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a b s t r a c t

This paper introduces a methodology for estimating gridded fields of total and speciated fine particulate
matter (PM2.5) concentrations for time periods and regions not covered by observational data. The
methodology is based on performing long-term regional scale meteorological and air quality simulations
and then integrating these simulations with available observational data. To illustrate this methodology,
we present an application in which year-round simulations with a meteorological model (the National
Center for Atmospheric Research/Penn State Mesoscale Model, hereafter referred to as MM5) and
a photochemical air quality model (the Community Multiscale Air Quality Model, hereafter referred to as
CMAQ) have been performed over the northeastern United States for 1988–2005. Model evaluation
results for total PM2.5 mass and individual species for the time period from 2000 to 2005 show that
model performance varies by species, season, and location. Therefore, an approach is developed to adjust
CMAQ output with factors based on these three variables. The adjusted model values for total PM2.5 mass
for 2000–2005 are compared against independent measurements not utilized for the adjustment
approach. This comparison reveals that the adjusted model values have a lower root mean square error
(RMSE) and higher correlation coefficients than the original model values. Furthermore, the PM2.5

estimates from these adjusted model values are compared against an alternate method for estimating
historic PM2.5 values that is based on PM2.5/PM10 ratios calculated at co-located monitors. Results reveal
that both methods yield estimates of historic PM2.5 mass that are broadly consistent; however, the
adjusted CMAQ values provide greater spatial coverage and information for PM2.5 species in addition to
total PM2.5 mass. Finally, strengths and limitations of the proposed approach are discussed in the context
of potential uses of this method.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Spatio-temporal information about ambient levels of air pollu-
tion is used in a variety of applications such as assessing the impact
of emission control programs (Gégo et al., 2007) and investigating
the link between air pollution and human health (e.g. Bell et al.,
2004; Samoli et al., 2005, and references therein). Most often, this
information is derived from ambient monitors from routine or
Analysis and Research, New
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special purpose monitoring networks. For example, most studies
investigating the link between air pollution and human health have
relied on monitoring data to characterize ambient pollutant
concentrations (e.g. Bell et al., 2004; Samoli et al., 2005, and
references therein). While monitored values can be considered as
‘‘ground truth’’ if one neglects the effect of measurement errors,
assumptions about their spatial homogeneity or lack thereof need
to be made in such studies. Frequently, in the absence of dense
urban PM monitoring networks, values observed at a ‘‘central
monitor’’ were considered to be representative for ambient
pollutant levels within a metropolitan area (e.g. Bell et al., 2004;
Samoli et al., 2005, and references therein). In addition, analyses of
the long-term association between ambient PM levels and health
outcomes are complicated by changes in monitoring locations,
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Table 1
Annual total anthropogenic emissions over the 12 km modeling domain processed
by SMOKE for 1990 and 2000. All emissions are shown in kilotons.

NOx VOC CO SO2 NH3 PM2.5

Area þ nonroad 1990 1933 3580 10,379 1018 502 790
2000 1757 3353 11,627 691 513 661

Mobile 1990 2895 2877 31,924 67 42 77
2000 2180 1461 18,190 65 68 41

Point 1990 3443 1209 7743 8725 15 172
2000 1884 334 1190 5088 11 328
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instrumentations, or monitoring priorities. For example, with the
introduction of National Ambient Air Quality Standards (NAAQS)
for annual average and 24-h average PM2.5 concentrations in 1997,
a widespread PM2.5 monitoring network was established in the late
1990s but at the same time the number of PM10 monitors began to
decline (Lall et al., 2004).

To potentially overcome some of the spatial and temporal data gaps
of ambient monitoring networks, recent studies have begun to explore
the potential benefits of incorporating concentration fields simulated
by grid-based air quality modeling systems into health impact
assessments (Marmur et al., 2004; Bell, 2006). Such an approach
would be akin to the practice of creating meteorological reanalysis
fields in which observations and dynamical models are combined in
a framework that is aimed at providing a consistent long-term record
of meteorological fields with good temporal and spatial coverage.

In this paper, we present results from a study aimed at per-
forming long-term air quality simulation over the northeastern
portion of the U.S. for the purpose of characterizing PM2.5

concentrations for the time period from 1988 to 2005. We describe
the design of the model simulations in Section 2, present evaluation
results for these simulations in Section 3, introduce a method for
combining observations and model predictions for improved PM2.5

characterization in Section 4, and discuss strengths and weaknesses
of the proposed approach in Section 5.

