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ABSTRACT

A new path-density diagnostic for atmospheric surface-to-surface transport is formulated. The path density

h gives the joint probability that air whose last surface contact occurred on patch Vi at time ti will make its

next surface contact with patch Vf after a residence time t 2 (t, t 1 dt) and that it can be found in d3r during

its surface-to-surface journey. The dependence on t allows the average surface-to-surface flow rate carried by

the paths to be computed. A simple algorithm for using passive tracers to determine h is developed. A key

advantage of the diagnostic is that it can be computed efficiently without an adjoint model and using only a

moderately large number of tracers. The nature of the path density is illustrated with a one-dimensional

advection–diffusion model. In Part II of this study, the path density diagnostic is applied to quantify inter-

hemispheric transport through the troposphere and stratosphere.

1. Introduction

An understanding of interhemispheric transport is

essential for the interpretation of the observed global-

scale structure of long-lived anthropogenic trace gases,

which have their dominant sources in the Northern

Hemisphere (NH). Many studies have interpreted the

observed meridional gradients of tracers such as CO2,

chlorofluorocarbons (CFCs), and SF6 in terms of a sin-

gle interhemispheric exchange time (e.g., Heimann and

Keeling 1986; Maiss and Levin 1994; Bowman and

Cohen 1997). The underlying conceptual model for

these exchange times, typically found to be on the order

of 1 yr, is a simple two-box model with each box being a

hemisphere (e.g., Bowman and Cohen 1997). Although

such bulk time scales provide a convenient index of in-

terhemispheric transport to assess variability and climate

change, they are a very incomplete characterization of

interhemispheric transport. Plumb and McConalogue

(1988) emphasized that the mixing ratio at a given point

is determined by an admixture of fluid elements, each of

which will generally have taken a different path from

the source. More recent analyses using transport Green

functions show that the lag in mixing ratio between the

hemispheres can be understood in terms of the mo-

ments of the distribution of times since last contact with

the source region (e.g., Hall and Plumb 1994; Holzer

and Boer 2001).

The large-scale transport circulation that determines

interhemispheric transport has been characterized in

a number of ways. Plumb and Mahlman (1987) used

synthetic tracers in a general circulation model to ex-

tract the zonally averaged transport operator in terms of

advection by an effective transport velocity and diffu-

sion by an eddy-diffusivity tensor. They also showed

that rapid vertical mixing and outflow aloft in the tropics

facilitates rather than throttles interhemispheric trans-

port. Bowman and Carrie (2002) and Bowman and

Erukhimova (2004) used Lagrangian particle dispersion

to characterize the zonally averaged transport circula-

tion in terms of the climatological Green functions of

the advective transport operator on a time scale of

10–20 days. For the stratosphere, the residual mean

circulation has been defined to quantify the Brewer–

Dobson circulation (e.g., Andrews et al. 1987). How-

ever, these circulation diagnostics cannot be used to

predict the paths that air or tracers follow from the NH

surface to the Southern Hemisphere (SH) surface or
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how fast paths with transit times of a few months differ

from slow paths with transit times of years.

The key objective of this study is to quantify rigor-

ously the surface-to-surface paths of air from the NH

to the SH. Because of the advective–diffusive nature

of atmospheric transport, no single surface-to-surface

transit time (or simply ‘‘residence time’’) or finite set of

paths can fully characterize the transport, and a con-

tinuous distribution of times and paths is considered. In

Part I of this study, we reformulate the path-density

transport diagnostic recently introduced in an oceano-

graphic context by Holzer and Primeau (2006, 2008) so

that it is suitable for efficient computation in the highly

turbulent atmosphere. The diagnostic is the joint

probability density h(r, Vf, ti 1 tjVi, ti) per unit resi-

dence time t and per unit volume (or per unit mass

depending on the choice of coordinates) that a fluid

element that had last surface contact on patch Vi at time

ti will make its next surface contact with Vf after a time

t 2 (t, t 1 dt) and that it can be found in d3r at position

r during its surface-to-surface journey. Because h is thus

the probability density of fluid elements that transit

through d3r at r on their way from Vi to Vf, and because

each such fluid element can be thought of as being at-

tached to the Vi / Vf path that it traces out, h is also

the density of these paths per unit volume and per unit

residence time. The density in residence time allows the

determination of the residence-time-averaged surface-

to-surface flow rate through volume element d3r, whereas

the density in space quantifies where the fluid can be

found during its surface-to-surface journey.

In a sense, the path density may be considered an

extension of the age spectrum (Hall and Plumb 1994).

Broadly, the age spectrum partitions air in volume ele-

ment d3r at r according to the time elapsed since last

contact with a specified region, whereas the path density

further partitions this air according to when and where

it will next contact the surface. Holzer and Primeau

(2006, 2008) applied the path-density diagnostic to steady

oceanic flow using a forward and adjoint ocean model.

The reformulation presented here makes it feasible to

dispense with the adjoint model and provides a very

simple method of using passive tracers with suitable in-

terior sources to construct numerically exact volume (or

mass) averages of the path density.

2. The path density

The path density is defined for transport from surface

patch Vi to surface patch Vf, where the (initial) origin

patch Vi and the (final) destination patch Vf are two

tiles of a suitable tiling of the earth’s surface, or any

other ‘‘control surface’’ of interest. The patches Vi and

Vf can be infinitesimal area elements or individual grid

cells of a numerical model, but they are typically chosen

to be of much larger (e.g., continental-scale) size.

For the formulation developed here, the reasons for

choosing large finite patches are presentational conve-

nience in the case of Vf and computational limitations in

terms of the required number of tracers in the case of Vi.

The path density provides the joint probability that fluid

elements whose last surface contact occurred on patch

Vi at time ti will make their subsequent surface contact

with Vf during the time interval (tf, tf 1 dtf) and that

these fluid elements can be found in volume element d3r

at position r during their surface-to-surface transit. The

path density is thus a joint probability density with re-

spect to r, Vf, and tf conditioned on Vi and ti. Note that

the density with respect to tf is also the density with

respect to residence time t 5 tf 2 ti because ti is a fixed

conditioning.

a. Probabilistic construction

This path density is constructed from two pieces of

information (Fig. 1). The first piece is the probability

p(r, tjVi, ti)d3rdt that fluid that had last surface contact

with patch Vi at time ti [referred to as ‘‘(Vi, ti) air’’] can

be found in volume element d3r during time interval

(t, t 1 dt). We expressed this probability in terms of its

probability density function (PDF) p(r, tjVi, ti) with the

normalization
Ð ‘

ti
dt
Ð

d3r p(r, tjVi, ti) 5 1. (By standard

convention, the PDF arguments to the right of the

vertical are the conditioned variables.) The second

piece of information is the probability p(Vf, tf jr, t)dtf
that fluid elements that are at r at time t make their next

surface contact with patch Vf during (tf, tf 1 dtf).

