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[1] Projections from general circulation model (GCM) simulations must be downscaled to
the high spatial resolution needed for assessing local and regional impacts of climate
change, but uncertainties in the downscaling process are difficult to quantify. We
employed a multiple linear regression model and the MM5 dynamical model to downscale
June, July, and August monthly mean surface temperature over eastern North America
under greenhouse gas-driven climate change simulation by the NASA GISS GCM. Here
we examine potential sources of apparent agreement between the two classes of models
and show that arbitrary parameters in a statistical model contribute significantly to the
level of agreement with dynamical downscaling. We found that the two methods and all
permutations of regression parameters generally exhibited comparable skill at simulating
observations, although spatial patterns in temperature across the region differed. While the
two methods projected similar regional mean warming over the period 2000–2087,
they developed different spatial patterns of temperature across the region, which diverged
further from historical differences. We found that predictor domain size was a negligible
factor for current conditions, but had a much greater influence on future surface
temperature change than any other factor, including the data sources. The relative
importance of SD model inputs to downscaled skill and domain-wide agreement with
MM5 for summertime surface temperature over North America in descending order is
Predictor Domain; Training Data/Predictor Model; Predictor Variables; and Predictor Grid
Resolution. Our results illustrate how statistical downscaling may be used as a proxy for
dynamical models in sensitivity analysis.
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1. Introduction

[2] While general circulation models (GCMs) allow for
projection of future climate under a range of scenarios,
understanding the local and regional impacts of climate
change often necessitates data at a higher resolution than
that of the global GCM. The problem of translating coarse-
scale GCM and reanalysis output to the finer spatial scales
required for local climate change projection and regional
impacts analysis relies on two general classes of methods to
estimate climate variables at a higher resolution: dynamical
and statistical downscaling. Dynamical downscaling takes
GCM boundary conditions to drive a regional climate model
(RCM), such as those used in operational weather forecast-
ing, in which atmospheric properties are calculated on a
finer grid by solving equations of motion and thermody-
namics. These models are able to generate a dynamically

consistent suite of climate variables, but there is significant
uncertainty in parameterization of sub-grid-scale processes,
and the computational costs of RCMs are high. Statistical
downscaling (SD) evaluates observed spatial and temporal
relationships between large-scale (predictors) and local
climate variables (predictands) over a specified training
period, and extends these relationships to project the time
series of predictands from the predictors.
[3] This experiment complements the New York Climate

and Health Project (NYCHP), a funded health impacts
assessment study based at Columbia University and funded
by the U.S. Environmental Protection Agency. The NYCHP
employs a multiscale modeling framework for assessing the
changes in heat- and ozone-related mortality in the 31-
county New York City metropolitan area resulting from
projected climate and land use change over the next
80 years. The NYCHP framework incorporates a global
climate model, a regional climate model (B. H. Lynn et al.,
The GISS-MM5 regional climate modeling system: Sensi-
tivity of simulated current and future climate to model
physics configuration and grid-resolution, submitted to
Journal of Climate, 2005; hereinafter referred to as Lynn
et al., submitted manuscript, 2005), regional land use
modeling [Solecki and Oliveri, 2004], and a regional air
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quality model [Hogrefe et al., 2004] to generate temperature
and ozone projections for human health risk analysis
[Knowlton et al., 2004].
[4] Publications from the NYCHP [Lynn et al., 2004;

Hogrefe et al., 2004] have highlighted uncertainty within
the RCM regional temperature scenario and emphasized the
importance of the regional temperature scenario as a
primary influence on projected changes in regional ozone
and corresponding health impacts. A more thorough under-
standing of uncertainty in regional temperature resulting
from the choice of climate downscaling procedure is a
critical requirement if integrated assessment results are to
be applied to inform policy decisions.
[5] Performance of dynamical and statistical methods in

simulating contemporary climate has been formally com-
pared in studies by Kidson and Thompson [1998], Mearns
et al. [1999], Murphy [1999], and Oshima et al. [2002],
with analysis limited to temperature and precipitation fields
and confined to North America, Europe, and Japan. Similar
levels of skill for present-day climate for the dynamical and
statistical methods are a common finding, independent of
region, RCM, GCM, statistical technique, temporal scale,
and even performance metric.
[6] Mearns et al. [1999], Murphy [2000], Oshima et al.

