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ABSTRACT

The usual assumption of infinite electrical conductivity has been relaxed in a new analytic treatment of the mag-
netohydrodynamics of a variable magnetic star in the simple one-zone approximation. For a not too low electrical

conductivity, the magnetic pressure changes with the mass density as roughly p

43, and the Joule heating rate goes as

roughly p. The magnetic effective adiabatic exponent of about 4/3 proves to have only a small influence on the criteria
for dynamical, secular, and pulsational stability, but the Joule heating rate directly affects the secular and pulsational
stability criteria. Thus, a finite electrical conductivity tends to stabilize a magnetic star secularly and to destabilize it
pulsationally. These specific results apply, however, only to purely radial perturbations of the star’s upper radiative

layers.

Subject headings: instabilities — MHD — stars: magnetic fields — stars: oscillations — stars: variables: other

1. INTRODUCTION

Magnetic fields are ubiquitous in nature. Detected in varying
strengths at the surfaces of many classes of ordinary stars, they
doubtless pervade their interiors as well and, if strong enough,
could affect the structure, evolution, and stability of these stars.
The Sun is the best-studied example of how magnetic fields
interact with the bulk motions of a star, but the solar problem,
which deals with fast nonradial oscillations and slow dynamo-
related radial adjustments, is complicated by the presence of
vigorous turbulent convection in the envelope. This physical
complication also affects the interpretation of the RR Lyrae stars
and other cool variable stars, most of which are classical radial
pulsators. It may be that some of the radially and nonradially
pulsating 3 Cephei and 6 Scuti stars in common with other early-
type stars (Babcock 1958; Kochukhov & Bagnulo 2006) possess
strong magnetic fields and that the bipolar shapes of the neb-
ulae surrounding some of the possibly dynamically and secularly
unstable luminous blue variables (LBVs or S Doradus variables)
may also have a magnetic explanation (Stothers 2004). In these
classes of relatively hot variable stars, the destabilized envelope
is mostly radiative and convection probably plays only a small
role there. All these stars contain radiative interiors below the un-
stable upper layers, and the more massive ones among them also
have convective central cores.

In any case, it is worth studying theoretically how mag-
netic fields affect the radial stability of a star’s near-surface
radiative layers, where the observed variability is mainly pro-
duced. Such magnetic fields probably consist of both poloidal
and toroidal components in order to survive for an observably
long time (Prendergast 1956; Tayler 1980; Braithwaite & Spruit
2004; Braithwaite & Nordlund 2006), and the most recent nu-
merical simulations suggest that the field lines may be fairly
well tangled at depth, although observations of the surfaces of
many such stars reveal large-scale, ordered, dipole-like fields.
The full mathematical problem of the mechanical and ther-
mal stability of the radiative layers (apart from the MHD sta-
bility of the twisted magnetic field lines themselves) is too
difficult to solve analytically or numerically at present, and so
recourse must be had to the use of approximate stellar models
and methods.
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One fruitful, simple approach has been to adopt a one-zone
model of a star, whose nonmagnetic properties were first studied
by Jeans (1927, 1929) and Baker (1966). The magnetic case with
infinite electrical conductivity has already been solved exactly,
and the criteria for dynamical, secular, and pulsational radial sta-
bility turn out to be the same as in the absence of a magnetic field
(Stothers 1981). Although the electrical conductivity is undoubt-
edly very high at great depth in the stellar interior, its value near
the surface is much more modest (Cowling 1953), and hence
its finiteness has to be taken into account, for example, in nu-
merical simulations of the magnetized convective envelope of
the Sun where the ohmic decay time is very short (e.g., Tobias
etal. 2001; Stein & Nordlund 2006). This is the case whenever
the conductivity, which depends on the temperature as 7%2, is
~(vl)~! or smaller, where v is the plasma velocity and / is the
length scale of the spatial variation of the magnetic field. Re-
cently, Saio (2005) has studied the radial and nonradial pulsa-
tional stability of a magnetized radiative envelope, intended to
represent the rapidly oscillating Ap stars, but he assumed for
simplicity a purely dipole magnetic field and an infinite elec-
trical conductivity.