FIG. 1. The Vi / Vf path density at (r, t) is constructed from (a)

the probability p(r, tjVi, ti)d3rdt of finding fluid in volume element

d3r at r during (t, t 1 dt) that had last surface contact with patch Vi

at time ti and (b) the probability p(Vf, tf jr, t)dtf that fluid that is

at r at time t will make its next surface contact with patch Vf

during (tf, tf 1 dtf). The path density h is obtained by multiplying

p(Vf, tf jr, t) and p(r, tjVi, ti) and marginalizing (integrating out)

the time of interior transit t.
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The PDF p(r, tjVi, ti) quantifies the transport from the

surface to an interior volume element at (r, t), whereas

the PDF p(Vf, tf jr, t) quantifies transport from (r, t) back

to the surface. We now combine the surface-to-r and

r-to-surface information to obtain the joint probability

that (Vi, ti) air will be found in d3r during (t, t 1 dt)

and make its subsequent surface contact with Vf during

(tf, tf 1 dtf). The corresponding PDF is given by

p(r, t, Vf , tf jVi, ti) 5 p(Vf , tf jr, t, Vi, ti)p(r, tjVi, ti)

5 p(Vf , tf jr, t)p(r, tjVi, ti), (1)

where the first equality is the product rule for condi-

tional probabilities and the second equality follows

from the fact that p(Vf, tf jr, t, Vi, ti) 5 p(Vf, tf jr, t)

because the probability of making next surface contact

once conditioned on (r, t) must be conditionally inde-

pendent on where that fluid had last surface contact. In

other words, once we know that the fluid is at r at time t,

its probability of next surface contact cannot have any

causal dependence on where the fluid was before it ar-

rived at r.

While p(r, t, Vf, tf jVi, ti) contains complete informa-

tion about the surface-to-surface transport via transit

volume d3r at (r, t), it is very useful to reduce the di-

mensionality of the diagnostic for greater computa-

tional efficiency. Whereas the surface-to-surface transit

time t [ tf 2 ti, which is also the residence time for

which fluid elements are in the interior without surface

contact, is of great interest, the actual time t when Vi

fluid bound for Vf is in d3r is less interesting. We

therefore define the path density h by integrating out

(marginalizing) the time of transit t:

h(r, Vf , tf jVi, ti) 5

ðtf

ti

dt p(Vf , tfjr, t)p(r, tjVi, ti). (2)

The path density is a joint PDF in the variables r, Vf, tf
with the normalization

�
Vf

ð
V

d3r

ð‘

t

dtf h(r, Vf , tf jVi, ti) 5 1, (3)

where V is the volume of the atmosphere and SVf

sums over all patches that cover the control surface of

interest.

Although computationally more demanding, it is

sometimes also useful to leave Vi as a distributed vari-

able by replacing p(r, tjVi, ti) with p(r, t, Vijti) in (2). The

quantity p(r, t, Vijti)d3rdti is the joint probability that a

fluid element that had last contact somewhere with the

surface at time ti had this contact with Vi and that it is in

d3r during (t, t 1 dt). Normalization of the path density

then requires an additional sum over all Vi:

�
Vi

�
Vf

ð
V

d3r

ð‘

t

dtf h(r, Vf , tf , Vijti) 5 1. (4)

[In the case of infinitesimal Vi and Vf, it is convenient

to define the path density also per unit first and last

contact areas so that the sums of (4) can be replaced by

surface integrals.] We introduce the fully surface-origin-

distributed h(r, Vf, tf, Vijti) here primarily to make con-

tact with the path density defined by Holzer and Primeau

(2006, 2008) to which it reduces for steady flow. We will

return to a comparison with the path density of Holzer

and Primeau (2006, 2008) in section 4.

b. Probabilities in terms of transport Green functions

To compute the path density, it is very useful to ex-

press the surface-to-r and r-to-surface probability den-

sities in terms of transport Green functions, which obey

a number of useful relations (e.g., Holzer and Hall 2000).

The boundary propagator Green function G(r, tjVi, ti)

is easily computed as the passive tracer response to a

pulse in surface mixing ratio that satisfies the source-free

advection–diffusion equation

›

›t
(rG) 1 $ � JG5 0, (5)

where r is the fluid density and J is the flux operator of

the flow. For the case of advection with velocity field u

and Fickian diffusion with diffusivity tensor K, the flux

operator takes the form J 5 ru 2 rK$. For the general

flow computed by atmospheric transport models, the

flux operator contains additional terms due to parame-

terized processes such as convection and boundary layer

turbulence. The boundary propagator G is ‘‘forced’’ by

the boundary condition

G(rs, tjVi, ti) 5 d(t � ti)D
2(rs, Vi), (6)

where rs is surface position, d(t 2 ti) is a Dirac delta

function (typically broadened to a pulse of finite width

in practice), and D2(rs, Vi) is a two-dimensional surface

mask that is unity if rs 2 Vi and zero otherwise. Note

that after the delta-function pulse ceases, G obeys a

surface boundary condition of zero mixing ratio. Phys-

ically, G(r, tjVi, ti)dti is the mass fraction of fluid at (r, t)

that had last surface contact with Vi during (ti, ti 1 dti),

and probabilistically

p(Vi, tijr, t) 5G(r, tjVi, ti). (7)

[Note that in standard notation for Green functions the

conditional variables are on the left side of the vertical

bar, opposite to the convention for probabilities (e.g.,

Morse and Feshbach 1953)]. From p(Vi, tijr, t) we can

AUGUST 2009 H O L Z E R 2161



deduce the probability of a fluid element being in d3r

during (t, t 1 dt) conditional on having had last surface

contact with Vi at time ti. As shown in appendix A,

Bayes’ theorem can be used to interchange distributed

and conditioned variables to obtain

p(r, tjVi, ti) 5
1

N
r(r, t)

M
G(r, tjVi, ti), (8)

where N 5N (Vi, ti) 5 M�1
Ð

V d3r
Ð ‘

ti
dt r(r, t)G(r, tjVi, ti)

is a dimensionless normalization constant, r(r, t) is the

density, and M is the total mass of the atmosphere. One

can also arrive at (8) from that fact the probability of

finding (Vi, ti) air in d3r during dt must be proportional

to the mass d3rr(r, t)G(r, tjVi, ti)dti of (Vi, ti) air in d3r at

time t and proportional to the length of the time interval

dt. By normalizing, one obtains (8); the dti cancels out.