[2002], and Hanssen-Bauer et al. [2003] compared RCM
and SD methods directly under projected climate change.
These comparative studies all found divergence between the
two downscaling methods for temperature projections under
climate change forcings, but without systematic explana-
tions for the magnitude of divergence. Murphy noted a
change in the strength of predictor/predictand relationships,
and Mearns et al. found that SD produced an amplified
seasonal cycle, while the RCM generated greater variability
in the spatial patterns of regional temperature change.
[7] In light of the comparable skill exhibited by RCMs

and SD methods at daily and monthly timescales under
present conditions, and the consistent suggestion of even
limited agreement between the methods for future projec-
tions, both classes of downscaling techniques may be used
to generate plausible regional climate scenarios. Used
together, the two methods may contribute to improved
qualitative and quantitative metrics of structural [Thorne
et al., 2005] uncertainty in the downscaled results.
[8] While a combination of these methods is a best practice

[Wilby et al., 2004], it is currently unreasonable to expect that
every impact assessment will have the budget and personnel
to include RCM downscaling in the assessment framework,
particularly in nations with limited capacity in climate
modeling. It is also unlikely that every assessment will have
timely access to statistical climatologists who can incorporate
expert knowledge of SD algorithms and regional climate.
[9] Instead, SD methods known to yield results consistent

with RCMs are a tempting choice as the sole source of
downscaled scenarios in impact assessment when RCM
simulation is unavailable, or where the time and expense of
RCM simulation are otherwise prohibitive. Statistical down-
scaling represents regional- and local-scale phenomena better
than GCM change factors, whereby future changes in climate
projected by GCMs are applied directly to a local baseline
climatology [Diaz-Nieto and Wilby, 2005].
[10] This study provides a basis for identifying the

elements of an SD model that contribute most to potential

agreement with RCMs, and attempts to understand the
physical reasons behind any apparent agreement. The ob-
jective is twofold: to provide more comprehensive under-
standing of confidence and uncertainty in the NYCHP
downscaled scenarios in accordance with current best prac-
tices in integrated assessment, and to provide a global
template for SD model selection by the impacts analyst.
We have established a flexible, globally applicable protocol
for statistical downscaling of surface temperature (TSFC),
and identified a framework for selecting appropriate down-
scaling parameters.
[11] We projected summer monthly mean TSFC in order to

describe chronic, rather than peak, effects of high tempera-
ture for analysis of potential human health impacts. Although
our methodology is not timescale dependent, the choice of
the monthly mean is reinforced by the scarcity of archived
GCM and standardized, gridded observation data at higher
temporal resolution. Geographically specific daily and sub-
daily time series projections can also be generated from the
monthly mean through weather generators.

2. Materials and Methods

2.1. Observed Data

2.1.1. Predictands
[12] The primary surface temperature record employed for

SD training was the University of Delaware Air Temperature
and Precipitation 0.5� � 0.5� monthly mean gridded data set
(Wilmott and Matsuura (DE) [2003], hereinafter referred to
as DE) Although SD studies typically analyze time series
from individual locations, we choose to use interpolated
climate data, with global coverage over all landmasses for
1951–1999. This choice of training data facilitates the
transferability of our results to other areas. Over the contig-
uous United States, DE is based primarily on interpolation of
station observations in the U.S. Historical Climate Network
[Karl et al., 1990a], by way of their inclusion in the Global
Historical Climate Network version 2 [Vose et al., 1992],
using the spherical version of Shepard’s distance-weighting
method [Willmott et al., 1985], as well as digital elevation
model height interpolation and spatial adjustment by Clima-
tologically Aided Interpolation [Willmott and Robeson,
1995]. The U.S. Historical Climate Network, compiled by
the National Climatic Data Center, has been adjusted to
remove bias introduced by station moves, instrument
changes, time-of-observation differences, and urbanization
effects. Vose and Menne [2004] found the network exceeded
the density required over the period 1971–2000 to capture
changes in the spatial mean of climate parameters at a
regional scale. Station averages were interpolated to a
0.5�� 0.5� grid, with grid nodes centered on the 0.25 degree.
An average of 20 nearby stations influence each grid node,
and over the United States the Climatologically Aided
Interpolation was conducted using a 5685 station high-
resolution network.
[13] The University of East Anglia Climate Research Unit

(CRU) TS 2.0 global 0.5�monthly transient climate grids for
1901–2000 [New et al., 2000; Mitchell and Jones, 2004]
served as an alternative training record. Since CRU is on the
same grid as DE, and was compiled from similar source data
by other methods, the inclusion of CRU data allowed us to
examine SD model sensitivity to small differences in inter-
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polated observation data, which may arise because of varia-
tions in the number and distribution of stations included, and
the choice of interpolation techniques.
2.1.2. Predictors
[14] The National Centers for Environmental Prediction

(NCEP) 2.5� � 2.5� Reanalyses of 1990–2004 monthly
mean TSFC and sea level pressure (Kalnay et al. [1996],
NCEP/NCAR Reanalysis Project, 2004, through July 2004:
NCEP/NCAR Reanalysis 1, NOAA-CIRES Climate Diag-
nostics Center, Boulder, Colorado) were used as large-scale
predictors to provide performance benchmarks against which
GCM-downscaled results for the 1990s could be compared.

