 2006). Given these differ-

ences, the direct transfer of one model’s soil moisture

into another model is, in fact, inappropriate.

While this issue is generally well understood by the

land surface modeling community, it is often over-

looked or unappreciated by the scientific community at

large, that is, by many potential users of the data. Over

the years, the authors of this paper have come across

numerous requests from across the community for soil

moisture products, and they have seen numerous pro-

posals for inappropriate uses of these data, uses that ne-

glect the model dependencies discussed here. While we

avoid here the naming of investigators and projects that

have made this mistake, we assert that the problem is

widespread enough to justify a highly focused study on

the topic, one that will make clear the potential prob-

lems associated with transferring soil moisture contents

between models and will point to a potential resolution

of such problems: the proper statistical interpretation of

model-generated soil moisture data.

We present such a study here. We begin in section 2

with two examples that illustrate clearly the potential

danger of utilizing a reanalysis-based soil moisture

product directly within another model. The discussion

following section 2 has two purposes. First, in section 4,

we highlight with a single, focused, global-scale study

(outlined briefly in section 3) the degree to which soil

moisture values produced by different land surface

models do indeed differ, even when the models are

driven with identical atmospheric forcing. Then, in

sections 5 and 6, we show that the different soil moisture

products, when properly interpreted, nevertheless are

mutually consistent and thus do have intrinsic value.

These results support the suggestion of Saleem and

Salvucci (2002) that the true information content of soil

moisture data lies not necessarily in their absolute

magnitudes but in their time variability. In essence, we

demonstrate here on the global scale that, if the nature

of soil moisture in two models is well understood, a

‘‘mapping’’ could be derived that would allow the soil

moisture variable from one model to be transformed

and then used effectively in the second. We conclude

in section 7 with some general remarks about model-

generated soil moisture data and its applications.

2. Consequences of inappropriate transfer of soil
moisture data

a. Seasonal forecasting example

A demonstration of the practical dangers of directly

using one model’s soil moisture within another is pro-

vided by a recent example from NCEP. Seasonal fore-

casts with the NCEP coupled global Climate Forecast

System (CFS) require initialization of ocean, land, and

atmosphere states. In developing its next-generation

CFS, NCEP upgraded to a substantially newer land

model (the Noah model), while retaining the option

in the CFS to execute the previous, older land model

[the Oregon State University (OSU) model]. In early

pilot experiments with the new CFS, experiments were

carried out with both the new Noah model and the old

OSU model.

At the time of these early experiments, neither a cou-

pled global reanalysis nor an uncoupled land-only global

reanalysis using the newer land model was available.

Hence, when the new CFS was run with either the new
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Noah land model or the old OSU land model, initiali-

zation of land states came from the NCEP/Department

of Energy (DOE) global reanalysis (Kanamitsu et al.

2002), which used the old OSU land model. Thus the

CFS–OSU configuration was initialized with model-

appropriate soil moisture states, whereas the CFS–Noah

configuration used model-inappropriate, OSU-based

values (though suitably adjusted to account for changes

in model soil layer thicknesses). Concerns about the

appropriateness of the CFS–Noah initialization helped

spur the execution of an offline, uncoupled global land

reanalysis using the Noah model that spanned the pe-

riod 1979–2006. The Noah-based land states produced

in this offline land reanalysis then served as (model

appropriate) initial land states for a second set of CFS–

Noah experiments.

Specifically, the CFS experiments reported here consist

of a series of summer season [June–August (JJA)] fore-

casts using a CFS forecast system under three sets of land-

model/land-initialization combinations: (i) the OSU land

surface model initialized with land states from the NCEP/

DOE global reanalysis using the OSU land model; (ii) the

Noah land model, also initialized with OSU model land

states from the NCEP/DOE global reanalysis (repre-

senting the newer system, with inconsistent land ini-

tialization); and (iii) the Noah land model initialized

with the independent global offline (land only) reanalysis

with the Noah land model (representing a targeted new,

and more appropriate, system). Each combination pro-

duced 10-member ensemble forecasts for JJA for each of

the 25 years from 1980 to 2004, based on 10 initial times

spanning late April to early May. All forecasts utilized

the same model resolution and the same sets of atmo-

spheric and oceanic initial conditions.

Results are shown in Figs. 1 and 2 . The first three panels

in each figure show, for each of three model/initialization

combinations, the skill of the forecast system in pre-

dicting seasonal (JJA) averages of precipitation and air

FIG. 1. Skill of seasonal precipitation forecasts (as measured by the correlation coefficient between the forecasted quantities and

observations) achieved with different combinations of forecast systems and soil moisture initial conditions: (a) CFS forecast system using

the Noah land model, initialized with land states from an offline analysis with the Noah land model; (b) same CFS forecast system but

using the OSU land model, initialized with land states from the NCEP/DOE global reanalysis that used the OSU land model; and

(c) same CFS forecast system using Noah land model, but initialized with land states from the NCEP/DOE global reanalysis that used the

OSU land model. (bottom right) Spatial averages of the correlations produced over the continental United States for each of the three

combinations in (a)–(c).
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temperature. Skill here is measured as the temporal

correlation between the seasonal mean of the fore-

casted variable and the corresponding observations across

the 25 yr period. [For precipitation the observations

come from the Climate Prediction Center gauge-only

precipitation analysis (Higgins et al. 2000), and for

air temperature they come from the Global Historical

Climate Network/Climate Anomaly Monitoring System

global air temperature analysis (Fan and van den Dool

2008).] CFS is run here at T126 horizontal (spectral)

resolution, with 64 vertical sigma layers and with the

atmospheric physics of the NCEP operational medium-

range Global Forecast System (GFS) as of June 2007.

