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Abstract

We show that the expression for S1 (i.e., the first term in the expansion of the S matrix) that is essential in calculating vibration-rota-
tion pressure-broadened shifts is not properly given in the usual Robert–Bonamy (RB) formalism. The problem resulted when they con-
sidered effects of the vibrational dephasing on S1; they tacitly made an assumption that the trajectories of interest are vibrationally
independent. As a result, the current RB expression is an approximate one. Based on a vibration-dependent trajectory model, which
is physically sound, we derive the correct expression for S1. We present numerical calculations of the broadening and shifting cross sec-
tions and of the line shape parameters for the H2–He pair and find for this molecular system, new results differ significantly from those
calculated using the existing formalism. In addition, by comparing with those derived from close coupling calculations, we find that the
new results are better than the old ones. Finally, we discuss how important effects from this modification could be for other molecular
systems. We conclude that for certain molecular systems where the short-range collisions are the dominant source responsible for the line
widths and shifts, and in addition, the isotropic potential has small depth, the present modification is a worthwhile step to be taken in
order to refine the current RB formalism. Meanwhile, for other systems it may not be necessary.
� 2007 Elsevier Inc. All rights reserved.
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1. The Born–Oppenheimer approximation and vibration-

dependent trajectories

It is well known that in many molecular collision theo-
ries, the Born-Oppenheimer approximation is introduced
to simplify calculations. With this approximation, the total
wavefunction is written as a product of two components
associated with the translational and internal motions,
respectively, and the original Schrödinger equation
becomes two separated ones governed by two Hamiltonians.
In addition, the Hamiltonian determining the translational
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motion consists of a kinetic operator K and a potential
operator Va. The latter can be expressed as [1]

V a ¼< ajV ja > þ
X
a0 6¼a

< ajV ja0 >< a0jV ja >
Ea � Ea0

þ � � � ; ð1Þ

where V is the total potential between two molecules, a is a
simple notation used to denote all internal quantum num-
bers, and Ea corresponds to its eigenvalues. It is worth
mentioning that no matter if the translational motion is
treated quantum mechanically or classically, Va depends
on the internal degrees of freedom.

In semi-classical theories [2–4], the translational motion
is treated classically. In addition, if one assumes Va is not
sensitive to the rotational quantum numbers, one can
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conclude that the trajectories are vibrationally dependent,
but rotationally independent. Finally, we note that at pre-
sent, in most theoretical half-width and shift calculations,
the trajectory is assumed to be governed by its isotropic
potential only. In other words, one assumes that the aniso-
tropic interaction does not play any role in determining the
trajectories. With this restriction, only the isotropic part of
Va is of interest. For simplicity, we will not introduce a new
notation and in the following, Va should be understood as
the isotropic part defined by Eq. (1). In addition, one must
distinguish Va and Viso(R(t),n) which is introduced later.
The former is given by Eq. (1) and does not operate on
the internal states ja>, although it does depend parametri-
cally on them [1]. Meanwhile, the latter is an operator. At
the lowest order adopted in the present study, Va =
<a jViso(R(t),n) ja>.

In the following, we provide details to show how to
derive formulas for vibrational dephasing based on vibra-
tion-dependent trajectories.

2. General expressions for vibrational dephasing from S1(b)

In calculating molecular line half-widths and shifts, the
vibrational dephasing makes contributions to S1, the
first-order term in the expansion of the S matrix, defined
by the following equation [4]

S1ðbÞ ¼
1

�h

Z þ1

�1
dt < f jV isoðRðtÞ; nÞjf >

� 1

�h

Z þ1

�1
dt < ijV isoðRðtÞ; nÞji >; ð2Þ

where b is the impact parameter, i and f denote the initial
and final internal states. For later convenience, the normal-
ized vibrational coordinate n defined by n ” (r � re)/re,
where r is the vibrational displacement and re the equilib-
rium displacement, has been explicitly included as an argu-
ment in Viso in Eq. (2). It is known for years [1,5], with
semi-classical line shape theories, a part of the interaction,
which does not operate on the internal degrees, is excluded
in evaluating the S matrix. As a result, the usual separation
of the interaction into its isotropic and anisotropic parts
adopted in the RB formalism is not a proper practice and
it may lead to confusion [5]. The rigorous distinction is
to separate the interaction into two categories such that
one operates on the internal degrees while the second does
not [1,5]. Accordingly, one has to introduce a comprehen-
sive expression for Viso(R(t),n) to make an explicit separa-
tion between its vibration-independent and vibration-
dependent parts, V0(R(t)) and DViso(R(t),n), as