2.2. Climate Simulation Methods and Data

2.2.1. Global Climate Models
[15] We downscaled June, July, and August monthly mean

temperature for the eastern half of the United States and
southern Canada from monthly mean climate variables in
simulations with the NASA Goddard Institute for Space
Studies 4�� 5� resolution Global Atmosphere-Ocean Model
GCM (GISS-GCM) [Russell et al., 1995]. The GCM simu-
lated conditions for model years 1990–2087, with projec-
tions based on climate forcing from the IPCC ’A2’ scenario
[IPCC, 2000], as described by Lynn et al. [2004] (see also
Lynn et al., submitted manuscript, 2005).
[16] The Canadian Centre for Climate Modelling and

Analysis Coupled Global Climate Model (CGCM2) [Flato
and Boer, 2001] simulation for 1990–2087 with the A2
forcings was employed as an alternative predictor source.
2.2.2. Regional Climate Models
[17] Dynamically downscaled current and future regional

climate fields were obtained by coupling the Pennsylvania
State University/National Center for Atmospheric Research

mesoscale regional climate model (MM5) to GISS-GCM in
a one-way mode through initial conditions and lateral
boundaries (Lynn et al., submitted manuscript, 2005). Sim-
ulations were performed for five consecutive summer sea-
sons (June–August) in the 1990s and three future decades,
namely 1993–1997, 2023–2027, 2053–2057, and 2083–
2087. Following the NYCHP, we chose model runs by Lynn
et al. [2004], with the Betts-Miller cumulus parameteriza-
tion (MIBR) as the primary RCM for comparison. In order
to directly compare the relative sensitivity and uncertainty
stemming from arbitrary choices in the RCM to those in SD,
we employed MM5 with the Grell cumulus parameteriza-
tion (MIGR). MM5 results were interpolated from the
original 36 � 36 km grid to the 0.5� � 0.5� DE grid for
downscaling model intercomparison.
2.2.3. Statistical Downscaling: Downscaling Methods
[18] In order to compare SD directly with the RCM

employed by the NYCHP, we downscaled GISS-GCM over
the same domain as MM5. We assessed performance across
the entire domain and over the three state, 31-county New
York City metropolitan area (NYC) used for the NYCHP
health impacts assessment. The SD domain and NYC
subdomain are depicted in Figure 1.
2.2.3.1. Downscaling Model
[19] Surface temperature at each DE grid point was esti-

mated by multiple linear regression statistical downscaling, a
method well suited to the normally distributed anomalies in
DE, and for monthly TSFC in general. Spatial patterns of
anomalies in the predictor fields, with the annual cycle
removed, were decomposed into empirical orthogonal func-
tions (EOFs). These functions are orthogonal eigenvectors
aligned so the leading EOF describes the spatial pattern that
maximizes variance [Preisendorfer, 1988]. The twenty
leading EOFs (or for the small-scale predictor field, the
spatially constrained maximum of four) were calculated,
with the first EOF of TSFC and mean sea level pressure
(MSLP) explaining 85–95% of the GISS-GCM and NCEP
variance in these variables at all scales, and the eight leading
EOFs always capturing more than 99% of the variance. We
chose to include only the leading eight EOFs to avoid
inflating the warming response, as Huth [2004] found that
downscaled climate change estimates for local daily TSFC in
central and western Europe frommultiple linear regression of
EOFs was most dependent on the inclusion of monopolar or
imbalanced multipolar EOFs as predictors. It is critical to
limit the inclusion of EOFs that contain monopoles or
unbalanced dipoles to avoid erroneously compounding the
climate change signal.
[20] Downscaling was conducted by multiple linear

regressions on the eight leading EOFs of monthly anomalies
in predictor fields and the time series of temperature at each
of the 1875 DE grid points in the region, with the annual
cycle and linear trend removed (as in Murphy [1999]). The
algorithms of Benestad [2004a] were used to fit the predictor-
predictand relationship to a fifth-order polynomial in time.
Full-year time series maximized training data density, and
full-year monthly projections were generated for the years
1997–2087. Since previous comparative studies highlighted
changes in the strength of predictor/predictand relationships,
seasonal cycles, and spatial patterns of regional temperature
change, we did not perform variance inflation [Karl et al.,
1990b] to adjust variance.