The ocean model used is the Modular Ocean Model

version 3 (MOM3) from the Geophysical Fluid Dy-

namics Laboratory.

For two of the panels in Figs. 1 and 2, the initialization

of prognostic land states (including soil moisture, the

key land variable providing seasonal predictability) is

appropriate for the particular land model used in the

forecasts. The third panel, however, shows the results

obtained with the Noah model initialized with OSU

model-based states. A comparison of the skill levels—

and particularly of the continental U.S. averages shown

in the final histograms of Figs. 1 and 2—shows that the

two cases using model-consistent initial soil moistures

perform best. For precipitation, t tests were performed

on the U.S. average anomaly correlations. The results

show that, statistically speaking (at the 90% level, as-

suming 24 degrees of freedom), the skill of the two cases

with model-consistent initialization are indistinguish-

able from each other, whereas both are superior to the

case with inconsistent initialization.

The OSU and Noah soil moisture products are, in-

deed, systematically different (not shown), with the

OSU soil moistures consistently lower in most global

land locations and at most times of the year. Figures

1 and 2, along with the t-test analysis, show that direct

insertion of OSU soil moistures into the Noah model

leads to a degradation in forecast skill. The results of

this experiment have helped motivate an even more

recent updating of the new NCEP seasonal forecast

system, one that uses a global, offline analysis with the

Noah land model to initialize the Noah land model

component of the system. At the time of this writing, the

new system is in operational production of 30-yr refore-

casts spanning 1979–2008 in preparation for real-time

operational use.

FIG. 2. As in Fig. 1, but for 2-m air temperature.
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b. Ecological modeling example

The modeling of dynamic vegetation and associated

carbon budgets is an area of active research and de-

velopment (e.g., Moorcroft 2003; Thornton and

Zimmermann 2007). One recent effort, based at the

NASA Goddard Institute for Space Studies (GISS),

focuses on the development of a Dynamic Global Ter-

restrial Ecosystem Model (DGTEM) that uses a unique

representation of mixed vegetation canopies to char-

acterize water, energy, carbon, and nitrogen budgets

within a vegetation system; seasonal and interannual

variations in the growth and senescence of vegetation;

and long-term (out to centuries) vegetation change. The

DGTEM, labeled ‘‘Ent,’’ is modular in design and is

intended for use with earth system models, notably

those run by GISS and by the NASA Global Modeling

and Assimilation Office (GMAO). Key to the example

examined here is the Ent DGTEM’s treatment of soil

respiration, that is, the release of carbon dioxide from

the soil through the decay of biological material. Ent’s

soil biogeochemistry module is based largely on the

Carnegie Ames Stanford Approach (CASA) model (e.g.,

Randerson et al. 1997), but with modified relationships

between soil moisture, temperature, and respiration rate,

as derived from the reanalysis of field data measured by

Del Grosso et al. (2005).

The comparisons presented here focus on Ent simu-

lations of soil respiration at the Vaira Ranch site in

California in 2002 under three prescribed time series of

volumetric soil moisture for the top 30 cm of soil: (i) soil

moistures that were measured at the site, (ii) soil

moistures produced by the NCEP–NCAR reanalysis at

the grid cell containing the site (aggregated appropri-

ately across the topmost model layers), and (iii) the

corresponding soil moistures produced by ERA-40. We

first show, in the top panel of Fig. 3, the differences in

these time series. (Note that, although monthly values

are shown, the temporal resolution of the raw data was

daily or higher.) All three time series show higher soil

moisture values in winter and lower values in summer

and fall, in straightforward agreement with the winter-

based seasonal cycle of California precipitation. Never-

theless, they also show distinct differences. The observed

series dips to low values by April, and the soil remains

dry through August. The reanalysis-based moistures

show a slower, steadier decline over the course of the

spring and summer. Furthermore, the seasonal ampli-

tude of the signal is much larger for the NCEP–NCAR

reanalysis, at least twice that of the ECMWF reanalysis.

As suggested above in section 1 and as demonstrated

below in section 4, the models’ soil moisture variables

are best thought of as ‘‘indices’’ of moisture content and

do not correspond to measurable soil moisture amounts;

for this reason alone, we should expect at the outset that

the three time series would not agree. A second ex-

planation, however, should also be considered. The

observed time series was extracted at a point, whereas

the model-based time series represent large gridcell

averages. It is quite possible that spring rainfall at the

site was significantly lower (or perhaps evaporation or

runoff was significantly higher) than the large-area

mean, thereby accounting for the faster drop in the

observed soil moisture. Even if this were true though,

the top panel would still demonstrate problems with as-

suming that reanalysis-based soil moistures can be ap-

plied with confidence to point models. Furthermore, this

‘‘point-scale’’ reasoning does not explain the differences

in the two reanalysis soil moistures; if anything, under

this argument the higher-resolution ECMWF data

should show the larger amplitude.

The bottom panel in Fig. 3 shows the soil respiration

rates determined by the Ent DGTEM under the three

different soil moisture time series. (All other forcings in

the simulations were identical.) The reanalysis-based

soil moistures produce respiration rates roughly five

times higher than do the observed soil moistures during

spring and summer. The two reanalysis products pro-

duce similar respiration rates until July, when the rates

for the ECMWF soil moisture begin to exceed signifi-

cantly those produced with the NCEP–NCAR soil mois-

ture, by about a factor of 2 in August. This example thus

FIG. 3. (top) Comparison of soil moisture measured at the Vaira

Ranch FLUXNET site in California with the soil moisture in the

corresponding grid cell produced by the NCEP–NCAR reanalysis

and ERA-40, expressed as dimensionless volumetric soil moisture.