We instead inquire here what qualitative effects a finite elec-
trical conductivity has on the mechanical and thermal radial
stability of the upper envelope of an idealized radiative mag-
netic star. It turns out that a simple approximation for the
complicated term including the electrical conductivity in the
induction equation leads to an analytically tractable set of equa-
tions that may also be useful in future work. The results at pres-
ent shed light on the conditions for stability in the types of
magnetic stars enumerated above and show how the finiteness
of the conductivity influences these conditions This work should
also prove useful in interpreting the results of the detailed nu-
merical simulations that may be performed in the future for
these stars.

2. BASIC EQUATIONS

The basic equations for the present problem include equations
representing the conservation of mass, momentum, and energy,
together with a suitable form of Faraday’s equation of electro-
magnetic induction and Gauss’s equations of magnetic-field
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divergence and gravitational-field divergence (e.g., Cowling
1953):

dp

2 Vew =
o HPVe=0, (1)
@——VP—&— —i—L(VxH)xH (2)
P = P9+ 4 .
dU Pd (1 1
(L) = —2v-F,
ar <p> po
+——(VxH)-(VxH), (3
(47T)20_Ep( xH)-(VxH), (3)
OH 1 )
dH OH
—=— -V)H
=@ VA, (5)
V-H=0,
V- g=—4nGp. (6)

In the above equations, v is velocity, p is density, P is pressure, U
is specific internal energy, g is gravitational acceleration, F.q is
radiative flux, H is magnetic intensity, and o is electrical con-
ductivity, assumed here to be a constant. Nuclear energy gener-
ation (Jeans 1927; Ledoux 1963) as well as rotation, slowly
adapting turbulence, and mass loss (Stothers 2006) have been
treated elsewhere. The left-hand side of equation (3) contains the
standard expression for the heat derivative, assumed to be un-
modified by the magnetic field (as justified in the Appendix).

To proceed further, spherical symmetry is assumed, the equa-
tions are reduced to mean radial form, and only radial motions
are considered. Trasco (1970) has defined a mean radial form of
the Lorentz force:

f(r)zﬁ//[%(VxH)xH}-i‘sin@dﬁdd), (7)

where 7 is a unit vector in the r-direction. It is thus possible to
express f(r) in terms of a mean squared magnetic intensity,

(H*) = %/H'Hsin 6do, (8)

for the axially symmetric case. To simplify equation (7), Trasco
assumed that the mean radial component satisfies (H?) = 1 (H?),
which would certainly hold for a small-scale random magnetic
field but is not necessarily restricted to this case. Then equation (7)
reduces to

d <H2>
dr 8mn

1) = )
with n = 3. For greater generality we allow # to be a free pa-
rameter that permits equation (9) to represent f(r) for any type of
magnetic field (e.g., Chandrasekhar 1961, p. 148; Parker 1979,
p. 59).

Consequently, equation (2) can be written

pd’r __dP _ ’
a2 dr G]\/[(r)r2
d (H?)
- — 10
dr 8mn’ (10)

Vol. 686

where the quantity (H?)/87n is equivalent to an isotropic mag-

netic pressure and where M (r), the mass contained within radius
r, is given by

dM(r)

dr

4rrp. (11)

Likewise reduced to a mean radial form, equation (3) becomes

du Pd(l) dL(r)

@ Ta\o) T T amo

+—— |VxH 12
(47T)20Ep| | (12)

where the last term represents Joule heating, and the radiative
flux is given by
L(r) dacT? dT
drr  3kp dr’

(13)

where T is temperature, x is opacity, a is the radiation density
constant, and c is the speed of light. The rest of the vector equa-
tions will be retained as they are until after the variables have
been perturbed by introducing small radial vector displacements
of position.

The equilibrium state of the star is perturbed by setting r =
ro + or exp (st) (and similarly for the other variables) and then
by linearizing the set of differential equations. Equation (1)
immediately becomes

(ip: —V - ér. (14)

Po

Equations (4)—(6) for the magnetic field, however, require some
study and simplification. In writing equation (4), it has been
necessary to assume that oy is constant. Under realistic stellar
conditions, o is also so large that the second term on the right-
hand side of equation (4) will be much smaller than the first term.
We choose to write the second term as

1 v2 OR

H=—— 15
4oy ot’ (15)

as if it were a small correction to OH/0t. Then equations (4)—(6)
yield

OH = (Hy - V)or — Hy(V - or) — 6R. (16)
For convenience, we can arbitrarily put
6R:§Ho(—V-6r) (17)
with € being a small positive or negative quantity. Then
6(H-H) = /Ho - 6H sin 6d0
4 2
- (§+e)<Ho>(—V-6r). (18)

Using equation (14), we finally get

5(H?) 4 op
uﬁ>:(§+§59 (19)
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Defining a magnetic effective adiabatic exponent vy, = (4/3) + ¢,
we arrive at a generalization of the simple result for the case
of infinite conductivity (¢ = 0) considered previously (Stothers
1979).