Figure 1. Predictor field and downscaling study areas.
The regional modeling domain is shaded in light gray.
Boxes represent boundaries of the three scales of predictor
domain. Wilmott and Matsuura (DE) [2003] grid cells
representing the three state, 31-county New York City
metropolitan area (NYC) are shown in black. General
circulation model (GCM) grid cell centers are shown as
gray points.
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[21] In order to quantify SD sensitivity to model param-
eters, we selected predictor variables and predictor domains
for study and downscaled using every combination of
parameters. We then selectively evaluated predictor resolu-
tion and predictor/predictand data sources.
2.2.3.2. Predictor Variables
[22] In order to yield the most direct comparison between

statistical and dynamical downscaling, we downscaled var-
iables from the same GISS-GCM simulation used to drive
the RCM in Lynn et al. [2004] (see also Lynn et al.,
submitted manuscript, 2005). Most statistical downscaling
studies to date have generated predictions based in part on
free atmospheric variables, with the rationale that these are
better simulated in GCMs than surface variables. As a
result, a primary source of uncertainty in downscaling under
climate change scenarios is the extent to which observed
relationships between large-scale predictor variables and
downscaled predictands will remain consistent under altered
climate regimes. Murphy [2000] notes that both dynamical
and statistical estimates of downscaled surface warming
may be misleading because the link between TSFC and
850 mb temperature (T850) in GCMs are often stronger than
the corresponding link found in observations, and it may be
that GCMs do not simulate T850 substantially better than
they simulate TSFC. The GISS-GCM appears to fit this
description, as spatial patterns in JJA TSFC and T850 are
strongly correlated over the study and predictor domains,
and their biases (�2 to +3�C) are of the same magnitude
and spatial distribution.
[23] Some early studies showed a strong agreement

between daily GCM-simulated series of TSFC and observed
values at single locations [Portman et al., 1992; Robinson et
al., 1993] or averaged over only a few (three or fewer)
stations [Rind et al., 1989]. Furthermore, Benestad [2003]
found that large-scale surface predictor fields from GCMs,
including MSLP, explained observed regional surface-level
variance over northern Europe better than free atmospheric
circulation indices, and Benestad [2004b] then used GCM
2 m surface temperature as a sole predictor for downscaled
TSFC. Since local temperature under increased atmospheric
CO2 may be dominated by changes in the radiative properties
of the atmosphere rather than changes in upper atmosphere
circulation, employing the large-scale TSFC field from the
GCM as a predictor may be an effective means of capturing
the climate change signal [Dehn and Buma, 1999].
[24] Following Hanssen-Bauer et al. [2003], we selected

TSFC and MSLP a priori as predictor variables to create a
parsimonious ‘‘base case’’ predictor set for flexible, global
application independent of season or location. Two predictors
were assessed: TSFC alone, and a mixed field (TP) of TSFC

and MSLP concatenated, with the combined field decom-
posed into principal components [Benestad et al., 2002].
These two fields meet the criteria for successful predictors
[Wilby et al., 2004], consistently explain significant variance
in global land surface temperature, capture climate change
signals, and are the most frequently chosen predictors for
TSFC when stepwise regression is conducted using all avail-
able GCM output and derived variables [Murphy, 1999]. As a
result, they represent an effective minimal set to which
additional geographically specific predictors may be added.
Finally, these variables are common to climate models,
reanalyzed and gridded climate data sets; and have reason-

ably long and dense global in situ and remote observational
records.
2.2.3.3. Predictor Domain
[25] If a predictor domain larger than the single proximate

grid cell is considered, the domain that best describes the
relationship between large-scale influences and local effects
for a particular climate variable at any point may change
dramatically if climatic changes alter synoptic patterns.
While Huth [2002] found that the size of the predictor
domain had a negligible influence on downscaled daily
TSFC in six nations in central and western Europe under
contemporary conditions, Benestad [2001] found that the
choice of predictor domain impacted climate change trend
estimates.
[26] As there is no optimal a priori predictor domain for

any region or downscaled climate variable, we addressed
these concerns by employing the same downscaling meth-
odology using three vastly different scales of predictor
domain and compared their performance over the study
area as well as over the NYC area only. The three predictor
scales were (1) continental: the majority of the North
American continent and the Caribbean; (2) regional: the
eastern U.S. study area itself, as in the work of Murphy
[2000], at approximately the planetary Rossby wavelength
scale in longitude and latitude; and (3) the northeast (NE),
an area representing the two GCM grid cells covering the
NYC metropolitan area, centered on 42 N, 72.5W, and 38N,
72.5W, and the two to their west, upstream under typical
conditions. This domain includes the Appalachian mountain
ranges and Atlantic Ocean, capturing the orographic and
maritime influences that we expected were the primary local
forcings for the area. Because of the GCM grid layout, we
found this to be the most appropriate local predictor scale,
rather than downscaling the NYC area from a single grid
cell centered on western Massachusetts or from nine prox-
imate GCM grid cells, an area 40 times larger than the NYC
area. Predictor domains are shown in Figure 1.
2.2.3.4. Training/Predictor Model
[27] Archived data from GCM simulations of the SRES

scenarios typically begin at 1990, and we set out to work
within this common constraint. Since SD performance
cotemporaneous with the 1993–1997 MM5 downscaling
(Lynn et al., submitted manuscript, 2005) was an essential
metric, the period 1990–1996 was used as training, allow-
ing 1997 for cross comparison among the RCM, SD, and
observations to highlight the relative skill of the two
downscaling approaches. This 7-year calibration interval
is at the lower bound of the preferred 10–30 year range for
climate downscaling, but comparable in span to the 8-year
period examined by Murphy [1999] in assessing regional
dynamical and statistical downscaling of TSFC. Statistical
relationships between the predictand and predictors may
vary in time [Wilby, 1997], and we reasoned that this
training period represents the recent warming of the
1990s, ensuring any calibration bias will be toward similar
warming in the future, which could be better training for
future relationships in this explicit warming scenario than
the extended climatological trend. Figure 2 illustrates that
the training period contains anomalously warm as well as
cool summers, according to all predictor and observation
data sets, and is representative of the range of regional
climatology of TSFC. Further justification for using only the