2. Database and model setup

2.1. Modeling system

2.1.1. Meteorological simulations
Meteorological conditions for the time period from January 1,

1988 to December 31, 2005 were simulated with the MM5 mete-
orological model (Grell et al., 1994). The simulations were per-
formed on two nested grids with 36 km and 12 km horizontal grid
spacing, respectively. Among the physics options chosen for the
simulation are the ETA scheme for representing the planetary
boundary layer, the Kain–Fritsch cloud scheme, and the Rapid
Radiation Transfer Model (RRTM) radiation scheme. Throughout
the model simulation, MM5 was nudged towards NCEP reanalysis
fields using four-dimensional data assimilation.

2.1.2. Emissions processing
All emissions processing including mobile sources and biogenic

sources was performed within the Sparse Matrix Operator Kernel
Emissions (SMOKE) processing system (Houyoux et al., 2000). To
date, there is no single source of anthropogenic emissions covering
the entire period of this study from 1988 to 2005 at a level of detail
sufficient to support photochemical modeling. Consequently, the
emission inventories used in this study were compiled primarily
from three different sources. First, for simulating the time period
from 1988 to 2000, annual anthropogenic emission inventories for
area and nonroad sources were obtained from the U.S. Environ-
mental Protection Agency (U.S. EPA) National Emission Trends
database for 1990 and 1996–2000 (U.S. EPA, 2005). The 1990
emissions were used for the simulation of 1988–1990, while
emissions from 1991 to 1995 were estimated by interpolation
between 1990 and 1996 for these source categories. Onroad mobile
source emissions were estimated with the MOBILE6 model using
annual county-level vehicle miles traveled (VMT) and MM5
temperatures from 1988 to 2000. For modeling 1988–2000 point
sources, stack-level inventories for 1990, 1996, 1999 and 2001 were
available. The 1990 inventory was used for 1988–1994, the 1996
inventory was used for 1995–1998, the 1999 inventory was used for
1999, and the 2001 inventory was used for 2000. Second, for
simulating 2001, the anthropogenic emission inventories prepared
for the EPA Clean Air Interstate Rule were utilized (http://www.epa.
gov/CAIR/technical.html). Third, for the years from 2002 to 2005,
we utilized the 2002 base case and 2009 future year emission
inventories prepared for the Ozone Transport Commission (OTC)
modeling platform (OTC, 2007). For the 2002 modeling, the 2002
base case emissions were used directly, and for the 2003–2005
modeling, annual emission and VMT inventories were estimated
through linear interpolation between 2002 and 2009. Finally, for
2000–2005 modeling, available hourly point source emission data
from Continuous Emission Monitors (CEM) were utilized instead of
annual total emissions for all cases when CEM data could be
matched against inventory sources within SMOKE. The same tem-
poralization, spatial allocation, and speciation profiles were used to
process the inventories for all years. Biogenic sources for the entire
modeling period from 1988 to 2005 were estimated with the
BEIS3.12 model taking into account MM5 temperature, radiation,
and precipitation. Table 1 provides a summary of domain-total
annual anthropogenic emissions for 1990 and 2000. It can be seen
that NOx emissions are dominated by mobile and point sources
while VOC emissions are dominated by mobile and area sources
and SO2 emissions are dominated by point sources. It is also evident
that significant emission reductions for all pollutants have occurred
between 1990 and 2000.

2.1.3. Air quality modeling
Using the meteorological and emission fields described above,

hourly gridded fields of concentrations, wet deposition, and dry
deposition for about 80 gas-phase and aerosol species were simu-
lated with the Community Multiscale Air Quality (CMAQ) model
(Byun and Schere, 2006), version 4.5.1. The simulations were per-
formed with two nested grids of 36 km and 12 km, corresponding
to the MM5 grids except for a ring of buffer cells. The boundary
conditions for the 36 km grid correspond to climatological values,
while the boundary conditions for the 12 km grid were derived
from the 36 km simulation. The height of the first model layer was
approximately 40 m. Gas phase chemistry was represented by the
CB-IV mechanism (Gery et al., 1989) while aerosol chemistry was
simulated with the aero3 module. For all subsequent analyses, only
simulations from the 12 km CMAQ grid were utilized.
2.2. Observations