In appendix A, we further show that it is a simple matter

to leave Vi a distributed variable by not conditioning on

Vi, but for our purposes it is computationally more

economical to condition on a particular last contact

patch.

The mass fraction ~G(r, tjVf , tf )dtf of fluid at (r, t) that

will make its next surface contact with Vf during (tf, tf 1

dtf) can be computed as the tracer flux through Vf re-

sulting from a unit-mass injection at (r, t) in the physical

time-forward flow (Holzer and Hall 2000). The response

to a unit-mass tracer injection at (r9, t9) is the usual

point-to-point Green function G(r, tjr9, t9), which obeys

the passive tracer equation with a delta-function source

›

›t
[r(r, t)G(r, tjr9, t9)] 1 $ � JrG(r, tjr9, t9)

5 d(t � t9)d3(r� r9), (9)

subject to the boundary condition G 5 0 at the surface;

the subscript on J indicates the variables on which it acts.

Note that G has dimensions of inverse mass whereas G is

an inverse time. A key relationship of Green functions

(e.g., Holzer and Hall 2000) now expresses ~G as the flux

of G integrated over the destination patch Vf:

~G(r, tjVf , tf ) 5

ð
Vf

d2rf n̂ � Jrf
G(rf , tf jr, t)

[ J f G(rf , tf jr, t), (10)

where n is the surface normal. For less cumbersome no-

tation below, we have introduced J f [
Ð
Vf

d2rf n̂ � Jrf
,

which is the flux operator normal to the surface integrated

over patch Vf. In terms of the transport PDFs, we have

p(Vf , tf jr, t) 5 ~G(r, tjVf , tf ), (11)

so that combining (11) and (10) and substituting to-

gether with (8) into (2), we have

h(r, Vf , tf jVi, ti)

5
1

NM
J f

ðtf

ti

dt G(rf , tf jr, t)r(r, t)G(r, tjVi, ti). (12)

The normalization (3) of h follows from the Chapman–

Kolmogorov identity (or composition property) of

Green functions [appendix B; Eq. (B2)]. In the context

of mixing theories, the importance of the composition

property has been emphasized by Larson (1999).

c. Practical computation of the path density

The integral in expression (12) now points to a prac-

tical way for calculating h because

x(rf , tf ; r; ti) [

ðtf

ti

dt G(rf , tf jr, t)r(r, t)G(r, tjVi, ti) (13)

is immediately recognizable as the tracer solution x

resulting from a source r(r, t)G(r, tjVi, ti)d3(r 2 r9);

that is,

›

›t
[r(r, t)x(r, t; r9; ti)] 1 $ � Jrx(r, t; r9; ti)

5 r(r, t)G(r, tjVi, ti)d3(r� r9), (14)

subject to the boundary condition x 5 0 at the surface.

Thus, the path density at interior point r can be deter-

mined by computing G and using it as a source for

tracers x, whose flux onto Vf determines h through

Eq. (12). We call these x tracers ‘‘transit tracers.’’

Tracers that are broadly similar in concept have been

used to analyze moisture transport [Galewsky et al.

(2005) define tracers of last saturation], and to study

nonlocal mixing in the context of transilient turbulence

theory (e.g., Stull 1984; Ebert et al. 1989; Stull 1993;

Sobel 1999; Larson 1999).

For every point r for which the path density h is de-

sired, a transit tracer x must be computed. If h is required

at every point of a typical global three-dimensional

grid, this would require a prohibitively large number

NF ; 5 3 105 of transit tracers, and it would be more

efficient to compute ~G as the boundary propagator for

the time-reversed adjoint flow (Holzer and Hall 2000).

For the adjoint calculation, a new tracer ~G is needed for

every time tf and every destination patch Vf of interest.

For example, with two Vf patches and daily resolution

in tf over 6 yr, this would only require NA 5 2 3 6 3

365 ; 4 3 103 tracers and would thus be two orders of

magnitude more efficient than the corresponding for-

ward calculation. However, if h is only desired for a

coarse, zonally averaged gridding of the atmosphere

with NF 5 180, such as will be considered in Holzer

(2009, hereafter Part II), then computing NF transit
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tracers with the forward model is an order of magnitude

more efficient that the adjoint calculation, which re-

quires the same number of surface tracers regardless of

interior spatial resolution.

The computation of h is now a straightforward pro-

cedure. Consider a coarse grid that partitions the fluid

domain into NF boxes, the nth box being denoted by Bn,

which defines the three-dimensional mask D3
n(r), which

is unity if r 2 Bn and zero otherwise. (In Part II, we

define such a gridding for the atmosphere in pressure

coordinates using zonally symmetric boxes.) We denote

the box integral of some quantity X(r) by X(rn) [Ð
V d3rD3

n(r)X(r) and the box average of X by X̂ [ X/yn,

where rn is the nominal position of box Bn (e.g., its

geometric or mass-weighted center) and yn [
Ð

V d3rD3
n(r)

is the volume of box Bn. The box-averaged path density is

then given by

ĥ(rn, Vf , tf jVi, ti) 5
1

NM
J f x̂(rf , tf ; rn; ti) (15)

and the box-integrated transit tracer x—that is,

x(rf, tf; r9; ti) box integrated with respect to r9—obeys

›

›t
[r(r, t)x(r, t; rn; ti)] 1 $ � Jrx(r, t; rn; ti)

5 r(r, t)G(r, tjVi, ti)D
3
n(r), (16)

from which x̂ is obtained as x̂ 5 x/yn. Thus, the com-

putation of ĥ requires NF 1 1 tracers: G to label fluid that

was in surface contact with Vi at time ti and NF transit

tracers x. The transit tracers obey the boundary condi-

tion of zero mixing ratio at the surface (the union of all

the Vf) and have initial condition x 5 0. The transit

tracer for each box Bn then evolves according to (16) by

simply adding the source term G(r, tjVi, ti) to its tendency

in box Bn. We emphasize that this source term is the fully

spatially structured part of G that lies within Bn and that

the transit tracers capture the formally exact box inte-

grals. The coarse graining of the diagnostic boxes does

not introduce any inaccuracies but merely limits the

spatial resolution of the path-density diagnostic. (The

mixing ratios of G and the x tracers are computed using

the full resolution of the transport model employed.)