D08101 SPAK ET AL.: STATISTICAL AND DYNAMICAL DOWNSCALING

4 of 10

D08101



most recent years as training came from the consistency
between 1990s observed trends and RCM-projected future
changes in mean summer precipitation and large-scale
circulations in western Europe found by Pal et al. [2004].
In fact, we found that NCEP reanalysis 1990–1996 training
performed much better than 1951–1996 in predicting sum-
mer 1997–1999 temperatures. Mean error for the regional
and NE predictor domains increased by more than 100%
when the 45-year climatological record was used for training.
We performed leave-one-out cross validation [Michaelsen,
1987] on the NYC area for 5-year periods in 1990–1996with
the GISS-GCM, and found little variation (less than 0.2�C) in
1997–1999 JJA mean temperatures.

[28] We examined the effects of the choice of GCM and
training data on the downscaled result using CGCM2 and
GISS-GCM at the Domain predictor scale with both DE
and CRU 1990–1996 surface data. Table 1 lists the GCM,
surface record, predictor domain, and predictor variables for
each SD model.

3. Results and Discussion

[29] Analysis of downscaled scenarios was confined to
areas common to the interpolated MM5 results and the DE
data set, excluding parts the Atlantic Ocean, Gulf of
Mexico, and a few coastal areas. Since MM5 simulates

Table 1. Downscaling Performance Statisticsa

90%
Confidence

Level,
±2 sd, TSFC, �C

1997 JJA RMS
Error in TSFC,

�C

JJA Mean
Warming,

2080s–1990s
TSFC, �C

Regional Average Correlation
Between JJA Downscaled
TSFC Field and GCM TSFC

Predictor

Model
Predictor
Domain

Predictor
Variables Region NYC Region NYC Region NYC 1990s 2020s 2050s 2080s

Dynamical
GISS-GCM: MM5 MIBR 0.69 0.80 2.99 1.42 3.05 2.38 44 34 34 21
GISS-GCM: MM5 MIGR 0.31 0.32 2.20 1.80 2.22 1.32 97 60 69 51

Statistical
GISS-GCM: DE Continental TSFC 2.13 1.57 (1.26) 0.83 4.85 5.19 70 52 48 42

TP 2.49 2.33 1.95 1.12 5.96 6.80 82 51 38 46
Regional TSFC (0.80) (0.52) 1.56 1.48 2.24 2.73 32 52 40 –3

TP 1.43 1.13 1.86 1.80 (2.73) 3.13 77 57 47 55
NE TSFC 2.47 (0.80) (2.21) 77 91 88 82

TP 1.43 3.08 3.25 95 90 96 95
GISS-GCM: CRU Regional TSFC 0.86 (0.53) 1.32 1.26 2.11 2.54 60 69 52 29
CGCM2: DE Regional TSFC 2.08 1.80 1.34 0.70 1.75 1.92 42 90 85 74
CGCM2: CRU Regional TSFC 1.64 1.61 1.43 1.44 1.72 2.10 83 85 82 49

aModel column indicates the combination of general circulation model (GCM) and downscaling model; cumulus parameterization for MM5, training
data set for SD. Values for SD models best matching Wilmott and Matsuura (DE) [2003] observations (RMS Error) or closest in performance to MM5
MIBR in each column are in parentheses. The 90% confidence interval for each model was estimated as twice the standard deviation of 1993–1997 JJA
seasonal means. Regional average correlations between downscaled field and GCM predictor were limited to the 95% confidence level. NYC is the three
state, 31-county New York City metropolitan area.

Figure 2. 1951–2087 JJA regional mean TSFC (�C) from observations, National Centers for Environmental
Prediction (NCEP) reanalysis, and GISS-GCM.
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lake surface temperatures directly, while the DE data set
included higher temperatures interpolated from land station
observations near the lakes, grid cells representing the large
lakes resolved by MM5 were also excluded from analysis.
The DE 1993–1999 TSFC record was used as verification
for all downscaling models, and skill was assessed through
areally averaged root mean squared (RMS) error.