V isoðRðtÞ; nÞ ¼ V isoðRðtÞ; n ¼ 0Þ þ DV isoðRðtÞ; nÞ
� V 0ðRðtÞÞ þ DV isoðRðtÞ; nÞ:

ð3Þ

To make such a distinction for the isotropic potential
Viso(R(t),n) as shown above is the first step to remedy the
problem. The next step is to ignore the component
V0(R(t)) in the expression for S1 because it does not operate
on the internal degrees [1]. As a result, a rigorously correct
expression for S1 should be written as

S1ðbÞ ¼
1

�h

Z þ1

�1
dt < f jDV isoðRðtÞ; nÞjf >

� 1

�h

Z þ1

�1
dt < ijDV isoðRðtÞ; nÞji > : ð4Þ

One may ask why no one has challenged the previous
expression for years? The answer is it happens that when
one assumes further, with or without clearly making a
statement, that the trajectories are assumed to be vibra-
tion-independent, the contributions to the first and second
terms of Eq. (2) from V0(R(t)) are exactly canceled out.
This is just the case of the current RB formalism because
these authors have tacitly made such an assumption there.
Thus, within this limitation, Eq. (2) does not cause prob-
lems. Beyond this, to use Eq. (2) could cause errors. There-
fore, one should use Eq. (4) as the expression for S1. In the
following, one has to keep in mind that it is
<ajDViso(R(t),n) ja> that appears in the integrand of
Eq. (4) and Va (=<ajViso(R(t),n)ja>) that determines
trajectories.
3. Vibrational dephasing with straight line trajectories

In early line shape theories such as the Anderson-Tsao-
Curnutte (ATC) formalism [2,3], the translational motion
was simply assumed to be a movement with constant speed
v along a straight line. In other words, the trajectories are
only characterized by the impact parameter b and do not
depend on Va at all. Based on this trajectory model, if
one chooses t = 0 when the two colliding molecules reach
their distance of closest approach (equal to b), the transla-
tional motion R(t) is given by

RðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ ðvtÞ2

q
: ð5Þ

Usually one assumes Viso(R(t),n) can be represented by a
Lennard–Jones model which is expressed as an expansion
in n by

V isoðRðtÞ;nÞ¼
C12

RðtÞ12
ð1þ s1nþ t1n

2Þ� C6

RðtÞ6
ð1þ s2nþ t2n

2Þ:

ð6Þ

Then, its vibration-independent and vibration-dependent
parts V0(R(t)) and DViso(R(t),n) can be easily identified as

V 0ðRðtÞÞ ¼
C12

RðtÞ12
� C6

RðtÞ6
;

DV isoðRðtÞ; nÞ ¼
C12

RðtÞ12
ðs1nþ t1n

2Þ � C6

RðtÞ6
ðs2nþ t2n

2Þ:

ð7Þ

By introducing a dimensionless parameter z = vt/b one is
able to evaluate the expression for S1 analytically [6]
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S1ðbÞ ¼
2C12

�hvb11

Z þ1

0

dz
1

ð1þ z2Þ6
� ½< fjs1nþ t1n

2jf > � < ijs1nþ t1n
2ji >�

� 2C6

�hvb5

Z þ1

0

dz
1

ð1þ z2Þ3
� ½< fjs2nþ t2n

2jf > � < ijs2nþ t2n
2ji >�

¼ 3per
2�hv

21

32
� r

b

� �11

½s1ðnðfÞ � nðiÞÞ þ t1ðn2
ðfÞ � n2

ðiÞÞ� �
r
b

� �5

½s2ðnðfÞ � nðiÞÞ þ t2ðn2
ðfÞ � n2

ðiÞÞ�
� �

;

ð8Þ

where simple notations n(f) = <f jn j f>, n2
ðf Þ ¼< f jn2jf >,

n(i) = <i jn j i>, and n2
ðiÞ ¼<i jn2 j i> are used. In deriving

Eq. (8), we have replaced C12 and C6 by the LJ parameters
e and r according to the following relations C12 = 4er12

and C6 = 4er6. It is worth mentioning that the derivation
of Eq. (8) is based on the straight-line trajectory model.
Therefore, this expression for S1 is applicable within the
ATC formalism.