For PM2.5, there are a variety of distinct observational networks
and measurement techniques. In this study, CMAQ predictions of
PM2.5 were compared against three types of observations. Because
of differences in measurement techniques, instrumentation, and
site location criteria, model performance was examined on
a species-by-species and network-by-network basis. In addition,
even though the focus of this model application is on estimating
historic PM2.5 concentrations, as a model performance screening
analysis for time periods prior to the availability of PM2.5

measurements, CMAQ-simulated PM10 concentrations were
compared against filter-based PM10 measurements. All monitors
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Fig. 1. CMAQ-simulated time series of total and speciated PM2.5 concentrations aver-
aged over all non-water grid cells in the modeling domain. a) Daily 24-h average
concentrations, b) baseline of 24-h average concentrations estimated by applying
a KZ(15,5) filter to the daily values.
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were assigned to the model grid cells in which the monitor was
located. All model evaluation analyses for PM2.5 were performed
from 2000 to 2005 since earlier years did not have sufficient
observational data coverage, while the comparison against PM10

observations was performed for 1988–2005.
First, CMAQ predictions of total PM2.5 were compared against

filter-based 24-h average PM2.5 concentrations based on the Federal
Reference Method (FRM) which were obtained from the EPA Air
Quality System (AQS) for a total of 262 monitors located in the
12 km CMAQ modeling domain. Measurements at these sites
typically are taken once every three days, however, some sites
follow a once per day or once every six days sampling schedule.
CMAQ predicted total PM2.5 was calculated as the sum of all
modeled Aitken- and accumulation-mode species except water
following equation (2) in Appel et al. (2008).

Second, to analyze CMAQ predictions of the various chemical
species contributing to the total PM2.5 mass, filter-based 24-h
average concentrations were obtained for 27 Chemical Speciation
Network (CSN) monitors located in the 12 km CMAQ domain that
had sufficient data coverage from 2000 to 2005. At most of these
monitors, measurements are taken once every third or sixth day.
The following species measured at the CSN monitors were
compared to the corresponding speciated CMAQ aerosol compo-
nents: sulfate (SO4), nitrate (NO3), ammonium (NH4), elemental
carbon (EC), and organic carbon (OC). For the calculation of CMAQ
OC concentrations from the simulated concentrations of primary
and secondary anthropogenic organic aerosol and secondary
biogenic organic aerosol mass, we followed the approach described
in equation (1) by Appel et al. (2008). Prior to analysis, OC
measurements from the CSN network were blank corrected using
monthly average site- and monitor-specific values calculated from
blank values archived in AQS. In addition, for the evaluation of the
CMAQ aerosol component A25 which represents all primary PM2.5

mass not attributed to sulfate, nitrate, EC and OC emissions during
inventory processing, we followed the Interagency Monitoring of
Protected Visual Environments (IMPROVE) network definition of
crustal material to calculate an observed ‘‘other PM2.5’’ quantity as
follows:

Observed other PM2:5 ¼ 2:2�½Al�þ2:49�½Si�þ1:63�½Ca�
þ2:42�½Fe�þ1:94�½Ti� (1)

Third, speciated PM2.5 measurements were also obtained from
AQS for 13 IMPROVE monitors located in the 12 km CMAQ domain
that had sufficient data coverage from 2000 to 2005. Similar to the
CSN monitors, sampling typically occurs every third day. With the
exception of ammonium, all of the species listed above for the CSN
monitors are also available for the IMPROVE monitors, and we
followed the same approach to match observed species to CMAQ-
simulated aerosol concentrations. It should be noted, however, that
the operational definition of OC and EC differs significantly
between the two networks as described by Chow et al. (2001) and
DeBell et al. (2006), resulting in different splits between OC and EC
at co-located monitors.

In addition, CMAQ-simulated PM10 concentrations, defined as
the sum of CMAQ PM2.5, coarse soil PM, and coarse other PM, were
compared against filter-based 24-h average PM10 measurements at
135 monitors extracted from the AQS database that were inside the
12 km CMAQ domain and had sufficient data coverage from 1988 to
2005. Finally, for the computation of PM2.5/PM10 ratios discussed in
Section 4.3, measurements of 24-h average PM10 mass from filter-
based monitors were obtained from the AQS database at a total of
38 sites that had both PM2.5 and PM10 measurements for the five-
year period from 2000 to 2004 and a sufficient long-term record of
PM10 from 1988 to 2005.
3. Model evaluation