Physically, the x tracers simply relabel (Vi, ti) air as

having been in box Bn at every time step. Any (Vi, ti) air

that lingers in Bn for more than a single time step is

counted anew with every time step that it spends in Bn to

properly account for the probability of finding (Vi, ti) air

in Bn (see also section b of appendix A).

d. Flow-rate density and domain-integrated densities

The fact that h can be calculated as the surface flux of

the transit tracers points to a key relationship between

the path density and the flow rate with which (Vi, ti) air

exits or enters the domain. The mass of air in d3r at time

t that had last contact with Vi during (ti, ti 1 dti) is given

by dtid
3rr(r, t)G(r, tjVi, ti), whereas the mixing ratio of

(Vi, ti) air at point (rf, tf) resulting from this mass is given

by dtid
3rG(rf, tf jr, t)r(r, t)G(r, tjVi, ti). Applying the

Vf -integrated flux operator J f to this mixing ratio then

gives the mass flow rate of the (Vi, ti) air that was in d3r

at time t onto Vf:

ft(r, Vf , tf , Vi, ti; t)d3rdti

[ d3rdtiJ f G(rf , tf jr, t)r(r, t)G(r, tjVi, ti). (17)

Therefore, dmf 5 ftd
3rdtidtf is the mass of air that

was in d3r at time t and that was labeled on Vi during

(ti, ti 1 dti) and is unlabeled on Vf during (tf, tf 1 dtf).

The rate of inflow of this air through Vi at time ti is given

by dmf/dti 5 ft,[ d3rdtf, whereas the rate of outflow of

this air through Vf at time tf is given by 2dmf/dtf 5

2ft,Y d3rdti (we have added subscripts [ and Y to em-

phasize that we consider the inflow and outflow rates,

respectively). In terms of residence time t 5 tf 2 ti, we

have dtf 5 dt for the inflow rate (specified ti) and dti 5

2dt for the outflow rate (specified tf). Conservation of

mass demands that the rate of inflow through Vi at ti of

air making the Vi / (r, t) / Vf trip in time (t, t 1 dt)

must equal the rate of outflow of that air through Vf at

tf 5 ti 1 t, so that

ft;[(r, Vf , ti 1 t, Vi, ti; t) 5 ft;Y(r, Vf , tf , Vi, tf � t; t),

(18)

as noted in its domain-integrated form by Primeau and

Holzer (2006).

Because the particular time of transit t is not of in-

terest here, we can average over all possible t to obtain

the averaged flow-rate density

f(r, Vf , tf , Vi, ti) [
1

t

ðtf

ti

dtJ f G(rf , tf jr, t)r(r, t)G(r, tjVi, ti)

5
1

t
J f x(rf , tf ; r, ti), (19)

where x is the mixing ratio of the transit tracer associ-

ated with volume element d3r at r as defined by (13) and

(14). Thus, by construction, fd3rdt is the ti-to-tf time

averaged Vi / Vf mass flow rate or air that passed

through d3r. Using (12) and (13), the flow-rate and path

densities are related by

f 5NM
h

t
, (20)

where N is the dimensionless normalization constant of

(8) and M is the total mass of the atmosphere. The path

and flux densities thus have the same spatial patterns.
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Volume integrating the flow-rate density gives the

simple result (see appendix B)

ð
d3rf(r, Vf , tf , Vi, ti) 5J fG(rf , tf jVi, ti), (21)

which is the inflow-rate density per unit residence time

of air that stays in the domain for t 2 (t, t 1 dt) until

exiting (being unlabeled) at Vf, regardless of the interior

paths taken. Integrating this further over all residence

times gives the mass inflow rate from Vi of air destined

for Vf regardless of residence time. However, one must

be careful when Vi and Vf overlap or touch, in which

case the residence-time integral of (21) diverges to in-

finity at zero residence time (Hall and Holzer 2003;

Primeau and Holzer 2006; see also section 3).

Similarly, the volume-integrated path density

ð
d3rh(r, Vf , ti 1 tjVi, ti) 5

t

NM
J fG(rf , ti 1 tjVi, ti)

(22)

is the joint probability density of the residence time t and

next contact location Vf, regardless of transit location.

Thus, dt
Ð

d3r h is the probability that (Vi, ti) air will make

its next contact with Vf and that this occurs after residing

in the atmosphere for a time t 2 (t, t 1 dt).

3. Illustration with a 1D model

It is useful to get a sense of the physical character of

the path density by considering a simple idealized

model. Consider one-dimensional (1D) flow at constant

velocity y from point A at x 5 0 to point B at x 5 L in

the presence of constant diffusivity k, as indicated in

Fig. 2. The ‘‘control surface’’ consists of points A and B.

This system is simple enough to admit the analytic so-

lutions of appendix C for the Green functions and path

density. The solutions depend on the Péclet number,

P 5 yL/k. In a zonally averaged representation of the

atmosphere, the transport by large-scale eddy diffusion

[e.g., Bowman (1995) shows that the transport by break-

ing Rossby waves is effectively diffusive] has been shown

to be as important as advection by the effective transport

velocity (e.g., Plumb and Mahlman 1987; Andrews et al.

1987), so a large-scale effective Péclet number on the

order of unity is appropriate.

It is useful to keep in mind the particularly simple

purely advective limit P 5 ‘. It is straightforward to

show that for P 5 ‘ the A / B path density becomes

independent of position and h 5 d(t 2 L/y)/L. This is

the ‘‘conveyor limit’’ in which all the fluid that had last

A contact resides for exactly the advective time in the

domain, and the probability of finding fluid with that

FIG. 2. The path densities of the idealized 1D model indicated in

the schematic at the top. The 1D model consists of a domain of

length L and a flow with velocity y and diffusivity k, both constant.