4. Vibrational dephasing with ‘‘parabolic’’ trajectories

In the RB formalism [4], the straight-line trajectory
model has been refined by a ‘‘parabolic’’ trajectory model
in which effects from V0(R(t)) have been taken into
account. The translational motion is described by move-
ments with an ‘‘apparent’’ speed v0c along rectilinear paths
or curves such that R(t) is given by

RðtÞ ¼ rc

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
; ð9Þ

where z is a dimensionless parameter defined by z ¼ v0ct=rc.
In the above expression, rc is the distance of closest ap-
proach defined in terms of the impact parameter b by

b2 ¼ r2
c 1� 8e

mv2
ðr
rc

Þ12 � ðr
rc

Þ6
� �� �

; or

b2 ¼ r2
c 1� 2

mv2
V 0ðrcÞ

� �
:

ð10Þ

In Eq. (10), two equations are given. The first is a special
one applicable for the LJ potential model and the second
is a general one presented here for later convenience.
Meanwhile, v0c is defined by

v20
c ¼ v2 1þ 8e

mv2
5ðr

rc

Þ12 � 2ðr
rc

Þ6
� �� �

;or

v20
c ¼ v2 1� 2

mv2
V 0ðrcÞ �

rc

mv2
� dV 0ðrcÞ

drc

� �
:

ð11Þ

Similarly, there are two expressions given for v0c in Eq. (11).
By following the same derivation as for Eq. (8) without mod-
ification, it appears that one can easily obtain an expression
for S1 applicable for the ‘‘parabolic’’ trajectory model

S1ðrcÞ ¼
3per
2�hv0c

21

32
� r

rc

	 
11

½s1ðnðfÞ � nðiÞÞ þ t1ðn2
ðfÞ � n2

ðiÞÞ�
(

�ðr
rc

Þ5½s2ðnðfÞ � nðiÞÞ þ t2ðn2
ðfÞ � n2

ðiÞÞ�
�
;

ð12Þ
where S1 has been expressed as a function of rc. By compar-
ing the above expression with Eq. (8), it is obvious that
Eq. (12) is almost the same as the previous case except
for replacing v by v0c and b by rc. An alternative expression
commonly appearing in the literature [7] is given by

S1ðrcÞ ¼
3per
2�hv0c

a01

21

32
yðr

rc

Þ11 � ðr
rc

Þ5
� �

; ð13Þ

where a01 ¼ s2ðnðf Þ � nðiÞÞ þ t2ðn2
ðf Þ � n2

ðiÞÞ and y ¼ ½s1ðnðf Þ
�nðiÞÞ þ t1ðn2

ðf Þ � n2
ðiÞÞ�=a01.

5. Vibrational dephasing with ‘‘exact’’ trajectories

Recently, there have been attempts by Buldyreva et al.
[8,9] to consider what they call the ‘‘exact’’ trajectory
model. Their work is based on Bykov’s method presented
more than a decade ago [10], but no computation of line
shapes was performed at that time. With this model, the
trajectories result from solutions of the classical dynamic
equations governed by the isotropic interaction Va between
two molecules which is represented again by V0(R(t)). For
this trajectory model, Buldyreva et al. [8,9] derive a for-
mula within the RB formalism given by

S1ðrcÞ ¼
1

�h

Z þ1

�1
dt < fjDV isoðRðtÞ; nÞjf > �

1

�h

Z þ1

�1
dt < ijDV isoðRðtÞ; nÞji >

¼ 1

�h

Z þ1

�1
dt½DV isoðRðtÞÞ�fi

¼ 2rc

�hv

Z þ1

1

xdx
½DV isoðxrcÞ�fi

fx2 � 1þ 2V 0ðrcÞ=mv2 � 2x2V 0ðxrcÞ=mv2g1=2
;

ð14Þ
where [DViso(R(t))]fi ”<f jDViso(R(t),n) j f> -<i jDViso

(R(t), n) ji>. Then, with Eq. (14) one can perform numerical
calculations to find values of S1(rc) for all trajectories of interest.

At this stage, there is nothing new. The above expres-
sions for S1(rc), especially the one given by Eq. (13), have
been used by many researchers for many years. However,
by carefully considering the derivation processes for
S1(rc) based on these trajectory models, we have found dif-
ferences. First of all, the derivation for S1 based on the
straight line model is absolutely correct. On the other hand,
we have found there are subtle problems involved in deriv-
ing the expressions based on both the ‘‘parabolic’’ and the
‘‘exact’’ trajectory models. For these two cases, in contrast
with the fact that the trajectories are determined by
<ajViso(R(t),n) ja> and the latter is vibrationally depen-
dent, it has always been tacitly assumed that the transla-
tional motion is vibrationally independent. In the first
case, only V0(R(t)) (i.e., <ajViso(R(t),n = 0) ja>) appears
in Eqs. (9)–(11) which are used to describe the translational
motion. This implies that during the collision process, no
matter which vibrational states the absorber molecule
occupies, the trajectories themselves and how fast the
translation motion moves are the same.