(bottom) Soil moisture respiration (moles of carbon m22 day21)

produced by an ecological model using the three soil moisture time

series as inputs.
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demonstrates that, if accurate estimates of soil respira-

tion were needed for, say, a carbon budget analysis, the

direct use of reanalysis soil moisture products in a res-

piration model could lead to substantial error.

3. The Global Soil Wetness Project

Both of the examples above demonstrate the dangers

associated with treating a reanalysis soil moisture as one

would treat, say, a model or reanalysis air temperature—

that is, as a quantity that is intrinsically comparable (in

magnitude and range) to a true, observable geophysical

quantity. With these examples in mind, we now turn our

attention to a study performed with data from the sec-

ond phase of the Global Soil Wetness Project (GSWP-2).

GSWP-2 was a component of the modeling efforts of the

Global Energy and Water Cycle Experiment (GEWEX),

efforts focused on the large-scale performance and as-

sessment of LSMs commonly used in weather and cli-

mate models and on the production of global datasets

for use by the earth science community (Dirmeyer et al.

2006). In GSWP-2, a number of LSMs were run on a

common, global 18 3 18 grid (excluding Antarctica), each

driven by the same 10-yr time series of observations-

based meteorology. The forcing time series were derived

from a combination of gridded 3-hourly reanalysis out-

put, 3-hourly satellite-derived surface radiation data, and

monthly gridded observational data (Zhao and Dirmeyer

2003). The precipitation data, in particular, were forced

to agree with observational datasets at the monthly

time scale. The core period of 1986–95 covered by the

offline simulations corresponds exactly to that of the

International Satellite Land Surface Climatology Pro-

ject (ISLSCP) Initiative II dataset (Hall et al. 2006).

As part of GSWP-2, each participating LSM produced

a standard set of output grids at the same 18 resolution,

data comprised of land surface state variables, fluxes, and

other diagnostic quantities. Among these are several

variables related to soil moisture, including the change in

column-integrated water content, volumetric soil mois-

ture in each model layer (layers vary amongst the

models), and total column soil moisture. In this paper,

we focus on the average soil moisture in the top meter of

soil (nominally, the ‘‘root zone’’), as computed from

layer totals using an objective procedure (Guo et al.

2006). We normalize this quantity by dividing it by the

total water holding capacity of the top meter (porosity

times depth), yielding a dimensionless quantity known

as the degree of saturation, which can vary from 0 to 1.

Note that until now in this paper, we have freely uti-

lized the term ‘‘soil moisture’’ in deference to its wide-

spread usage in the community, despite recognizing that

it is a model-specific quantity with no direct observa-

tional analog. Even ‘‘degree of saturation’’ has a precise

hydrologic meaning (e.g., Eagleson 1970), one inap-

propriate for such a model-specific variable. Thus, for

greater precision in our discussion of the GSWP-2 anal-

ysis, we will hereafter refer to the computed degree of

saturation for a GSWP-2 model as a root-zone ‘‘soil

wetness index.’’ Always keep in mind, however, that,

given its simple definition, all stated results regarding

‘‘soil wetness index’’ apply directly to model-generated

‘‘soil moisture’’ or ‘‘soil wetness’’ values, of the type

provided as data products from reanalyses or LDAS

systems.

Data from 7 of the 15 participating models are used

hereafter in this study. These 7, which can be considered

representative and which for simplicity are referred to

in this paper as models A–G, were selected from the 15

based on the availability of water holding capacity data

and an independence of historical development (i.e.,

data from different versions of the same model, though

available through GSWP-2, were not considered,

though experience tells us that even different versions

of the same model can produce the types of differences

illustrated below).

For a proper statistical analysis, the time series ex-

amined should be stationary; long-term trends need to

be removed. Thus, prior to all analyses, the time series

of soil wetness index produced by each model at each

grid point were ‘‘detrended’’ by first fitting a line,

through simple regression, through each time series,

translating the line vertically downward to give it zero

mean over the 10-yr period, and then subtracting this

line from the time series. This detrending was, in fact,

mostly performed to prevent spurious intermodel time

series correlations in desert regions associated with in-

complete spinup—if two models are continuously dry-

ing over the 10-yr period, the two raw (not detrended)

time series will show a strong correlation that has little

meaning. The detrending has no noticeable impact on

our results outside of desert regions.

4. Examples of soil wetness index inconsistency

Figure 4 shows, for five representative sites, the 10-yr

time series of daily averaged root-zone soil wetness in-

dex produced by the seven GSWP land models. Again,

the wetness index can vary by definition from 0, for

completely dry conditions, to 1, for completely satu-

rated conditions.

The model differences are substantial. The examples,

in agreement with the earlier findings of Chen et al.

(1997) and Entin et al. (1999), illustrate the wide variety

of wetness index behavior inherent in different state-

of-the-art land surface models, both in terms of mean
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climatology (models C and D can be drier than model A

throughout the simulation period) and dynamic range

(in the Sahel the range for model D is about 0.2,

whereas that for model B is about 0.5). The figure shows

clearly that the wetness index variable, and thus the

‘‘soil moisture’’ variable from which it was derived, in a

given model is specific to that model. Naturally, it would

behoove climate modelers to characterize fully the values

of the variable produced by their land model prior

to performing sensitivity studies involving that variable.