3.1. Skill Under Current Conditions

[30] NCEP Reanalysis was a skillful predictor of local
TSFC over eastern North America, and an effective perfor-
mance benchmark. For summers 1997–1999, RMS error on
monthly mean TSFC downscaled from 1990–1996 NCEP
Reanalysis was between 0.66 and 0.84�C across all predic-
tor domains and variables. Neither the TSFC nor the TP
predictor variable set was consistently superior across all
analyzed scales, although the regional-scale TSFC predictor
was marginally best across both the domain and NYC.
Predictor domain played a negligible role, as the difference
in RMS error for NYC between the continental North
America and NE predictor domains was less than 0.04�C.

This confirmed Huth’s [1999] finding that predictor domain
has a negligible effect on downscaled TSFC for present
conditions.
[31] Predictions for 1993–1999 showed the extent to

which both MM5 and the SD models could debias GCM
output, and 1997 provided a cotemporaneous performance
metric against observations. We found that all SD models
tested were more skillful than either of the MM5 models for
1997, the only historical summer of comparison. Down-
scaling from GISS-GCM was not as skillful as downscaling
from 1990–1996 NCEP reanalysis. We estimated the 90%
confidence interval for regional RMS error on all models as
twice the standard deviation of 1993–1997 JJA seasonal
means. Results are shown in Table 1. None of the SD
models demonstrated a statistically significant improvement
in RMS error over either MM5 simulation. Overall, the
regional TSFC and NE TSFC were the only SD models to
closely match MM5 seasonal mean sensitivity to GISS-
GCM, and all SD models demonstrated statistically signif-
icant RMS differences from both MM5 models over the
region and NYC.

3.2. Statistical and Dynamical Downscaling Under
Climate Change

[32] Regional mean temperature increases from the 1990s
to 2080s predicted by the GISS-CGM (3.31�C) and
CGCM2 (4.14�C), as well as those in the downscaled
results produced by SD and MM5, are within the range of
temperature changes predicted by other global climate
models for the A2 scenario for the same region [IPCC,
2001]. MM5 MIBR and MIGR models performed compa-
rably to all SD models using the regional and NE predictor
domains in predicting less warming over the region than the
host GCM. For SD from CGCM2, downscaled regional
warming was less than half of what the GCM predicted.
[33] Figure 3 illustrates the progression of projected

quasi-decadal JJA mean TSFC, in GISS-GCM and down-
scaled regional scenarios, in the 1990s, 2050s, and 2080s.
While all SD predictor domains yielded reasonably consis-
tent spatial patterns for the 1990s, different predictor
domains caused the regression estimates to diverge steadily
for future projections. Differences between the TSFC and TP
predictor sets are slight. The inclusion of high latitudes up
to 60�N in the continental-scale predictors forecasted warm-
ing greatly increased beyond the GCM, especially over
northern parts of the region.
[34] Although there is agreement among models that the

Arctic warms more than subpolar regions when subject to
increasing levels of greenhouse gases in the atmosphere,
GISS-GCM showed the greatest polar amplification of
climate change among 14 models in the Coupled Model
Intercomparison Project 2 [Holland and Bitz, 2003]. While
the model’s climate sensitivity of 2.7�C for doubled CO2 is
well within the empirical range of 3 ± 1�C [Hansen et al.,
2006], GISS-GCM demonstrated anomalous increases in
both poleward ocean heat transport and winter polar cloud
cover at doubled CO2 conditions, which may influence
polar amplification. Statistical downscaling was sensitive
to this pattern, as DE surface temperature observations in
the NE region were highly correlated with the Canadian
circumpolar north (>90%) and had low correlations with the
rest of the continental predictor domain. This may be why

Figure 3. Projected JJA mean TSFC (�C).
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the predictor domain had relatively little influence on SD
under observed conditions, but mattered greatly under
climate change scenarios.
[35] Increased warming from the continental predictors is

also attributable to the fact that leading EOFs of both TSFC

and MSLP are multipolar over this large domain. The first
EOF of MSLP and second and third EOFs of TSFC are
imbalanced dipoles, which Benestad [2002] and Huth
[2004] found to increase warming and yield spurious trend
estimates.
[36] Although the MM5 simulations covered limited time

intervals, the continuous monthly time series of regional
mean TSFC from SD puts them into perspective (Figure 4)
and illustrates that, with the exception of the last 4 years of
the simulation (2084–2087), all MM5 MIBR and MIGR
projections fell within the envelope of the SD simulations
specified with our a priori assumptions. This indicates that
until 2084, the RCM regional response to the GCM increase
in TSFC remained linear, and is sufficiently captured by
linear regression SD models. For 2084–2087, the RCM
response was highly nonlinear, and covariant across the
region and NYC. The consistent difference in TSFC between
MM5 MIBR and MIGR, which Lynn et al. [2004] found to
be a result of differences in diurnal cycles of precipitation,
illustrates the magnitude of uncertainty in just one of the
many parameterizations employed by RCMs. We find that
both MM5 and SD produce much greater interannual
variance in regional mean TSFC than the host GCM or the
historical records of DE, CRU, and NCEP Reanalysis,
shown in Figure 2. This variation, sometimes as much as
5�C between concurrent years, suggests that both methods
added a potentially implausible level of interannual noise to
the climate change signal in the process of downscaling.
[37] With significant uncertainties in both SD and MM5,