Meanwhile, for the ‘‘exact’ trajectory case, the problem
is hidden more deeply. In deriving the second line of Eq.
(14), the algebraic manipulation seems straightforward
and the result looks faultless. However, by adding two
integrands together and combining two integrations over t
into one, one has tacitly assumed that the two arguments
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R(t) in these two integrands move along the same trajecto-
ries with the same speed. This is just the same assumption
made in the previous case. In summary, the current BR for-
malism, especially the expression for S1, is based on an
approximation such that the trajectories are vibration-
independent. Fortunately, without this approximation it
is easy to derive new correct expressions for S1 for both
the vibration-dependent ‘‘parabolic’’ and the vibration-
dependent ‘‘exact’’ trajectory models.
6. A refinement of vibrational dephasing with ‘‘parabolic’’
trajectories

Rigorously speaking, the current expression for S1(rc) in
the RB formalism is applicable in calculating line half-widths
and shifts not involving vibrational transitions. Although it
is V0(R(t)), not the more rigorous <ajViso(R,n) ja> that
appears in Eqs. (9)–(11), in practice this difference is trivial
and can be considered simply as a notation change.
However, for lines of interest where vibrational transitions
take place, one has to take the vibrational dependence of
the translational motion into account. As a result, the two
integrations in the expression for S1 should be treated
separately

S1ðbÞ ¼
1

�h

Z þ1

�1
dt < f jDV isoðRðtÞ; nÞjf > �

1

�h

Z þ1

�1
dt < ijDV isoðRðtÞ; nÞji >

¼ 2rc;ðf Þ

�hv0c;ðf Þ

Z þ1

0

dz < f jDV isoðRðzÞ; nÞjf >

� 2rc;ðiÞ

�hv0c;ðiÞ

Z þ1

0

dz < ijDV isoðRðzÞ; nÞji > :

ð15Þ

In the above expression, rc,(f) and rc,(i) differ from each
other and they also differ from rc defined by Eq. (10) be-
cause these closest distances rc,(f) and rc,(i) are vibration-
dependent. Similarly, one has to introduce two v0c;ðf Þ and
v0c;ðiÞ to replace v0c defined by Eq. (11) because these two
are also vibration-dependent. In fact, one can find rc,(f)

and rc,(i) from Eq. (10) by making a replacement of V0(rc)
by Va(rc,(a)). Similarly, one can get v0c;ðf Þ and v0c;ðiÞ from
Eq. (11) with a similar replacement.

In the case where Viso(R, n) is given in terms of a LJ
model as shown by Eq. (6), we can write <fjViso(rc,(f), n)
jf> used to determine rc,(f) and v0c;ðf Þ explicitly as

< f jV isoðrc;ðf Þ; nÞjf >¼
C12

r12
c;ðf Þ
ð1þ s1nðf Þ þ t1n

2
ðf ÞÞ

� C6

r6
c;ðf Þ
ð1þ s2nðf Þ þ t2n

2
ðf ÞÞ: ð16Þ

Meanwhile, <fjDViso(R(t),n) jf> appearing in Eq. (15) as an
integrand of the first integration is given

< f jDV isoðRðzÞ; nÞjf >¼
C12ðs1nðf Þ þ t1n

2
ðf ÞÞ

r12
c;ðf Þð1þ z2Þ6

�
C6ðs2nðf Þ þ t2n

2
ðf ÞÞ

r6
c;ðf Þð1þ z2Þ3

: ð17Þ
Similarly, one can find <ijViso(rc,(f), n) ji> and <ijDViso(R(t),
n) ji>. Then, by performing the integrations analytically in
Eq. (15), we find

S1ðbÞ ¼
3per

2�hv0c;ðfÞ

21

32
� r

rc;ðfÞ

	 
11

ðs1nðfÞ þ t1n
2
ðfÞÞ �

r
rc;ðfÞ

	 
5

s2nðfÞ þ t2n
2
ðfÞ

� �" #

� 3per
2�hv0c;ðiÞ

21

32
� r

rc;ðiÞ

	 
11

ðs1nðiÞ þ t1n
2
ðiÞÞ �

r
rc;ðiÞ

	 
5

s2nðiÞ þ t2n
2
ðiÞ

� �" #
:

ð18Þ
If potential parameters s1nðf Þ þ t1n

2
ðf Þ, s2nðf Þ þ t2n

2
ðf Þ,

s1nðiÞ þ t1n
2
ðiÞ, and s2nðiÞ þ t2n

2
ðiÞ are available, one can easily

obtain the vibrational dephasing contributions to S1(b)
from Eq. (18) [11].