It is now possible to calculate the perturbation of the magnetic
field in the Joule heating term:

8|V x HI* =2(V x Hy) - (V x 6H)
=(VxHy)-[(2—e)(V xHy)
x(—V6r)+2V x (Hy - V)ér]. (20)

To assess the relative magnitudes of the two terms in the square
brackets, consider a homologous displacement, ér = nr, with n
being a constant. In view of the fact that in this representation
Vér =3nand V x ér = 0, we find that the second term in the
brackets must be much smaller than the first term and thus can be
neglected. Hence,

(1)

3. STABILITY ANALYSIS

For the case of spherical symmetry and radial motions only, the
basic equations reduce to equations (10)—(13). This set of equa-
tions will now be linearized by employing as auxiliary relations
the standard thermodynamic functions for gas and radiation (see
the Appendix), as well as the magnetic perturbations approx-
imated by equations (19) and (21) with € set equal to a constant.

The procedure followed here hews closely to that presented by
Baker (1966) for the case of no magnetic field. We consider a
one-zone model of a star in which the spatial derivatives of all
the perturbed quantities, except the luminosity, are set equal to
zero. This is equivalent to assuming homologous radial dis-
placements. Baker’s approximation consists of writing for the
luminosity

d sL 2 4L
dM(r) Ly  AM Ly’

(22)

where 0L is the mean value of the luminosity perturbation within
the single zone of mass AM.

After considerable reduction, the final result for s, the complex
temporal frequency, is the solution of a cubic equation:

s3 + (Kr + Koo As* + ol Bs + (Kr + Ky)ogD =0, (23)
where 0 = GM(r)/rj and
A= —(aly = D5 'a(kr —4) + rp, (24)
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Note that I'; is the standard first generalized adiabatic exponent
for the gas and radiation, defined as I'} = (dIn P/d In p)g at
constant entropy S. Combining terms,

AB—D= —3T(al; — 1)1 — )
X [(51“1)_1(011“1 = D(kr —4)

4 N
—+— . 1
+/€P+3P1+Fl} (31)

Stability depends on the nature of the three roots of equation (23).
If 6 > 0, the stability criteria are

dynamical stability, B > 0; (32)
secular stability, D > 0; (33)
pulsational stability, 4B — D > 0. (34)

Dynamical stability refers to the condition of hydrostatic equi-
librium of the star, secular stability to the star’s thermal equilib-
rium, and pulsational stability to the lack of growing oscillations.
The dynamical and pulsational timescales are both very fast,
N(Gp)*l/ 2, while the secular timescale is slow, ~E,/L, where Ey,
is the thermal energy content of the unstable layers.

4. INFINITE CONDUCTIVITY

If o = o0, the stability criteria are the same as if there were
no magnetic field present (provided that yx < 1). This result has
long been known (Stothers 1981). It is due to the fact that the
magnetic field behaves like a gas with adiabatic exponent 4/3.
Although Joule heating is absent, magnetic induction does occur,
with v, = 4/3.

In the strictly adiabatic case, both K7 and K}, are zero, since
the thermal properties of the oscillations decouple from the me-
chanical behavior. Consequently, the eigenvalue equation (23)
has the simple solution s = +iB"?ay, with B = (1-u)(3T1—4).
This adiabatic solution was originally derived many years ago
(Chandrasekhar & Limber 1954). The star becomes dynamically
unstable whenI'; < 4/3 (againif . < 1). The solution also shows
that the dynamical instability can occur even when I'} > 4/3 if
1, the ratio of the magnetic pressure force to gravity, exceeds
unity. Thus, there is a limit on the permissible gradient of mag-
netic field through a hydrostatically stable layer. In the form of
the solution given by Chandrasekhar & Limber (1954) as an
integral over all layers of the star, the factor u is replaced by
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Emag/|Egrav |, the ratio of the magnetic energy to the gravitational
potential energy; in this case, Emag < |Egrav| for stability.