The path densities are plotted in units of y/L2 for Péclet number

yL/k 5 2.
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residence time in ‘‘volume element’’ dx during its A / B

journey is just dx/L, independent of x. The signature of

conveyor-like transport in geophysical flow is therefore

a path density with minimal spatial variation along the

conveyor and a narrow distribution in residence time.

The more diffusive the flow, the broader the path den-

sity becomes both in residence time and in position.

(The purely diffusive limit P 5 0 requires explicit so-

lution of the diffusion equation under appropriate

boundary conditions. Some results for the P 5 0 limit

are given in appendix C.)

Some of the generic features of the path density for

advective–diffusive flow are illustrated in Figs. 2 and 3

for P 5 2. Figure 2 emphasizes that the path density is a

joint density in both space and residence time. For

convenience we plot the fully origin-distributed path

density; the path densities conditioned on a definite last

contact patch (either A or B) have the same patterns

and are related via normalization constants provided in

appendix C.

Consider first h(x, t, B, A), the A / B path density.

Note that for P 5 2 the most probable residence time tm

for any position x (i.e., the residence time of maximum h

for fixed x) is significantly faster than the advective time

(at x 5 L/2, tmL/y 5 0.285), reflecting the fact that in the

presence of diffusion B is typically reached faster than by

advection alone. (The ratio of the diffusive and advective

times scales, tD 5 L2/k and tA 5 L/y, is tD/tA 5 P, so

tm/tA becomes proportional to P for small P.) Because

of the great multiplicity of possible advective–diffusive

back-and-forth paths, the path density h, as well as the

underlying distributions G and ~G (not shown), are broad

in t and strongly skewed toward long t.

Note that h(x, t, B, A) is largest at x 5 L/2 and falls

off to zero at A and B. To understand this basic spatial

structure intuitively, it is helpful to view fluid elements

as undergoing a random walk (diffusion) while drifting

(advection) from A to B. h(x, t, B, A)dtdx gives the

joint probability of a fluid element labeled at A and ti 5 0

being found in (x, x 1 dx) and eventually making it to B

during time tf 2 (t, t 1 dt). For any given t, such A

particles are not likely to be found close to A or B due to

diffusion. The jittery motion of diffusion makes it likely

that A particles close to either A or B will bounce into

the ‘‘surface,’’ where their (A, ti) identity is stripped off,

resulting in zones of low A / B path density close to

both A and B. Particles making the A to B trip are least

likely to bump into the surface in the middle of the

domain, where the random back-and-forth motion of the

diffusion will allow them to spend most of their A / B

residence time.

It might seem surprising that h(x, t, B, A) is sym-

metric about the midpoint, x 5 L/2, because one might

expect the A / B advection to break this symmetry.

Indeed, G and ~G (not plotted) are spatially skewed by

advection in the expected way: For a given t the spatial

maximum of the PDF of times since last A contact,

G(x, tjA), is shifted toward B, and the more so the larger t.

This is because the longer the time since last contact

with A, the less likely that the particles are found close

to A because they are drifting toward B. (The proba-

bility of finding A particles must, however, go to zero

again close to B, because it will become increasingly

likely that the random back-and-forth motion will have

brought them into contact with B, where the A label is

stripped off.) Similarly, the spatial maximum of the

PDF of times to next contact with B, ~G(x, tjB), is shifted

toward A, and the more so the larger t. This is because

the longer the time t to next contact with B, the more

likely that the particles are found ever more upstream

from B, although diffusion again takes the probability to

zero at A. For this 1D model, the distortion of G toward

B has precisely the same shape as the distortion of ~G
toward A because ~G evolves with the time-reversed

adjoint flow, obtained here simply by y / 2y. The

1D model therefore has the symmetry ~G(x, tjB) 5

G(L� x, tjA) and G(x, tjB) 5 ~G(L� x, tjA). The convo-

lutions of G and ~G that give the A / B and B / A path

densities are thus symmetric about x 5 L/2 even in the

presence of advection. The B / A path density has the

same pattern as the A / B path density, but such up-

stream transport is exponentially less likely with in-

creasing Péclet number.

The A / A path density h(x, t, A, A) has a singu-

larity at x 5 0 (point A), where it reduces to d(t)/L. This

is simply a statement of the fact that all fluid elements in

contact with A must have zero transit time since last A

contact, and hence zero residence time in the interior. In

FIG. 3. Residence-time integrated, nondimensionalized path

densities L
Ð ‘

0 dt h for the idealized 1D model of Fig. 2 for Péclet

number P 5 2.
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the general case, it follows from the boundary condi-

tions (6) that if Vi and Vf overlap, and rif is a surface

point on the overlap region, then h(rif, Vf, tf jVi, ti) 5

r(rif, ti)d(tf 2 ti)/(NM). For overlapping Vi and Vf and

Fickian diffusion, it follows from the arguments of Hall

and Holzer (2003) and Primeau and Holzer (2006) that

the domain-integrated path density (22) has a t21/2

singularity as t / 0. The corresponding t23/2 singularity

of the domain-integrated flow-rate density (21) can be

seen to arise from the fact that Vi-labeled walkers make

an ever increasing number of repeat contacts with Vi

during any finite time interval as the continuum limit is

approached. The B / B path density h(x, t, B, B)

follows from h(x, t, A, A) by symmetry.

The t-integrated path densities for P 5 2 are shown in

Fig. 3. Note that the integrated A / B path density

does not give unit probability for all x. This emphasizes

that one cannot think of the path density as providing

‘‘the probability that fluid has passed through a partic-

ular volume element’’—language that is misleading

because the probability that A fluid passed through any

dx on its way to B is unity. Instead, the path density

gives the probability that A fluid can be found in dx

during its A / B journey of transit time t 2 (t, t 1 dt),

and the t-integrated path density gives this probability

regardless of the value of t. The path density is higher

the longer A particles spend in dx on their way to B,

and, in higher dimensions, the more Vi / Vf particles

and hence Vi / Vf paths pass through d3r. The curves

of Fig. 3 add to unity, or in dimensional units to 1/L,

because the probability of finding fluid in dx that had

last surface contact somewhere and that will make next

surface contact somewhere, regardless of when, must be

dx/L and unity when integrated over x.