In examining, for example, wet and dry soil impacts

on weather or climate, the assigned ‘‘wet condition’’

or ‘‘dry condition’’ should be made sensibly, in the con-

text of the model’s own dynamic range, as determined

through analyses such as that behind Fig. 4. Setting the

initial perturbations too large, outside this inherent

range, could seriously reduce the usefulness of such a

study.

More to the point, the intermodel wetness index dif-

ferences in Fig. 4 illustrate the potential problems as-

sociated with the direct replacement of one model’s soil

moisture with that from another. In the Amazon, for

FIG. 4. Time series of root-zone soil moisture (degree of saturation) for each of the seven

considered GSWP-2 models at five representative locations.
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example, the wettest state for model F is about equal to

the driest state for model B. As a result, regardless of

how wet the soil should be (following, say, an extensive

rainy period), model B would always be initialized very

dry if it used model F’s soil moisture without modifi-

cation. Intuitively, using model F’s products to initialize

model B would significantly degrade the performance

of model B, even if the model F product was part of a

trusted atmospheric reanalysis or offline land analysis.

Again, such considerations lie behind the degradation

of skill seen in Figs. 1 and 2, for the OSU land model

tends to produce drier soil moistures than the Noah land

model under the same atmospheric forcing.

5. Underlying information content on temporal soil
moisture variability

We emphasize again that an LSM’s soil moisture

variable is best thought of as a model-specific index of

wetness, a monotonic function of the true average soil

moisture that it is trying to represent. Because different

LSMs use, in effect, different monotonic functions, the

‘‘soil moistures’’ they produce have different climato-

logical means and variability characteristics. Even so,

the time variations of the different LSM products

should be correlated; for example, regardless of the

LSM used, an excessively rainy period should lead to

a higher value for its soil moisture variable than a dry

period. Of course, perfect correlations will never be

achieved, if only because soil moisture, through the con-

servation equation, also depends in part on runoff and

evaporation fluxes, and different LSMs use different

formulations for these fluxes.

We characterize here the ‘‘level of agreement’’ be-

tween different soil moisture products using such tem-

poral correlations. (Again, throughout this paper, we

focus on the total moisture in the root zone; a supple-

mental analysis of total column soil moisture produced

equivalent results.) At each GSWP-2 grid cell, we first

compute the square of the correlation between the time

series of wetness index produced by each independent

pairing of LSMs. The daily (detrended) data are used

for this calculation with the mean seasonal cycle re-

moved. For seven LSMs, we obtain 21 r2 values. We

then compute the average of these 21 values and call

this average our measure of LSM agreement.

The global distribution of the average r2 values is

shown in Fig. 5. The average r2 is low in Eastern

Hemisphere deserts and in high northern latitudes.

Almost everywhere else, however, LSM agreement is

high, with average r2 values exceeding 0.5, often sub-

stantially. The average r2 values indicate that, despite

the known differences in soil wetness index products

(e.g., Fig. 4), the LSM products indeed share a great deal

of underlying information about the time variability of

the wetness index. This shared information suggests that

a mapping of soil wetness indices, and thus soil mois-

tures, between models may be possible.

Schaake et al. (2004), using a somewhat different

analysis approach over the continental United States,

produced a similar result; they found that four different

models driven with the same meteorological forcing

FIG. 5. Map showing the average r2 values (see text) computed from the LSM soil moisture products, a measure of the degree to which

the LSM products contain the same information on the time variability of soil moisture. The five white circles identify the gridcell

locations examined in Figs. 4 and 6.
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tended to produce similar temporal variations in wet

areas but not in dry areas. In effect, the present study

affirms their result using a greater number of models

and a larger (global) spatial domain.

The low correlations in the deserts are, in some ways,

not surprising. Arguably, model agreement should be

largest in regions with large variations in precipitation

forcing—a larger precipitation variance suggests a larger

variation in moisture storage that all of the models can

more easily capture. The deserts, by definition, have

low mean precipitation and a correspondingly low

precipitation variance. In high northern latitudes, the

differences may relate in part to differences in the pa-

rameterization of snow and frozen soil.

6. Mapping of soil wetness index, and thus soil
moisture, between models

a. Scaling with the first two statistical moments

The key to any proper transferability of soil moisture

states between LSMs lies in the recognition of and

correction for the differences in the statistical moments

of the LSMs’ soil moisture distributions. If the differ-

ences in the LSM-based soil wetness indices in Fig. 4

relate mostly to differences in their means and standard

deviations, then all models would produce roughly the

same time series of standard normal deviates w9:

w9 5 (w� w
m

)/s
w

, (1)

where wm is the mean wetness index for the given LSM

at the point and time of year in question and sw is that

LSM’s standard deviation of wetness index for that

point and time of year. Dirmeyer et al. (2004), using (1),

suggest an equation for transforming a wetness index

value for model A into one that can be used in model B:

w(B) 5 [(w(A)� w
m

(A))/s
w

(A)] s
w

(B) 1 w
m

(B). (2)

For example, using (2), a relatively dry state in model A

would be mapped into a correspondingly dry state in

model B.