Fig. 1 shows the CMAQ-simulated composition of PM2.5 mass
over the entire simulation time period as stacked time series charts.
For these time series, concentrations were averaged over all non-
water grid cells. Fig. 1a shows daily concentrations while baseline
concentrations estimated with the Kolmogorov–Zurbenko (KZ)
iterated moving average filter (Rao et al., 1997) are shown in Fig. 1b.
It can be seen that SO4 is the major component of PM2.5 in the
modeling domain but that its importance has decreased over time
as a result of the SO2 emission reductions since the mid-1990s.
There also is a clear seasonal variation in the composition of PM2.5,
with sulfate higher in summertime and nitrate and crustal/other
primary PM2.5 higher in wintertime. In addition, the time series
exhibit significant interannual variations. While the accuracy of the
simulated species time series shown in these figures cannot be
evaluated due to the lack of detailed speciated PM2.5 for most of the
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Fig. 2. Comparison of average observed (Obs) and CMAQ-simulated (Mod) PM2.5

species concentrations for the time period January 1, 2000–December 31, 2005,
calculated separately for each season. a) Averaged over 13 IMPROVE monitors located
in the modeling domain, b) averaged over 27 CSN monitors located in the modeling
domain.
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simulation time period, as a screening analysis, CMAQ-simulated
PM10 mass concentrations can be compared against filter-based
measurements at AQS sites. Furthermore, for the last six years of the
simulation period, measurements of total PM2.5 mass are available
at FRM monitoring sites. Finally, speciated observations from the
IMPROVE and CSN network are also available for this time period.

First, as a screening analysis, CMAQ-simulated PM10 mass for
1988–2005 was compared against filter-based measurements of
daily PM10 mass collected at 135 AQS sites every third or sixth day.
The results of this analysis indicate that CMAQ PM10 concentrations
tend to be lower than observations with a median bias of
�6.5 mg m�3 across all sites. The median station-specific correlation
coefficient between the observed and the simulated time series is
0.53 with 63% of all sites showing correlation coefficients greater
than 0.5. While there are a number of factors that complicate the
comparison of observed and simulated PM10 concentrations such as
the siting of monitors in locations not representative of the grid-cell
average simulated by the model or the loss of volatile components
from the PM10 filters, and while it is difficult to relate model
performance for PM10 to model performance for PM2.5 due to
variations in PM10 speciation, size distribution, and measurement
techniques, this screening analysis nevertheless suggests that the
modeling system exhibits skill in capturing fluctuations in PM
concentrations over the entire simulation time period.

Second, we compared CMAQ predictions of total PM2.5 to filter-
based 24-h PM2.5 mass measurements at 262 FRM monitors in the
modeling domain for 2000–2005. At these sites, the station-
specific bias values (calculated as predictions–observations) ranged
from �5.4 to þ12.6 mg m�3 with a median value of �0.3 mg m�3

while 82% of all stations exhibited bias values between �3 and
þ3 mg m�3. The station-specific RMSE values ranged from 4.6 to
18.6 mg m�3 with a median value of 7.5 mg m�3 while 92% of all
stations exhibited RMSE values less than 10 mg m�3. Station-specific
correlation coefficients between the observed and the simulated 6-
year time series ranged from 0.32 to 0.75 with a median value of
0.62 while 94% of all stations exhibited a correlation coefficient
greater than 0.5. As discussed in Hogrefe et al. (2006), correlation
coefficients between observed and simulated PM2.5 concentrations
vary by time scale. Since no spectral decomposition was performed
in the present analysis, the correlation coefficients for the six-year
time series analyzed here reflect the model’s overall ability to
capture fluctuations on the synoptic, seasonal, and longer-term
time scales. Overall, these model evaluation statistics are consistent
with other studies performed for shorter time periods (Boylan et al.,
2006a,b; Eder and Yu, 2006; Hogrefe et al., 2007; Mathur et al.,
2008; McKeen et al., 2007; Morris et al., 2005; Tesche et al., 2006;
Yu et al., 2008). These statistics also appear to indicate better model
performance for PM2.5 compared to the PM10 results shown above.
However, we caution that the analysis of PM2.5 and PM10 described
in this section was not carried out at co-located sites, therefore,
differences in model performance could be at least partially
attributable to differences in monitor locations.