4. Discussion

The path density developed here differs in a number

of ways from the path density defined by Holzer and

Primeau (2006, 2008). The key difference is in essence

the same as the difference between the widely used age

spectrum of Hall and Plumb (1994) and the distribution

of times since last surface contact [i.e., transit-time dis-

tribution (TTD)] (e.g., Holzer and Hall 2000; Primeau

2005). The age spectrum is constructed from the re-

sponse to a single pulse during (ti, ti 1 dti) for times t . ti.

The age spectrum A(r, tjti, Vi) at point r is the nor-

malized response A(r, tjVi, ti) 5 G(r, tjVi, ti)/
Ð ‘

ti
Gdt as

a function of the age t 5 t 2 ti. Thus, A(r, tjVi, ti)dt is the

probability at (r, t) that the age of the fluid elements that

were labeled or ‘‘born’’ on (Vi, ti) falls in the interval

(t 2 ti, t 2 ti 1 dt). The age spectrum is normalized when

integrated over all field times t 2 (ti, 1 ‘). By contrast,

to construct the transit-time distribution G(r, t|Vi, ti)

using a forward (as opposed to adjoint) model, one

needs a new boundary tracer pulse for every interval dti
from t 5 ti backward in time. The quantity G(r, t|Vi, ti)dti
is the mass fraction of fluid at (r, t) that had last Vi

contact during (ti, ti 1 dti) and is normalized when in-

tegrated over all source times ti 2 (2‘, t). For steady

flow, the age spectrum and the transit-time distributions

are identical, but for general flow the distributions can

differ markedly (e.g., Holzer et al. 2003; Haine et al.

2008). The age spectrum A has a natural probabilistic

interpretation, whereas the transit-time distribution is

rigorously also a mass fraction. For general flow, the

normalization
Ð ‘

ti
Gdt in the definition of A is not unity,

which precludes the interpretation of the age spectrum

as a mass fraction.

The path density defined by Holzer and Primeau

(2006, 2008)—denoted here by h0 to distinguish it from

the h of this paper—bins the fluid elements in d3r at

time t according to their residence time between suc-

cessive surface contacts and the places of last and next

contact. The h0 density of Vi / Vf paths with residence

time (t, t 1 dt) is constructed by multiplying the

mass fraction in d3r that had last contact with Vi during

(ti, ti 1 dti) with the mass fraction in d3r that will make

next contact with Vf during (tf, tf 1 dtf) and integrating

over all times tf and ti that are separated by t. Therefore,

h0 is the mass fraction in d3r at time t that will undergo

the Vi / Vf trip in time (t, t 1 dt), regardless of the

start or end time. To calculate h0 using a forward model

only would require NB 5 tmax/Dti surface pulses, one for

each last-contact interval Dti from t on back into the past

for as long as the longest residence time tmax of interest,

plus NF transit tracers for each such surface pulse, a

prohibitive total requirement of NB 3 NF tracers.

By contrast, here we constructed the path density h

using a single surface pulse. For steady flow, h and h0

are identical, whereas for time-dependent flow they are

generally different. As discussed in section 2a, h is based

on the probability p(r, tjVi, ti)d3rdt of finding in d3r

during (t, t 1 dt) a fluid element that was labeled on Vi

at ti. The probability density p(r, tjVi, ti) is therefore a

joint spectrum of location and age t 2 ti that can only be

interpreted as a mass fraction for steady flow. As shown

in section b of appendix A, p(r, tjVi, ti) can also be in-

terpreted in terms of the ‘‘demographics’’ of the cohort

of particles that are born on Vi during (ti, ti 1 dti) and

that ‘‘die’’ on repeat surface contact. The probability

p(r, tjVi, ti)d3rdt then can be interpreted as the fraction

of the cohort’s available number of ‘‘mass-years’’ (in

analogy with person-years) spent in volume element d3r

during (t, t 1 dt). The path density h further partitions

this probability according to where and when next
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surface contact occurs. In terms of the (Vi, ti) cohort,

hd3rdtf is the fraction the cohort’s available mass-years

spent in d3r by those cohort particles that die on Vf

during (tf, tf 1 dtf).

In the probability hd3rdtf fluid elements are ‘‘coun-

ted’’ whenever they are in d3r during their Vi / Vf trip.

Specifically, the number of times a given fluid element is

counted when it stays in d3r for a time dt is proportional

to dt. Thus, a high path density, or large average fraction

of time spent in d3r, can be achieved by having many

particles pass through d3r or by having fewer particles

linger in d3r for longer. A single particle making a quick

straight-line traversal of d3r is associated with a lower

path density than a particle that slowly doodles out

a more squiggly path in d3r, as one would intuitively

expect.

5. Summary and conclusions

We have developed a new path-density diagnostic

of surface-to-surface transport. The path density h is

defined so that h(r, Vf, ti 1 tjVi, ti)d3rdt is the joint

probability that (Vi, ti) air will make next surface con-

tact with Vf after a surface-to-surface transit time (also

referred to as residence time) t 2 (t, t 1 dt) and that

this air can be found in d3r during its Vi / Vf journey.

The path density was shown to be proportional to the

flow-rate density distribution f, defined so that fd3rdt

is the time-averaged Vi / Vf mass flow rate of air

that passes through d3r and that has a residence time

t 2 (t, t 1 dt).

The path density can be computed with a straight-

forward and easily implemented algorithm using a for-

ward transport model and a moderately large number

of tracers. In essence, whenever surface-labeled air is

found in one of a set of specified interior transit boxes, it

is relabeled with the passive transit tracer associated

with that box. The flux of the relabeled air onto the

surface in the presence of a zero-mixing-ratio boundary

condition then gives the residence-time partitioned

probability of the air having been in the interior transit

volume during its surface-to-surface journey. In this

way, the exact box-averaged path density for NF transit

boxes can be computed from NF 1 1 passive tracers: NF

transit tracers plus a single boundary-pulse tracer that

provides the interior sources of the transit tracers.

The physical character of the path density was illus-

trated with a simple 1D advection–diffusion model. An

advectively dominated transport pathway corresponds

to a path density that is spatially uniform along the

pathway and narrow in residence time, whereas diffu-

sively dominated transport produces a more diffuse

path density. The jittery motion of diffusion makes it

likely that fluid elements close to the surface will in fact

make contact with the surface. This results in zones of

low Vi / Vf path density close to Vi and Vf at all res-

idence times if Vi and Vf do not overlap and in a sin-

gularity at zero residence time if Vi and Vf are identical

or overlap.