Of course, such a transformation ignores the fact that

soil moisture, and thus wetness index, distributions are

often skewed rather than Gaussian, particularly when

mean soil moisture is at the drier or wetter end of the

spectrum. The non-Gaussian properties could allow, for

example, the generation through (2) of scaled soil wet-

ness indices that fall below 0 or exceed 1, indices that

would then have to be constrained after the fact to

sensible values. In principle, we could address this and

other problems associated with the underlying non-

Gaussian distributions explicitly using a transformation

method that involves more sophisticated statistical tech-

niques, such as cumulative distribution function (CDF)

matching (e.g., Wood et al. 2002). Given, however, the

availability of only 10 years of data from GSWP-2, use

of such techniques, while not impossible (see, e.g., the

ergodic approach of Reichle and Koster 2004), is nev-

ertheless difficult, and thus for convenience we focus in

this paper on the use of the simpler (2). Our justification

for going ahead with (2) despite its limitations is simple:

both the non-Gaussian nature of soil moisture and, in-

deed, our inability to estimate wm and sw accurately from

only 10 truly independent data points for a given time of

year will only hinder our ability to develop an effective

mapping between models. Thus, any success in mapping

that we obtain through (2) can be considered conserva-

tive. As will be seen, our mapping success using (2) de-

spite being ‘‘underestimated’’ is, indeed, considerable.

b. Time series of soil moisture at selected cells

We now (arbitrarily) choose model F as the ‘‘target’’

model. We use (2) to transform the soil wetness index

time series of each of the other models to values rele-

vant to model F. For each model, the wm and sw values

are computed at each grid cell and each day of the year

from the available GSWP-2 data. We use a 31-day

moving window, with 15 days on either side of the day in

question in each of the 10 years, to provide 310 data

points for the statistics; note, however, that, given the

long-term memory of soil moisture, the 310 data points

are far from independent. Given that soil moisture

memory time scales can easily span a month (e.g., Entin

et al. 1999), we can at best claim to use 10 fully inde-

pendent data values to compute wm and sw.

Figure 6 shows, for the five grid cells examined in Fig. 4,

the time series of the transformed wetness indices. The

time series for the different models are largely coinci-

dent at the five grid cells considered. Again, the grid

cells shown are representative: by and large, despite the

model differences illustrated in Fig. 4 and in accordance

with the levels of agreement plotted in Fig. 5, the

models tend to contain the same information about the

time variability of soil ‘‘wetness,’’ information that can

be transferred to a specific model (here, model F) using

the scaling in (2).

c. Global picture of mapping success

The top panel of Fig. 7 gives a broad-brush indication

of where the original (unscaled) model-derived wetness

indices, and thus soil moisture values, tend to be dif-

ferent. For each of the 3652 days of simulation at each

grid cell across the globe, we computed the intermodel
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variance of soil wetness index and then averaged these

variances over time and plotted the global distribution

of their square roots, showing in essence a mean stan-

dard deviation field. The standard deviations of the

degree of saturation are largest in the Eastern Hemi-

sphere deserts and in far northern latitudes. Across the

globe, the standard deviations are almost always above

0.1. Note that, even where the standard deviations are

lowest, model differences still prevent a direct transfer

of one LSM’s wetness index into another. The black

circle in South America locates the Amazon grid cell

examined in Fig. 4. The standard deviation computed

for the grid cell is relatively low, and yet Fig. 4 shows

that several models have markedly different wetness

index values there.

The bottom panel of Fig. 7 provides the equivalent

figure for the transformed soil wetness indices. First,

model A was taken to be the ‘‘target model,’’ and the

wetness indices for the remaining models were trans-

formed with (2) to produce values relevant to model A.

The average (over 3652 days) intermodel variances for

the transformed indices were computed as above, and

their square roots were taken. Next, model B was taken

to be the target model, and the process was repeated.

FIG. 6. As in Fig. 4, but for soil moistures scaled with (2) to produce values relevant to model F.
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After all seven of the GSWP-2 models were used in turn

as the target model, we had in hand seven maps corre-

sponding to the top panel of Fig. 7. The bottom panel of

Fig. 7 is the average over those seven maps. Clearly, the

mapping is successful, bringing all of the LSM products

together with an average standard deviation that is al-

most everywhere less than 0.025. What little standard

deviation remains may result in large part from the

aforementioned limiting assumptions surrounding the

use of (2), namely, the assumptions of normal soil

moisture distributions and of our ability to estimate

reasonable values of the first two moments from 10 in-

dependent data points. Of course, some of it may also

relate to true differences in the information content of

the models’ time series; still, the low standard deviations

indicate that such true differences would be small.

Based on Fig. 7, the low average r2 values found for

the desert in Fig. 5 should not be much of an issue when

FIG. 7. (top) Map showing the standard deviation across the models of root-zone soil moisture (degree of saturation). The variance was

computed for each day of each year and then averaged over the 3652 days of simulation; the square root of the resulting average variance

was then found and plotted. The five black circles identify the gridcell locations examined in Figs. 4 and 6. (bottom) As above but for the

average root mean variance generated when each model (in turn) is considered the target model and the soil moistures from the other

models are scaled accordingly.
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transferring one LSM’s wetness index, and thus soil

moisture product, into another. The temporal variabil-

ity tends to be so low in deserts that, even though the

models are not temporally correlated there, the dis-

agreement between variations would be too small to

affect a climate simulation. For example, the Saharan

point shows a very low average r2 value in Fig. 5, and yet

Fig. 6 shows the time series of scaled soil wetness indices

at the point to be almost completely coincident.