Finally, to assess the contribution of the various PM2.5 compo-
nents to total PM2.5 mass and to determine whether model perfor-
mance varies by species as reported in other studies (Boylan et al.,
2006a,b; Eder and Yu, 2006; Hogrefe et al., 2007; Morris et al., 2005;
Tesche et al., 2006), Fig. 2 shows stacked bar charts of observed and
CMAQ-simulated PM2.5 species concentrations for each season,
averaged over a) 13 IMPROVE sites and b) 27 CSN sites. For each
season, all available observations and matching CMAQ predictions
for the 2000–2005 time period were utilized, and seasons were
defined as December–February for winter, March–May for spring,
June–August for summer, and September–November for fall. Note
that at the IMPROVE sites, no ammonium concentrations are
measured. At both the IMPROVE and the CSN sites, CMAQ
underestimates sulfate during winter, is close to observed concen-
trations during spring, and tends to overestimate sulfate during
summer and fall. Conversely, nitrate concentrations tend to be
overestimated during winter, spring and fall at both the IMPROVE
and the CSN sites and underestimated during summer at CSN sites.
Concentrations of OC are higher at the CSN sites than the IMPROVE
sites in both observations and CMAQ predictions. While the higher
observed OC values could in part be due to differences in
measurement methodologies (Chow et al., 2001; DeBell et al.,
2006), the higher CMAQ values indicate additional contributions
from primary sources or secondary formation in urban areas
compared to rural locations. CMAQ is underestimating OC in all
seasons at both IMPROVE and CSN monitors. The underestimation is
most pronounced in summertime, consistent with previous studies
indicating missing pathways for the formation of secondary organic
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Fig. 3. Species-specific model adjustment factors as function of day-of-year. a) Aver-
aged over 13 IMPROVE monitors located in the modeling domain, b) averaged over 27
CSN monitors located in the modeling domain.
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aerosol in CMAQ (Morris et al., 2006; Yu et al., 2007). Concentrations
of EC are lower than OC during all seasons at all sites for both
observations and CMAQ. For crustal matter, modeled as unspeciated
primary PM2.5 in CMAQ, predicted concentrations are consistently
higher than observations at all sites and seasons, this overprediction
is most pronounced during wintertime. It should be noted that, by
definition, the comparison of the CMAQ unspeciated primary PM2.5

component to speciated observations is challenging. In our analysis,
we follow the framework described in U.S. EPA (2007) and relate
this quantity to observed soil oxide concentrations. To the extent
that primary unspeciated PM2.5 concentrations originate from
emission sources other than dust, the overestimation shown in
Fig. 2 is partially expected but cannot be resolved in the absence of
updated PM2.5 emission speciation profiles.

4. Adjusting CMAQ-predicted PM2.5 concentrations

4.1. Methodology

The results shown in Section 3 for total PM2.5 mass reveal that
CMAQ has some skill in simulating this parameter. Therefore, it
appears justified to view these simulations as potentially valuable
estimates of ambient concentrations when observations are not
available. However, these results also reveal that total PM2.5

predictions are subject to errors with respect to available obser-
vations, necessitating an approach for reducing these errors before
using these fields for health impact studies. Moreover, good model
performance for total PM2.5 mass can be caused by compensating
errors in PM2.5 species predictions such as the tendency to over-
estimate sulfate and underestimate nitrate and OC during
summertime. More generally, the model evaluation results derived
from six years of model simulations and corresponding observa-
tions in this study confirmed findings from previous studies (e.g.
Eder and Yu, 2006; Hogrefe et al., 2006; Mathur et al., 2008; Yu
et al., 2008) that model performance for PM2.5 varies by species,
season, and land-use. Therefore, any approach to correct CMAQ
errors when using gridded CMAQ fields for ambient air quality
characterization should at least take these three factors into
account. Consequently, we developed the following approach for
adjusting CMAQ-simulated PM2.5 concentrations:

� At each CSN and IMPROVE monitoring location, the observed
time series of 24-h average sulfate, nitrate, OC, EC, and crustal
material for 2000–2005 were matched against the corre-
sponding CMAQ values.
� The baseline of these observed and simulated species

concentrations was calculated by applying a KZ(15,5) moving
average filter. As discussed in Rao et al. (1997), the repeated
application of this filter results in daily estimates of a season-
ally-varying time series despite measurements being available
only every third or sixth day.
� The observed and simulated 6-year baseline time series were

then averaged to compute an average-year seasonal cycle by
averaging the six values for each day (January 1, January 2, etc.).
� Next, the ratio of observed to modeled average seasonal

baseline values was calculated for each day of the year for each
species for each monitor.
� These ratios (or ‘‘adjustment factors’’) were then interpolated

in space with an inverse-distance-weighting interpolation
scheme to generate a gridded map of adjustment factors for
each day-of-year and each species. To account for the asym-
metry between ratios corresponding to model over- vs.
underpredictions (e.g. observed/modeled ratios of 0.5 and 2
both correspond to a model error of a factor of 2, but their
arithmetic average is different from unity), the ratios were
log-transformed prior to spatial interpolation and then re-
transformed after interpolation.
� Finally, the raw CMAQ PM2.5 species simulations for 1988–2005

were adjusted by multiplying each concentration value with
the appropriate adjustment factor for the corresponding day-
of-year, grid cell, and species. Since no adjustment factors could
be calculated for ammonium because it is not measured at
IMPROVE monitors, adjusted ammonium concentrations were
estimated by assuming a constant degree of neutralization
between the raw and the adjusted fields, calculating this
degree of neutralization for the unadjusted fields following the
method described in U.S. EPA (2007), and then calculating the
adjusted ammonium concentrations based on this degree of
neutralization and the adjusted sulfate and nitrate values.