Real stars that could be dynamically unstable in their upper
layers include very cool red giants ( Tuchman et al. 1978), as well
as yellow hypergiants and some highly evolved LBVs (de Jager
et al. 2001). In these disparate objects the average value of I';
drops below 4/3 as a result of the extensive ionization zones of
hydrogen and helium. Therefore, the case of I'y < 4/3 is not a
purely academic one.

5. FINITE CONDUCTIVITY

In general, B is given by equation (25). Note that B involves
a weighted mean of the thermal “gamma” and the magnetic
“gamma.” As long as < 1, magnetic fields tend to stabilize or
destabilize dynamically, depending on whether vy, > 4/3 or <4/3,
respectively.

If B > 0, secular stability depends only on the value of D, as
given by equation (26). Magnetism then acts to stabilize secu-
larly through the positive quantity N. The effects on D of the
opacity derivatives, kp and 7, are weakened or strengthened,
depending on whether ), > 4/3 or <4/3, respectively. In the
limit of extreme nonadiabaticity, K7 is infinite. Equation (23)
then yields the solution s = 4i(D/4)"*cy. The star can avoid a
dynamical-like secular instability if D/4 > 0 (see Buchler &
Regev [1982] for the nonmagnetic case).

Finally, pulsational instability, if B > 0, is governed by the
sign of the mixed quantity AB—D, as displayed in equation (31).
The consequence of magnetism is to pulsationally destabilize the
star through the quantity N. This destabilization is not surprising
because Joule heating increases with the density just as nuclear
energy generation does. It has been known since Jeans’s time
(Jeans 1927) that subatomic energy release tends to destabilize a
star pulsationally. The direct effect of ~y,, on pulsational stability,
however, is very small since N o< (7/3—7) and ), differs little
from 4/3.

6. CONCLUSION

Reduced to simple mean radial form, the full set of MHD
equations have been here linearized and then solved in the case
of the one-zone model of a radiative stellar envelope. Approx-
imate expressions, however, have been developed for the per-
turbations §(H - H) and 6|V x H| in terms of small corrections

Vol. 686

to the exact forms known for the case of infinite electrical con-
ductivity. The small correction parameter € in the equation of
electromagnetic induction has only a slight influence on the mag-
netic effective adiabatic exponent -, and a wholly negligible
effect on the Joule heating rate, which is influenced much more
directly by the finite electrical conductivity itself. Therefore, the
extreme assumptions that we have made about the form of €, and
in particular about its assigned constancy, are not very critical. It
is found that the magnetic pressure changes with mass density as
p*37¢ and the Joule heating rate as p'~*.

Although all three types of stability—dynamical, secular and
pulsational-—show either a positive or a negative dependence on
~Yu depending on whether v, > 4/3 or <4/3, the actual influence
of vy, is found to be relatively small. As long as the electrical
conductivity is not too low, the familiar criterion for dynamical
stability, 'y > 4/3, should still hold very closely. Magnetic fields,
however, tend to stabilize the star secularly and to destabilize it
pulsationally through the quantity N, which is, roughly speaking,
the ratio of the thermal timescale to the timescale for converting
the magnetic energy to heat (and vice versa), as can be seen from
an inspection of equation (3). Consequently, the Joule heating rate,
which is inversely proportional to the electrical conductivity, ap-
pears to be the paramount factor in determining the effect of a
magnetic field on the secular and pulsational radial stability of a
star.

In any star that lies at or near the limit of either dynamical
stability or radiative stability, small changes of the structure can
have quite exaggerated effects on the mechanical and thermal
stability. Although the formal stability criteria remain the same,
the underlying unperturbed structure of the star is different. The
case of magnetism’s effect on the Eddington luminosity limit for
radiative stability has been discussed elsewhere (Stothers 2004).
Here we simply remark that the formal criteria for secular and
pulsational stability will, in general, change their sign depending
on whether the star is dynamically stable or not. Applications to
real stars, therefore, will be complicated and tricky. It has been
our intention in this paper only to formally derive the effect of a
magnetic field on the stability criteria themselves.

An anonymous referee made some very helpful suggestions
for improving the paper.