7. Discussion

The agreement in the LSM soil wetness index prod-

ucts illustrated in Fig. 5 and the success of the mapping

demonstrated in Figs. 6 and 7 echoes somewhat the

findings of Dirmeyer et al. (2004). The present study

serves as a more focused and controlled analysis of in-

termodel soil moisture differences since each of the

(more abundant) LSMs examined here is forced with

identical meteorological data—thus we isolate the im-

pacts of the LSM differences themselves. We similarly

affirm and expand on the results of Schaake et al. (2004)

by examining a greater number of land models over the

full global domain. We find that, while the wetness in-

dices, and thus the soil moisture products, from differ-

ent land surface models are essentially very different,

they contain generally the same information regarding

temporal soil moisture variability so that the products

generated by one model can potentially be transformed

into quantities relevant to another. The presence of

similar temporal variability information in the face of

distinctly different soil moisture values (in essence a

consequence of similarity in the simulated time series

of the infiltration, evaporation, and runoff fluxes that

control the models’ soil moisture states) is a clear dem-

onstration of the ‘‘model-specific index’’ nature of the

soil moisture variable; it underlines the fact that an LSM-

derived ‘‘soil moisture’’ is not (as its name implies) a

physical quantity that can be directly validated with field

measurements.

Is the ambiguity of a given model’s soil moisture

product acceptable? Or does it imply that modelers,

before using their models, need to improve them until

simulated soil moisture values are indeed comparable to

those of other models and to observations? Arguably,

the ambiguity is largely unavoidable given current com-

putational constraints on LSM resolution. The single soil

moisture variable at a given vertical level in a land sur-

face model must reflect more than the average soil

moisture across, say, 100 km. It must also—somehow—

implicitly reflect the spatial variability of soil moisture

and the effects of this variability on the surface energy

and water fluxes. Even if we could construct a fully

reliable macroscale model that represents the effects

of porosity, tortuosity, etc., within a local soil volume

without resolving these features explicitly (a complex

topic in itself to address), soil moisture heterogeneity at

larger spatial scales—e.g., at the hillslope scale (tens to

hundreds of meters), where water table dynamics may

lead to wet conditions at the bottom of a hill and dry

conditions near the top—leads to corresponding hetero-

geneity in evaporation and runoff production (e.g.,

Famiglietti and Wood 1991). Given such soil moisture

heterogeneity, and owing to strong nonlinearities in the

governing soil moisture–evaporation relationship that

exists at a point, a modeler simply cannot represent the

true average soil moisture in an AGCM gridcell area

with a single number and use that single number in a

locally derived (single site) relationship to obtain the true

areally averaged evaporation rate. For realistic evapo-

ration rates so critical to the proper operation of the at-

mospheric model, either the evaporation–soil moisture

relationship must be modified away from the observed

relationship at a point (not something land surface

modelers claim to know how to do) or the soil moisture

variable in the LSM must take on a nebulous meaning, a

meaning distinct from ‘‘areally averaged soil moisture.’’

Again, although its meaning may be nebulous, we

emphasize that the true information content—and thus

value—of a model soil moisture product lies not in its

absolute magnitudes but in its time variations. The proper

use of a simulated soil moisture product demands an

understanding of this basic element of its character.

We can speculate that, as the spatial resolution of

land surface models improves and as modelers take

better advantage of growing soil moisture databases for

the continued improvement of hydrological parame-

terizations, the disconnect between modeled and ob-

served soil moisture should decrease. Again, though,

fine spatial scales of heterogeneity (tens of meters) help

shape hydrological processes in nature, and our ability

in the foreseeable future to resolve such scales explicitly

in global simulations appears limited (though statistical

approaches may provide a valid alternative strategy).

Again, even with such highly resolved scales, the sub-

millimeter scales of relevance to soil moisture transport

within the soil matrix (i.e., the scale of soil pores) will

not soon, if ever, be resolved—necessitating in any case

a macroscopic representation of soil moisture.

The proper utilization of observations for develop-

ment, calibration, and validation of models presents

additional challenges. First and foremost, in situ soil

moisture data have very limited availability, with many

large regions of the world still unmonitored. Even where

the in situ data exist, their interpretation is often difficult

because the measurements are highly localized, and
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differences in soil properties can cause important dif-

ferences in the mean and variance of soil moisture, even

over small distances. Variations in forcing (e.g., con-

vective precipitation) add another decorrelating factor

on longer spatial scales, though this becomes less im-

portant as the time scale increases.

Interestingly, Saleem and Salvucci (2002) scaled each of

a number of observational (in situ) soil moisture time se-

ries in Illinois with (1) and showed that the ostensibly

different time series contain similar information, in direct

analogy to our findings above. Saleem and Salvucci indeed

suggest that scaling with (1) or with more complex statis-

tical techniques could aid in model intercomparison. Our

findings firmly support their suggestion, on a global scale.

The remote sensing of soil moisture via satellite holds

particular promise to address the lack of in situ obser-

vations across the globe, but much work is still needed

to address the proper use of these data for model im-

provement. In some existing cases, satellite methods

seem to return their own forms of soil moisture indices

rather than direct soil moisture estimates (Reichle et al.

2007). Also, satellite-based soil moisture data are lim-

ited to the top several centimeters (or less) of soil,

whereas the soil moisture data of greatest relevance to

many climatic applications spans a much larger depth,

through at least the root zone of the native vegetation.

We note, as an important aside, that satellite-based

soil moisture data can indeed contribute to the estima-

tion of root-zone soil moisture through the process

of data assimilation (Reichle et al. 2007), essentially the

mathematically optimal merging of satellite-based and

land-model-based soil moisture estimates. For data as-

similation to proceed with the current generation of land

surface models, the model-dependent nature of simu-

lated soil moisture must be recognized and accounted

for prior to the data merging.