Fig. 4. Illustration of spatially interpolated adjustment factors. The figure displays
a map of the gridded OC adjustment factor estimated for June 1 based on interpolating
the adjustment factors calculated at the IMPROVE and CSN monitoring sites to the
12 km modeling grid through an inverse-distance-weighting scheme.
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To illustrate the variation of these adjustment factors by day-of-
year and species, Fig. 3a and b show seasonal time series of
adjustment factors at IMPROVE and CSN monitors. For this display,
the geometric mean of the adjustment factors for a given day and
5 10 15

5

10

15

RMSE Original CMAQ

R
M

S
E

 
A

d
j
u

s
t
e
d

 
C

M
A

Q

RMSE, Adjusted vs. Original

0.3 0.4 0.5 0.6 0.7
0.3

0.4

0.5

0.6

0.7

Correlation Original CMAQ

C
o

r
r
e
l
a
t
i
o

n
 
A

d
j
u

s
t
e
d

 
C

M
A

Q

Correlation, Adjusted vs. Original

R

a

b

c

d

Fig. 5. a) Scatter plot of root mean square error (RMSE) of the adjusted CMAQ PM2.5 mass
CMAQ simulations at the same sites. b) As in a) but for correlation coefficients. c) Spatial m
RMSE of adjusted CMAQ values minus RMSE of original CMAQ values. d) As in c) but for co
species over all monitors within each network was calculated.
Overall, these adjustment factor curves are consistent with the
discussion of the bar charts displayed in Fig. 2 but provide a more
gradual seasonal variation compared to the grouping in fixed three-
month seasonal time blocks. In particular, it is evident that sulfate is
underestimated in the winter months and overestimated in the
summer months, while OC is underestimated during all seasons,
with the geometric mean underestimation ranging from a factor of
1.2 during wintertime at IMPROVE sites to a factor of 3.8 during
summertime at CSN sites. To illustrate how these factors can vary in
space, Fig. 4 displays a map of gridded interpolated adjustment
factors for OC for June 1. It can be seen that these adjustment factors
range from 1.5 to 2.5 for much of the New England region to more
than 3.5 for parts of the western portion of the modeling domain. It
should be noted that the interpolated gridded maps of adjustment
factors incorporate adjustment factors derived at both CSN and
IMPROVE monitors. Therefore, differences in monitoring protocols,
especially for OC, between the two networks introduce ambiguity
to these interpolated maps, and the resulting adjusted CMAQ OC
values should be viewed only as a first-order adjustment that
overcome some of the deficiencies in the current CMAQ version in
terms of SOA formation. In other words, the differences in CMAQ OC
underestimation for summertime between the IMPROVE and the
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rrelation coefficients.
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CSN monitors (see Fig. 3a and b) may be in part due to differences in
monitoring protocols, but both curves point to missing sources of
OC in CMAQ and interpolating between all of these monitors to
create a gridded map of adjustment factors should help to provide
a better estimate of summertime OC in the adjusted CMAQ fields
compared to the original fields.

4.2. Method evaluation

After the original model-predicted PM2.5 species concentrations
were adjusted using the methodology described above, total PM2.5

mass concentrations were calculated from both the original and the
adjusted species concentrations and compared against 24-h PM2.5

mass measurements at FRM monitors taken between 2000 and
2005. The PM2.5 mass measurements at these FRM sites are
completely independent from the species measurements at the
IMPROVE and CSN sites that were used to calculate the adjustment
factors. Results of the comparison of original and adjusted CMAQ
PM2.5 mass against observations are shown in Fig. 5. The left two
panels display scatter plots of RMSE and correlation coefficients
computed for original and adjusted CMAQ PM2.5 mass. For these
plots, the metrics were computed separately at 262 FRM sites and
each point in the scatter plot corresponds to a specific site. In the
case of RMSE, almost all points are below the 1:1 line indicating
that at most of the sites, the adjusted CMAQ PM2.5 concentrations
have a lower RMSE than the original PM2.5 concentrations. Like-
wise, almost all of the points in the correlation scatter plot are
above the 1:1 line, indicating that correlations between time series
of adjusted CMAQ PM2.5 concentrations and observations were
higher than those between time series of the original CMAQ PM2.5

concentrations and observations. In order to examine whether
there are regions in which the adjustment was more beneficial than
others, the right two panels in Fig. 5 provide maps of differences in
RMSE and correlation coefficients. More negative values in Fig. 5c
indicate a larger reduction in RMSE resulting from the adjustment,
while more positive values in Fig. 5d indicate a larger increase in
correlation coefficients resulting from the adjustment. It can be
seen that the adjustment was most effective in reducing RMSE in
the urban corridor from Washington, D.C. to New York City.