we cannot say which projection is ‘‘the best.’’ While

downscaling model performance at present climate condi-
tions does not imply applicability to climate change studies
[Huth, 2004], similar performance of the two classes of
downscaling models both at present and under climate
change suggests that for studies focused on defining pro-
jection uncertainty, or for studies with computation resource
limitations, SD may be appropriate to apply for high-
resolution modeling in lieu of an RCM, and to supplement
the RCM as a proxy in sensitivity analysis.
[38] RMS differences between the different statistical

models and MM5 diverged by the 2020s; the regional
difference always represents more than the 100% of the
mean warming in MM5 MIGR by the 2080s, and is higher
in absolute magnitude and percentage of mean regional
warming than the RMS differences found byMurphy [2000]
between a different set of statistical and dynamical models
over northern Europe under a similar warming scenario.
Differences between SD and MM5 were highly temperature
dependent, and neither method predicted a consistently
different downscaled regional mean temperature (Figure 5).

3.3. Choice of Statistical Downscaling Variables

[39] The relative importance of SD model inputs to SD
downscaled skill (RMS error) and domain-wide spatial
and statistical agreement with MM5 for JJA TSFC over
North America in descending order is (1) predictor domain;
(2) Surface Record/Predictor Model; (3) Predictor Variables;
and (4) Predictor Grid Resolution.
3.3.1. SD Predictor Domain
[40] The size of the large-scale region from which EOFs

are calculated critically influenced SD results under climate
change, although this finding may be specific to the region,
SD model, and predictor set. In this experiment, skill
against observations, stationarity, and agreement with
MM5 over NYC were highest for the local NE predictor

Figure 4. 1993–2087 JJA regional mean TSFC projections (�C).
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domain. Over the entire region (for which only the regional
and continental predictor domains could be evaluated),
spatial patterns of SD and MM5 were closest for the
regional predictor over the entire region and for the NE
predictor over NYC. However, predictand region is not
necessarily the best predictor domain, as the continental-
scale predictor performed better against observations and,
when other parameters were changed, was less variable
than the regional predictor for regional downscaling.
3.3.2. Input Data for SD (Predictor GCM and
Surface Temperature Record)
[41] The choice of surface record was slightly more

important than the choice of GCM, though for the options
tested here, all input choices were less important than the
choice of predictor domain. Differences in regional mean
warming between models using DE and CRU as training
were of the same magnitude (less than 0.3�C) as the 1951–
1999 differences, regardless of the input GCM.
3.3.3. Predictor Variable (TSFC, MSLP, Combination)
[42] The MSLP predictor explained variance in observed

temperature, but diminished predictive performance when
downscaling from GISS-GCM. Regional mean MSLP in
GISS-GCM decreased linearly at a rate of 0.12 mb/decade
from 1990–2087, and the influence of this trend in MSLP
in the combined predictor (TP) tended to slightly increase
warming in downscaling from GISS-GCM.
3.3.4. Predictor Resolution
[43] Across all three predictor domains, differences in

downscaled results between coarse (4� � 5�) and finer

(2.5� � 2.5�) scale predictor fields from NCEP 1990–1996
reanalysis are negligible, with a mean RMS difference of
0.01 �C. This apparent insensitivity to resolution is likely due
to the absence of important smaller-scale features in both
predictor fields. While predictor resolution probably has
minimal effect on downscaled TSFC globally, we caution that
this result is not necessarily transferable to precipitation and
other climate variables of interest for regional downscaling.

3.4. Spatial Relationships as Indicators of Agreement

[44] Stationarity implies that the mean, variance and
autocorrelation structure do not change over time. Some
statistical relationships are stationary while others vary, and
it is uncertain which of these relationships will be important
to the downscaling. In particular, the relationship between
the time series at each observation station or surface grid
point and the time series of a large-scale predictor pattern
may remain constant even while the aggregate relationship
between a regional map of such surface observations and
the large-scale pattern varies. The SD models used here
assume a constant local predictor-predictand relationship,
but do not incorporate the relationships between the predic-
tor and the regional map of observations. Changes to this
regional aggregate relationship may be an indicator of the
relative contributions of the strength of the predictor forcing
and the codified relationship between large-scale and local
features built into the RCM or SD algorithms.
[45] In this study, the regional mean correlation between