Finally, we note that, while the use of (1) does allow a

mapping of the soil moisture variable between land

models and while much more reliable approaches for

mapping do exist (e.g., CDF matching) and should be

used instead if adequate data are available, the use of

any mapping comes with a cost—the modeler must

generate and analyze a 10-yr (or preferably much lon-

ger) time series of soil moistures produced by both land

models involved. Generating such time series is con-

ceptually trivial, particularly given the availability of

forcing data through GSWP-2, but the production and

analysis of the time series may still, for various reasons

(development of an offline driver, grid considerations,

etc.), pose difficulties for generating a robust mapping

algorithm. Model-specific vertical discretizations of

the soil column may pose particular, though not insur-

mountable, difficulties for mapping.

This paper’s main result—that the representative

cross section of LSM’s examined here contain largely

the same information on the temporal variation of

root-zone soil moisture so that the soil moisture pro-

duced by one land model can, if properly scaled, be

utilized in another—may extend beyond such simple

model-to-model mappings. Because an LSM’s soil mois-

ture variable represents the time-integrated impacts of

antecedent meteorological forcing on the hydrological

state of the soil system, it has a potentially profound

real-world application: unless all of the models exam-

ined here are wrong in precisely the same way, we can

speculate from the agreement levels in Figs. 5, 6, and 7

that any of these models could, if forced with realistic

meteorological data (and better yet, if also combined

with satellite-based soil moisture information via data

assimilation), provide a soil moisture product that, when

suitably scaled, captures the time variation of real-world

soil moisture. Indeed, the impact of any small model de-

pendence that does exist—as represented by the degree

to which the r2 values in Fig. 5 are still less than 1 or as

established through other techniques (e.g., Abramowitz

and Gupta 2008)—can perhaps be mitigated by using

some type of multimodel average. If the forcing data were

provided in real time, the state of the soil could be esti-

mated in real time. The model products could, if suitably

scaled, serve to monitor the real world hydrological state.

Perhaps, for example, they could be used to identify such

events as the onset and demise of agricultural drought.

A note of caution about this, however, is appropriate

here. It is possible that land surface models are, indeed,

all ‘‘wrong in precisely the same way,’’ reducing their

usefulness for such a real-world application. For exam-

ple, they all lack, to some degree, sophisticated treat-

ments of certain hydrological processes (e.g., baseflow,

interflow), and most share similar simple representations

of other hydrological processes (e.g., the use of Richard’s

equation for subsaturated vertical flow). More research is

needed into the question of how well land surface models

in general capture real-world hydrological processes.

Acknowledgments. This research was supported by

funding from the Earth Science Enterprise of NASA head-

quarters. We gratefully acknowledge WCRP/GEWEX/

GLASS for coordinating GSWP-2, and we particularly

thank all of the individual modelers who contributed

their data to GSWP-2.

REFERENCES

Abramowitz, G., and H. Gupta, 2008: Toward a model space and

model independence metric. Geophys. Res. Lett., 35, L05705,

doi:10.1029/2007GL032834.

4334 J O U R N A L O F C L I M A T E VOLUME 22



Chen, T. H., and Coauthors, 1997: Cabauw experimental results

from the Project for Intercomparison of Land-Surface Pa-

rameterization Schemes. J. Climate, 10, 1194–1215.

Del Grosso, S. J., W. J. Parton, A. R. Mosier, E. A. Holland,

E. Pendall, D. S. Schimel, and D. S. Ojima, 2005: Model-

ing soil CO2 emissions from ecosystems. Biogeochemistry, 73,

71–91.

Dirmeyer, P. A., 2004: Soil moisture—Muddy prospects for a clear

definition. GEWEX News, No. 14, International GEWEX

Project Office, Silver Spring, MD, 11–12.

——, Z. Guo, and X. Gao, 2004: Comparison, validation, and

transferability of eight multi-year global soil wetness prod-

ucts. J. Hydrometeor., 5, 1011–1033.

——, X. Gao, M. Zhao, Z. Guo, T. Oki, and N. Hanasaki, 2006:

GSWP-2: Multimodel analysis and implications for our per-

ception of the land surface. Bull. Amer. Meteor. Soc., 87,

1381–1397.

Douville, H., and F. Chauvin, 2000: Relevance of soil moisture for

seasonal climate predictions: A preliminary study. Climate

Dyn., 16, 719–736.

Eagleson, P. S., 1970: Dynamic Hydrology. McGraw-Hill, 462 pp.

Entin, J. K., A. Robock, K. Y. Vinnikov, V. Zabelin, S. Liu,

A. Namkhai, and T. Adyasuren, 1999: Evaluation of Global

Soil Wetness Project Soil moisture simulations. J. Meteor. Soc.

Japan, 77, 183–198.

Famiglietti, J. S., and E. F. Wood, 1991: Evapotranspiration and

runoff from large land areas: Land surface hydrology for

atmospheric general circulation models. Surv. Geophys., 12,

179–204.

Fan, Y., and H. van den Dool, 2008: A global monthly land surface

air temperature analysis for 1948–present. J. Geophys. Res.,

113, D01103, doi:10.1029/2007JD008470.

Fecan, F., B. Marticorena, and G. Bergametti, 1999: Parametri-

zation of the increase of the aeolian erosion threshold wind

friction velocity due to soil moisture for arid and semi-arid

areas. Ann. Geophys., 17, 149–157.