Although this work is motivated by interhemispheric

transport, the path-density diagnostic is general and can

be applied to transport connecting any two regions of

the atmosphere, or any other bounded fluid domain. In

Part II of this study, we will use a transport model driven

by NCEP reanalyses to compute the density of paths

that connect the NH with the SH through the tropo-

sphere and stratosphere.
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APPENDIX A

Conditioned Last-Contact Probability

a. Application of Bayes’ theorem

Given the probability density p(Vi, tijr, t) 5 G(r, tjVi, ti)

for having had last contact with (Vi, ti) during (ti, ti 1 dti)

conditional on being at r at time t, we now construct

p(r, tjVi, ti), the probability density for finding a fluid

particle in d3r during (t, t 1 dt) conditional on the par-

ticle having been at Vi at time ti. Bayes’ theorem states

that p(AjB)p(B) 5 p(BjA)p(A) because both sides of

the equation are equal to the joint density p(A, B).

Applied to the probability densities of interest, we first

form the joint density

p(Vi, ti, r, t) 5 p(Vi, ti, jr, t)p(rjt)p(t), (A1)

where p(rjt)d3r is the probability of finding a fluid ele-

ment in d3r at time t, and p(t)dt is the probability that

the time coordinate falls in the interval (t, t 1 dt). The

probability of finding a fluid element at time t in d3r is

proportional to the mass in d3r so that the normalized

PDF p(rjt) 5 r(r, t)d3r/M, where M is the total mass in

the fluid domain. The natural choice for the distribution

of the time coordinate is uniform; that is, p(t) 5 dt/T,

where T is a constant time scale longer than all times

of interest (we will soon take the limit T / ‘). We

therefore have

AUGUST 2009 H O L Z E R 2167



p(r, t)d3rdt 5
dt

T

r(r, t)d3r

M
. (A2)

The unconditional probability density p(Vi, ti) 5Ð
d3r
Ð T

ti
dt p(Vi, ti, r, t) now allows us to apply Bayes’

theorem to obtain

p(r, tjVi, ti) 5
p(Vi, ti, r, t)

p(Vi, ti)
. (A3)

The unspecified factor of 1/T cancels in both the nu-

merator and denominator of (A3) so that we can take

the limit T / ‘ in the upper limit of integration to

obtain Eq. (8) of the text. (In practice T merely has to

exceed a few e-foldings of the exponential decay of G.)

One can also leave Vi a distributed variable so that

p(r, t, Vijti) 5
p(Vi, ti, r, t)

p(ti)
, (A4)

with p(ti) 5 SVi p(Vi, ti). Thus, if the surface-origin dis-

tributed path density of Eq. (4) is desired, the required

probability density p(r, t, Vijti) is given by Eq. (8) ifN is

replaced with N*(ti) [ SVi
N (Vi, ti). The surface-origin

distributed path density and the path density condi-

tioned on air having had last surface contact with patch

Vi are related by

h(r, Vf , tf , Vijti) 5
N (Vi, ti)

N*(ti)
h(r, Vf , tf jVi, ti). (A5)

b. Particle demographics

The probability p(r, tjVi, ti)d3rdt may be interpreted

in terms of the demographics of the cohort of fluid el-

ements (particles for short) that are considered to have

been born when they are labeled on Vi during (ti, ti 1 dti)

and that are considered to die when this label is removed

upon repeat surface contact. The mass of the cohort at

time t is given by

Mi(t) 5 dti

ð
d3r r(r, t)G(r, tjVi, ti), (A6)

whereas the mass of the cohort in d3r at time t is

mi(r, t) 5 dtid
3rr(r, t)G(r, tjVi, ti). (A7)

From Eq. (8), we can now express p(r, tjVi, ti)d3rdt as

p(r, tjVi, ti)d3rdt 5
mi(r, t)dt

MT
. (A8)

The quantity MT [
Ð ‘

ti
Mi(t)dt has the interpretation as

the total number of mass-years available to the cohort

(in analogy with the number of person-years of a human

cohort), so that the right-hand side of (A8) is the frac-

tion of mass-years spent by the cohort in d3r during

(t, t 1 dt).

The mass mi, f (r, t) of the cohort in d3r at (r, t) that

dies on Vf during (tf, tf 1 dtf) is obtained by multiplying

mi(r, t) by dtf
~G(r, tjVf , tf )—that is, by the fraction of fluid

at (r, t) that makes first Vf contact during (tf, tf 1 dtf).

Therefore, the expression

dtf
~G(r, tjVf , tf )p(r, tjVi, ti)d3rdt 5

mi; f (r, t)dt

MT
(A9)

can be interpreted as being the fraction of the cohort’s

mass-years spent in d3r during dt by those cohort par-

ticles that die on Vf during (tf, tf 1 dtf). Integrating (A9)

over all times of transit t 2 (ti, tf) gives the probabilityÐ tf

ti
dt ~G(r,tjVf ,tf )p(r,tjVi,ti)d3rdtf 5 h(r,t,Vf jVi,ti)d3rdtf ,

which may therefore be interpreted as the total number

of mass-years spent in d3r (regardless of when) by the

cohort particles that die on Vf during (tf, tf 1 dtf).

Equivalently, the right-hand side of (A9) may be con-

sidered to be the nondimensionalized, mass-weighted

time dt spent in d3r by cohort particles that die on Vf

during (tf, tf 1 dtf). In this sense, the path density (ob-

tained by integrating over all t) may be considered to be

a measure of the mass-weighted time spent in d3r during

the Vi / Vf transport.

APPENDIX B

Volume-Integrated Flux Density

Using the fact that (e.g., Holzer and Hall 2000)

G(r, tjVi, ti) 5 J iG(r, tjri, ti), we haveð
d3r f(r, Vf , tf , Vi, ti)d3r

5
1

tf � ti

ðtf

ti

dtJ fJ i

ð
d3r G(rf , tf jr, t)r(r, t)G(r, tjri, ti).

(B1)

We now use the Chapman–Kolmogorov identity for G,

which states thatð
d3r G(rf , tf jr, t)r(r, t)G(r, tjri, ti) 5 G(rf , tf jri, ti),

(B2)

to obtain

ð
d3r f(r, Vf , tf , Vi, ti)d3r 5

1

tf � ti

ðtf

ti

dtJ fJ iG(rf , tf jri, ti).