4.3. Comparison against an alternate method to estimate historic
PM2.5 concentrations

The results shown above indicate that for the 2000–2005 time
period, the adjustment approach based on observed CSN and
IMPROVE speciation data improved CMAQ predictions for total
PM2.5 mass at FRM locations, thereby also enhancing the confi-
dence in the use of adjusted CMAQ PM2.5 concentrations in
unmonitored areas and on days without measurements. Unfortu-
nately, because of the lack of widespread PM2.5 monitoring before
ca. 2000, the quality of the adjusted CMAQ PM2.5 concentrations for
the 1988–1999 time period cannot be evaluated. However, it is
possible to compare these estimated historical PM2.5 values against
values estimated with an alternate methodology proposed by Lall
et al. (2004). This method was based on establishing PM2.5/PM10

ratios at co-located monitors for time periods when both pollutants
were measured and then applying these ratios to historic
measurements of PM10 for time periods when no PM2.5 observa-
tions were available. In our study, we applied this methodology as
follows: First, we determined all stations that had filter-based
monitors for both PM2.5 and PM10 for 2000–2004 and PM10

measurements for 1988–2005. This resulted in the selection of 38
monitors in the modeling domain. Next, at each of these sites the
average PM10 and PM2.5 concentrations were calculated over all
days for which both measurements were available during
2000–2004, and the ratio of these averages was determined.
A histogram of these ratios across the 38 sites is displayed in Fig. 6
and reveals that the ratio typically ranges from 0.5 to 0.8, consistent
with the values reported in Lall et al. (2004). Finally, these station-
specific ratios were applied to the 1988–2005 PM10 measurements
at the corresponding sites to estimate historic PM2.5 values.

Fig. 7a–d shows a comparison of the estimated 1988–2005
PM2.5 values from the adjusted CMAQ simulations and from the
PM2.5/PM10 ratio method. The scatter plot in panel a) is constructed
from daily estimated PM2.5 concentrations for all 38 sites at which
PM2.5/PM10 ratios were available and for all days during 1988–2005
for which PM10 measurements were available, resulting in a total of
58,722 data pairs. Out of these pairs, 52% agree with each other
within a factor of 1.5, and 75% agree with each within a factor of 2.
The overall correlation coefficient is 0.50 and is influenced by both
temporal fluctuations and spatial gradients between monitoring
locations in these two datasets. Panels b)–d) show histograms of
station-specific comparison metrics between the two datasets.
First, differences in station-specific average PM2.5 estimates derived
from the two approaches are displayed in panel b). This histogram
indicates that at most sites, long-term mean PM2.5 concentrations
derived from the two methods agree to within a few mg m�3, with
a tendency for the adjusted CMAQ PM2.5 concentrations to be
slightly lower than the PM2.5 concentrations derived from the ratio
method. Panel c), which displays root mean square differences
(RMSD) between the two estimates, shows that these differences
are less than 10 mg m�3 at most sites. In conjunction with Panel b),
this indicates that while on average both methods give similar
estimates, the values on individual days could be significantly
different. This is also evident from the scatter plots in Panel a).
Finally, the histogram of correlation coefficients in Panel d)
confirms that at most sites, the correlation coefficients between the
time series of estimated PM2.5 concentrations from both methods
range between 0.5 and 0.7, again indicating that on a day-to-day
basis, differences between estimates from the two methods can be
significant but also indicating that there is an overall agreement in
the broader temporal fluctuations of the estimates derived from
both methods.
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Overall, these results reveal that the PM2.5 concentrations from
the adjusted CMAQ simulations are broadly consistent with an
alternate approach to estimating historic PM2.5 concentrations but
overcome some of the deficiencies associated with this alternate
approach, i.e. its limitation in terms of spatial coverage (co-located
PM2.5 and PM10 monitors need to be available for a period suffi-
ciently long to establish reliable PM2.5/PM10 ratios) and temporal
coverage (historical filter-based PM10 measurements are typically
available only every 3rd or 6th day). In addition, the ratio method is
subject to uncertainties introduced by possible sampling artifacts
(the loss of semi-volatile components from the filters), seasonal
and interannual variability in the PM2.5/PM10 ratios, and trends in
species composition, while the CMAQ estimates are affected by
uncertainties in historic emission inventories and aerosol model
formulation. Therefore, both approaches should be viewed as
complementary.