Fennessey, M. J., and J. Shukla, 1999: Impact of initial soil wet-

ness on seasonal atmospheric prediction. J. Climate, 12,

3167–3180.

Friend, A. D., and N. Y. Kiang, 2005: Land surface model

development for the GISS GCM: Effects of improved

canopy physiology on simulated climate. J. Climate, 18,

2883–2902.

Guo, Z., and P. A. Dirmeyer, 2006: Evaluation of the Second

Global Soil Wetness Project soil moisture simulations. 1. Inter-

model comparison. J. Geophys. Res., 111, D22S02, doi:10.1029/

2006JD007233.

Hall, F. G., and Coauthors, 2006: ISLSCP Initiative II global data

sets: Surface boundary conditions and atmospheric forcings

for land-atmosphere studies. J. Geophys. Res., 111, D22S01,

doi:10.1029/2006JD007366.

Higgins, R. W., W. Shi, E. Yarosh, and R. Joyce, 2000: Improved

United States precipitation quality control system and anal-

ysis. NCEP/Climate Prediction Center Atlas 7, Climate Pre-

diction Center, Camp Springs, MD, 40 pp.

Holtgrieve, G. W., P. K. Jewett, and P. A. Matson, 2006: Variations

in soil N cycling and trace gas emissions in wet tropical forests.

Oecologia, 146, 584–594.

Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year

Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.

Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo,

M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II

reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643.

Koster, R. D., and P. C. D. Milly, 1997: The interplay between

transpiration and runoff formulations in land surface schemes

used with atmospheric models. J. Climate, 10, 1578–1591.

——, and Coauthors, 2004: Realistic initialization of land surface

states: Impacts on subseasonal forecast skill. J. Hydrometeor.,

5, 1049–1063.

Moorcroft, P. R., 2003: Recent advances in ecosystem-atmosphere

interactions: An ecological perspective. Proc. Roy. Soc. London,

270, 1215–1227.

Narasimhan, B., and R. Srinivasan, 2005: Development and eval-

uation of Soil Moisture Deficit Index (SMDI) and Evapo-

transpiration Deficit Index (ETDI) for agricultural drought

monitoring. Agric. For. Meteor., 133, 69–88.

Randerson, J. T., M. V. Thompson, T. J. Conway, I. Y. Fung, and

C. B. Field, 1997: The contribution of terrestrial sources and

sinks to trends in the seasonal cycle of atmospheric carbon

dioxide. Global Biogeochem. Cycles, 11, 535–560.

Reichle, R. H., and R. D. Koster, 2004: Bias reduction in short

records of satellite soil moisture. Geophys. Res. Lett., 31,
L19501, doi:10.1029/2004GL020938.

——, ——, P. Liu, S. P. P. Mahanama, E. G. Njoku, and M. Owe,

2007: Comparison and assimilation of global soil moisture

retrievals from the Advanced Microwave Scanning Radiom-

eter for the Earth Observing System (AMSR-E) and the

Scanning Multichannel Microwave Radiometer (SMMR).

J. Geophys. Res., 112, D09108, doi:10.1029/2006JD008033.

Rodell, M., and Coauthors, 2004: The global land data assimilation

system. Bull. Amer. Meteor. Soc., 85, 381–394.

——, J. Chen, H. Kato, J. S. Famiglietti, J. Nigro, and C. R. Wilson,

2007: Estimating groundwater storage changes in the

Mississippi River basin (USA) using GRACE. Hydrogeol. J.,

15, 159–166.

Rosenzweig, C., F. N. Tubiello, R. Goldberg, E. Mills, and

J. Bloomfield, 2002: Increased crop damage in the US from

excess precipitation under climate change. Global Environ.

Change, 12, 197–202.

Saleem, J. A., and G. D. Salvucci, 2002: Comparison of soil wetness

indices for inducing functional similarity of hydrologic re-

sponse across sites in Illinois. J. Hydrometeor., 3, 80–91.

Schaake, J. C., and Coauthors, 2004: An intercomparison of soil

moisture fields in the North American Land Data Assimilation

System (NLDAS). J. Geophys. Res., 109, D01S90, doi:10.1029/

2002JD003309.

Simmons, A. J., and J. K. Gibson, 2000: The ERA-40 Project Plan.

ERA-40 Project Report Series No. 1, 63 pp. [Available online

at http://www.ecmwf.int/publications/library/ecpublications/_

pdf/ERA40_PRS_1.pdf.]

Thornton, P. E., and N. E. Zimmermann, 2007: An improved

canopy integration scheme for a land surface model with

prognostic canopy structure. J. Climate, 20, 3902–3923.

Wood, A. W., E. P. Maurer, A. Kumar, and D. P. Lettenmaier,

2002: Long-range experimental hydrologic forecasting for

the eastern United States. J. Geophys. Res., 107, 4429,

doi:10.1029/2001JD000659.

Yuste, J., D. D. Baldocchi, A. Gershenson, A. Goldstein,

L. Misson, and S. Wong, 2007: Microbial soil respiration and

its dependency on carbon inputs, soil temperature, and moisture.

Global Change Biol., 13, 2018–2035.

Zhao, M., and P. Dirmeyer, 2003: Production and analysis of

GSWP-2 near-surface meteorology data sets. COLA Tech.

Rep. 159, 22 pp. [Available from the Center for Ocean–Land–

Atmosphere Studies, 4041 Powder Mill Road, Suite 302,

Calverton, MD 20705.]

15 AUGUST 2009 K O S T E R E T A L . 4335