APPENDIX
MAGNETOTHERMODYNAMICS

Several approaches have been used in the past to include a magnetic field in the thermodynamics of a stellar plasma. The stan-
dard approach, as here, is to ignore the magnetic field entirely, regarding its thermodynamic effects as being negligibly small. A
different approach has been to treat the magnetic field’s energy and pressure in the same manner as for the gas and radiation, or else
to regard the magnetic field as having arisen from a prior process of magnetization of the whole thermodynamic system. These
alternative approaches sometimes give different thermodynamic results from the standard approach. Which of these approaches is
correct?

Al. MECHANICAL APPROACH

Cowling (1952) has stated, without giving any proof, that the adiabatic relations between the pressure and density of an isotropic
ionized gas threaded by a magnetic field are simply the usual ones for the gas alone. He has remarked of the magnetic pressures that “any
work done by these is done at the expense of the magnetic energy, not of the heat.” Adoption of the usual adiabatic relations was later
made, again, by Cowling (1976, p. 4) as well as by Chandrasekhar & Limber (1954), Spitzer (1962, p. 17), Alfvén & Falthammar (1963,
p. 76), Goedbloed & Poedts (2004, p. 134), and many others. Parker (1979, p. 55) has shown on the basis of a mechanical treatment that
the work done by the gas against the magnetic stresses is just equal to the increase of the magnetic energy.
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A2. DIRECT THERMODYNAMIC APPROACH

Tutukov & Ruben (1974) and Mollikutty et al. (1989), on the other hand, assigned arbitrary forms to Pae and Upgg, added them to P
and U for the gas and radiation, and entered the sums into a new expression for the first law of thermodynamics:

TdS = d(Ugas + Urad + Umag) + (Pgas + Prad + Pmag) dV7 (Al)

where V(= 1/p) is the specific volume. By setting 7dS = 0, they obtained expressions for the adiabatic gradients and related
quantities. These contained nonvanishing dependences on the magnetic field and are clearly unphysical in view of § Al.

A3. MAGNETIZATION APPROACH

Callen (1960, p. 242) has treated the magnetization of an initially unmagnetized thermodynamic system that is placed inside a
current-carrying solenoid. His result for the first law, with the magnetization M here set equal to zero as appropriate for a stellar
plasma, is

TdS = dU' + PdV. (A2)

Callen defined U’ as “the total energy contained within the solenoid relative to the state in which the system is removed to its field free
fiducial state and the solenoid is left with the field.” Since the total energy within the solenoid is the sum of the system’s internal
(in our case, gas and radiation) energy and the energy of the magnetic field that threads the system, U’ must be equal to
(Ugas + Urad + Umag)—Umag = Ugas + Urag. Accordingly, the magnetic field does not appear explicitly in the first law of thermody-
namics if M = 0. This result has also been derived in many other textbooks of thermodynamics, probably most thoroughly and clearly
by Carrington (1994, § 8.2). It is consistent with § A1 above.

Lydon & Sofia (1995, eq. [19]), however, assumed that

TdS = d(Ugas + Urag) + PdV + dx, (A3)

where —PdV [= —(Pgas + Praa)dV] is the nonmagnetic work and dx( = dUnyg) is the magnetic work. In a later study by Li et al. (2006,
eq. [13]), this was tacitly changed to

7dS = d(Ugas + Uraq) + PdV — dx (A4)

in order to ostensibly conform with Callen’s more rigorous derivation (Callen 1960). Li et al. have misinterpreted Callen’s U’ as being
equal to (Ugas + Urad) — Umag- Both equations (A3) and (A4) are therefore unphysical.

Thus, the various thermodynamic derivatives such as specific heats and adiabatic exponents reduce to simply those derived for a
nonmagnetic system composed of ionized gas and radiation alone. Although Alfvén & Falthammar (1963, p. 77) have pointed out that
the gas velocity distribution can become anisotropic in the presence of a strong magnetic field, thereby affecting the thermodynamic
derivatives indirectly, Cowling (1953) determined that in the Sun (at least below the photosphere) collisions remain frequent enough to
maintain a high electrical conductivity. Therefore, the velocity distribution will be nearly isotropic in the stellar interior for all but the
strongest magnetic fields. As a consequence, the system of gas and radiation can be considered to be effectively in thermodynamic
equilibrium.
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