5. Discussion

The methodology introduced and evaluated in the previous
sections provides a means to estimate daily concentrations of PM2.5

total mass and species for time periods and locations when no
monitoring data is available. This data record can be potentially
useful for applications such as health impact assessments when
long-term records of health outcomes such as mortality or
morbidity are matched against ambient pollution concentrations,
and for studying interactions between climate variability and air
quality. However, there are several limitations of the methodology
that have to be kept in mind when conducting such analyses:

� As shown in Section 3, CMAQ model performance varies by
species and tends to be best for sulfate and ammonium and
worst for nitrate and OC. Therefore, determining accurate
adjustment factors is most critical for these species. Unfortu-
nately, these are also the species for which the spatial inter-
polation of adjustment factors determined at individual CSN
and IMPROVE monitors is subject to the highest uncertainty
because of the spatial representativeness of such observations
and because of differences in measurement methods for OC
between these networks.
� The species-by-species model performance evaluation pre-

sented in Section 3 was performed for the time period from
2000 to 2005. Subsequently, the adjustment factors were also
calculated based on this time period and were then applied to
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the 1988–2005 CMAQ simulations. To the extent that there
were either trends or interannual variations in species
composition over this time period, the use of adjustment
factors that only vary by day-of-year introduces additional
uncertainty to the estimated adjusted CMAQ PM2.5 values.
� While the adjusted CMAQ fields overcome some of the errors

inherent in the original model simulations, they are limited by
the spatial resolution of the model simulations, in this case
12 km. Therefore, they cannot provide improved information
on local-scale phenomena such as elevated EC concentrations
near roadways that may be of interest in exposure studies. To
this extent, it might be useful to develop approaches that
combine the adjusted CMAQ fields with other methods such as
land-use-based regression approaches that attempt to resolve
sub-grid-scale phenomena. Alternatively, raw or adjusted
CMAQ fields could be used to provide boundary conditions to
smaller-scale dispersion models such as AERMOD to create
a hybrid modeling system as described in Isakov and Özkaynak
(2007).
6. Summary

In this study, a methodology is introduced to estimate gridded
fields of total and speciated PM2.5 concentrations for time periods
and regions not covered by observational data. To illustrate this
methodology, we present an application in which year-round
simulations with the MM5/CMAQ modeling system have been
performed over the northeastern United States for 1988–2005.
Model evaluation results for total PM2.5 mass and individual species
for the time period from 2000 to 2005 show that model perfor-
mance varies by species, season, and location. Broadly consistent
with other studies, model performance was generally found to be
best for sulfate and ammonium and worst for nitrate and OC.
Sulfate concentrations tend to be overestimated during summer-
time and underestimated during wintertime while the opposite is
true for nitrate. OC concentrations are substantially under-
estimated during summertime at almost all sites. Based on these
evaluation results, an approach is developed to adjust CMAQ PM2.5

simulations with factors that vary by day-of-year, species, and
location. The adjusted model values for total PM2.5 mass are
compared against independent measurements not utilized for the
adjustment approach. This comparison reveals that the adjusted
model values have a lower root mean square error (RMSE) and
higher correlation coefficients than the original model values.
Furthermore, the PM2.5 estimates from these adjusted model values
are compared against an alternate method for estimating historic
PM2.5 values that is based on PM2.5/PM10 ratios calculated at co-
located monitors. Results reveal that both methods yield estimates
of historic PM2.5 mass that are broadly consistent; however, the
adjusted CMAQ values provide greater spatial coverage and infor-
mation for PM2.5 species in addition to total PM2.5 mass. Limitations
of the proposed approach include assumptions about the temporal
stability of adjustment factors for the historic time period, ques-
tions about the validity of the spatial interpolation of adjustment
factors estimated at individual monitors, and the inability of the
method to resolve sub-grid-scale variations in PM2.5 concentrations
that might be of concern especially for primary PM2.5 species in
urban areas. In the future, the daily gridded fields of ambient PM2.5

concentrations constructed from observations and CMAQ simula-
tions described in this study will be used to study the link between
air quality and health. These results then will be compared to health
impact studies that relied solely on ambient measurements of air
pollution to assess the utility of long-term CMAQ simulations in
enhancing the characterization of ambient air quality for health
impact studies. Furthermore, future work should also be directed at
developing methodologies that take into account uncertainties in
the estimated air pollution surfaces during the health analysis.
Finally, the eventual goal of such research would be to create
a framework in which the impact of emission control programs is
quantified both in terms of changes in ambient pollutant concen-
trations and in terms of changes in health outcomes through the
integrated use of observations and photochemical models.
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