(B3)
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Note that the integrand no longer depends on t, so

(
Ð tf

ti
dt)/(tf � ti) is simply unity. Re-expressing the flux of

G as G—that is, J iG(rf, tf jri, ti) 5 G(rf, tf jVi, ti)—one

obtains Eq. (21) of the text.

Using (19) to express f in (21) in terms of the NF box-

integrated transit tracers gives

�
NF

n51
J f x(rf , tf ; rn; ti) 5 (tf � ti)J fG(rf , tf jVi, ti), (B4)

which serves as a useful check on the numerical imple-

mentation of the transit tracers.

APPENDIX C

Exact Solution for 1D Advection–Diffusion

In terms of the nondimensional variables x̂ [ x/L,

t̂ [ kt/L2 and the Péclet number P [ yL/k, the constant-

coefficient advection–diffusion equation for the nondi-

mensional Green function Ĝ [ GL2/k of the 1D model

of Fig. 2 is (suppressing the hats for clarity)

›

›t
1 P

›

›x
� ›2

›x2

� �
G(x, tjVi) 5 0, (C1)

with the boundary conditions

G(Vf , tjVi) 5
d(t) if Vf 5 Vi,
0 if Vf 6¼ Vi,

�
(C2)

where Vi and Vf are either A (x 5 0) or B (x 5 1). The

solutions to (C1) subject to (C2) can easily be found in

terms of the Laplace transform L(G). By formally ex-

panding a factor of the generic form (1� e
ffiffi
s
p

)�1 in L(G)

as a series in e
ffiffi
s
p

, the inverse transform can be taken

term by term and reorganized to obtain

The propagators ~G for the time-reversed adjoint flow

obey (C1) with P / 2P and are given by (C3) and (C4)

with P / 2P.

Writing Eq. (12) for the fully distributed path density

in terms of ~G, recognizing that for steady flow N * 5 1

[cf. Eq. (A5)], and using the fact that for steady flow G
and ~G depend on time only through t 2 ti and tf 2 t,

respectively, the surface-distributed path density for our

1D model can be written as the convolution

h(x, t, Vf , Vi) 5

ðt

0

dt ~G(x, t � tjVf )G(x, tjVi). (C5)

This convolution can be evaluated as the inverse

Laplace transform of the product of the Laplace trans-

forms of G and ~G. The inverse Laplace transform of that

product was again obtained term by term after expanding

its denominator as a power series. The result can be

written as

G(x, tjB; P) 5
e�[(x�Pt)2

12Pt] /4tffiffiffiffiffiffiffi
pt3
p �

‘

kodd51
e�k2/4t k sinh

kx

2t

� �
� x cosh

kx

2t

� �� �
and (C3)

G(x, tjA; P) 5G(1� x, tjB;�P). (C4)

h(x, t, B, A) 5
eP/2e�tP2/4ffiffiffiffiffiffiffiffi

pt3
p �

‘

k51
ke�k2/t

�
e�1/4t[2k cosh(k/t)� sinh(k/t)]:

1 e�(2x�1)2
/4t (2x� 1) sinh

k(2x� 1)

t

� �
� 2k cosh

k(2x� 1)

t

� �� ��
, (C6)

h(x, t, B, B) 5
2e�tP2/4ffiffiffiffiffiffiffiffi

pt3
p �

‘

k51
ke�k2/t e�x2/t k cosh

2kx

t

� �
� x sinh

2kx

t

� �� �
� k

� �
, (C7)
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h(x, t, A, A) 5 h(1� x, t, B, B), and (C8)

h(x, t, A, B) 5 e�Ph(x, t, B, A). (C9)

The path densities conditional on the fluid having had

last contact on either A or B are then given from (A5)

by h(x, t, Vf jVi) 5 [1/N (Vi)]h(x, t, Vf , Vi), with Vi and

Vf either A or B, and

N (A) 5
1 1 eP(P� 1)

P(eP � 1)
and (C10)

N (B) 5 1�N (A). (C11)

Note that N* 5 N (A) 1 N (B) 5 1, as expected. In the

purely advective limit of P 5 ‘, N (A) 5 1 and N (B) 5

0, because there is zero probability of finding fluid ele-

ments that had last contact with B in the interior of the

domain and every fluid element in the interior came

from A. Similarly, in the purely diffusive limit of P 5 0,

N (A) 5 N (B) 5 ½, because without advection fluid

elements are equally likely to have had contact with

either A or B.

The path density regardless of residence time,

J(x, Vf , Vi) [
Ð ‘

0 dth(x, t, Vf , Vi), is given from (C5)

by J(x, Vf , Vi) 5 ~f (xjVf )f (xjVi), where f (xjVi) 5Ð ‘

0 dtG(x, tjVi) is the mass fraction of fluid at x that had

last contact with Vi and ~f (xjVf ) 5
Ð ‘

0 dtG(x, tjVf ) is the

mass fraction that will make first contact with Vf, both

regardless of transit time. Solving (C1) integrated over

time, or integrating and summing (C3), the fractions f

are obtained as

f (xjB; P) 5
exP � 1

eP � 1
, (C12)

f (xjA; P) 5 f (1� x, B;�P), (C13)

with ~f given by changing the sign of P. From (C13) and

(C12), or by summing (C6)–(C9) integrated over t, the

residence-time integrated path densities can be ob-

tained as

J(x, B, A) 5 2
e3P/2

(1� eP)2
[cosh(P/2)� cosh(xP� P/2)],

(C14)

J(x, B, B) 5
cosh(xP)� 1

cosh(P)� 1
, (C15)

J(x, A, A) 5 J(1� x, A, A), and (C16)

J(x, A, B) 5 e�PJ(x, B, A). (C17)

Note that in the purely diffusive, self-adjoint limit

(P 5 0), the mass fractions f and ~f must be consistent

with a spatially constant flux of A particles toward B

(where they are relabeled as B particles), and vice versa, so

that f (xjA) 5 ~f (xjA) 5 1� x and f (xjB) 5 ~f (xjB) 5 x.

Correspondingly, the P 5 0 limits of (C14)–(C17) are

J(x, B, A) 5 J(x, A, B) 5 x(1 2 x), J(x, B, B) 5 x2, and

J(x, A, A) 5 (1 2 x)2.
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