DE TSFC and NCEP reanalyzed TSFC was 0.92 for each

Figure 5. Average model agreement between SD and MM5 (MIBR) over the study domain and NYC,
1997–2087 (�C). Cotemporaneous predicted monthly mean TSFC from GISS-GCM/MM5 and GISS-
GCM statistically downscaled to DE by predictor domain and predictor variables.
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decade in the period 1950–1996 and varied by less than 1%,
indicating stationarity. Table 1 shows that all of the regional
correlations at the 95% significance level between down-
scaled results and associated GCM predictors are variable
over the quasi-decades chosen for comparison. In fact,
neither MM5 for 1993–1997 nor any of the SD predictions
from GISS-GCM for 1997–1999 even maintained the same
relationship with GISS-GCM as the DE training.
[46] Spatial scale of the predictors was the most important

contributor to stationarity during both training with reanal-
ysis and projection with GCMs. Two SD models with the
NE predictor maintained their historical correlation, and one
strengthened, but predictor/predictand field relationships in
projections from GCMs generally weakened from the 1990s
to 2080s, and were weaker than historical patterns from DE
and NCEP Reanalysis. However, Figure 3 shows that MM5
MIBR and SD with regional-scale predictors each retained
the spatial patterns they developed in downscaling the
1990s from GISS GCM. This suggests that for these
particular domain sizes and locations, the strength of the
local training relationship in SD and model formulation in
MM5 was more important in the downscaling model than
the input GCM’s spatial variability, so that the GCM serves
more as a mean warming trend upon which to overlay
statistical momentum or dynamical calculations than as the
driving force behind spatial patterns of variance from
predictor EOFs. This similar response to GCM input,
despite different downscaling methods, may be a reason
for apparent agreement between the downscaled scenarios.
However, it is possible that the weakening of predictor-
predictand relationships in projections may come from the
fact that predictor temperatures in future climates fall
beyond the interval on which the SD models were trained.

4. Summary and Conclusion

[47] We employed regression techniques and a dynamical
regional climate model to downscale June, July, and August
monthly mean surface temperature over eastern North
America under greenhouse gas-driven climate change sim-
ulation by the NASA GISS GCM. We found that the two
methods and all permutations of regression parameters
generally exhibited comparable skill at simulating historical
observations, although spatial patterns in temperature across
the region differed. While the two methods projected similar
regional mean warming over the period 2000–2087, they
again developed vastly different spatial patterns of temper-
ature across the region, which diverged greatly from their
historical differences. We found that for statistical down-
scaling with multiple linear regressions, predictor domain
size was a negligible factor for current conditions, but had a
much greater influence on future surface temperature
change than any other factor, including the source of
predictor and training data sets. We found that employing
a smaller predictor domain maintained stationarity and led
to better agreement with the RCM, while continental-scale
predictors simulated much greater warming than regional
and local predictors.
[48] These results illustrate the broad range of potentially

plausible local scenarios that can be generated from a single
GCM run using the same methodology, and highlight the
importance of evaluating each variable in the process of

statistical downscaling. The location and size of the predic-
tor domain demand special attention, since this variable is
responsible for the most variation in downscaled results, is
inherently specific to each application, and is currently
chosen in a more arbitrary manner than other factors. A
combination of expert knowledge, objective analysis, and
sensitivity testing is necessary to reduce uncertainty in this
area.
[49] Downscaled projections provide an estimate of spe-

cific, localized response to climate change that raw GCM
output cannot yet provide, but substitute the known limi-
tations of GCMs, such as inadequate spatial resolution, with
a different set of local uncertainties. The unique value of
local projections in integrated assessment is contingent
upon the bias and noise added in downscaling, as well as
the transparency of the downscaling process. This study
highlights the advantages and relative ease for integrated
assessments to take into account multiple sources of infor-
mation, at all available scales, in order to quantify uncer-
tainty and reduce the assessment’s reliance on a few
linkages and arbitrary settings. Regional surface temperature
scenarios, and the assessments to which they contribute, can
be improved by assessing multiple downscaling methods for
the same GCM, ranging from state-of-the-science dynamical
models to relatively simple statistical predictions; and by
using multiple downscaling methods with an ensemble of
GCMs and surface data sets to yield the most plausible
projections and develop a comprehensive understanding of
the physical and mathematical reasons behind apparent
agreement among distinct regional downscaling techniques.
Conversely, the divergence in projections in this study
shows how inappropriate it may be to pick just one SD
analysis for comparison with RCM results, and especially
when using SD as a standalone tool.
[50] This qualitative and quantitative comparison and

sensitivity analysis is a step toward the development of a
comprehensive methodology for estimating the uncertainty
added in the process of downscaling climate change scenar-
ios. While this experiment focused on a single variable,
temperature, that is well-suited to linear regression down-
scaling, future studies of other statistical downscaling
methods and climate variables with greater spatial and
temporal inhomogeneity will illustrate the transferability
of these results to the generalized problem of downscaling
climate change.
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