At this stage, we would like to discuss a problem associ-
ated with the argument of S1. As shown by Eq. (18), the
argument of S1 is the impact parameter b, the same as that
originally used in the ATC formalism, but not the closest
approach rc selected in the RB formalism. The key point here
is between b and rc, which one is a proper choice. In the ATC
formalism, there is only one choice because rc = b. Mean-
while, in the RB formalism, there are two choices, but to
select rc is better. However, after the vibration-dependent
trajectory models are introduced, a new problem arises.
Corresponding to a specified b value, there are two different
trajectories. For the vibration-dependent ‘‘parabolic’’
trajectory model, the latter are described by rc,(f) and vc,(f)’
and by rc,(i) and vc,(i)’, respectively. Although it is still
possible to describe all these rc,(f), vc,(f)’, rc,(i), and vc,(i)’ in
terms of rc, it requires extra work. As a result, to select rc

as the argument of S1 becomes disadvantageous and to
select b is a natural choice. It is worth mentioning that to
choose b as the argument for S1 will not cause any new
challenge as one enters in the last stage of width and shift
calculations by performing integrations over b. Of course,
one has to make mathematical adjustments, such as to
remove a Jacobian factor db/drc from the previous
integrand and to change the integration limits accordingly.
7. A refinement of vibrational dephasing with ‘‘exact’’
trajectories

A general expression for S1(b) is given by Eq. (4) from
which numerical calculations can be carried out. One can
follow Buldyreva’s method [8,9] and express S1 as

S1ðbÞ ¼
2rc;ðfÞ

�hv

Z þ1

1

xdx
DV iso;ðfÞðxrc;ðfÞÞ

fx2 � 1þ 2V iso;ðfÞðrc;ðfÞÞ=mv2 � 2x2V iso;ðfÞðxrc;ðfÞÞ=mv2g1=2

� 2rc;ðiÞ

�hv

Z þ1

1

xdx
DV iso;ðiÞðxrc;ðiÞÞ

fx2 � 1þ 2V iso;ðiÞðrc;ðiÞÞ=mv2 � 2x2V iso;ðiÞðxrc;ðiÞÞ=mv2g1=2
;

ð19Þ

where DViso,(f)(r) = <fjDViso(r,n)jf>, DViso,(i)(r) =
<ijDViso(r,n)ji>, Viso,(f)(r) = <fjViso(r,n)jf>, and
Viso,(i)(r) = <ijViso(r,n)ji>. In comparison with a case with-
out considering vibration-dependent trajectories, there are
no extra difficulties in evaluating the two integrations in
the right side of Eq. (19). We note that the argument of
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S1 is the impact parameter b again. In this case, b is the
only choice because it is impossible to describe the two tra-
jectories calculated numerically in terms of rc.

We would like to point out here that this refinement of
the translation motion can also be extend into calculating
the S2 term because S2 also depends on how the transla-
tional motion varies. In addition, one has to use b as the
argument of S2. Because the development is straightfor-
ward and S2 is not the main subject in the present study,
we will not discuss the extension here.
8. Numerical results

As an example, we present numerical calculations of the
line broadening and line shifting for the isotropic Raman
Q(1) line of v = 1 ‹ v = 0 band of H2 broadened by He.
For this pair, an accurate ab initio vibration-dependent
potential surface is available [12] and has been used in
previous calculations of line parameters for the same line
[13–15]. As claimed by Joubert et al., this system is perti-
nent to specifically study the influence of the trajectory
modification within the RB formalism [15], and it is a good
candidate to test the new modification introduced here. We
follow their arguments that for this system the vibrational
dependence of the isotropic potential is the dominant
source for the width and the shift of the Q(1) line, and con-
tributions from the anisotropic potential can be neglected.
As a result, the simplified expressions for the width and
shift are given by

cfi ¼
nb

2pc

ffiffiffiffiffiffiffiffi
8kT
pm

r

�
Z 1

0

xe�xdx
Z 1

0

2pb½1� e�ReS2ðb;kTxÞ cos gfiðb; kTxÞ�db

� nb

2pc

ffiffiffiffiffiffiffiffi
8kT
pm

r Z 1

0

xe�xdx
Z 1

0

2pb½1� cos gfiðb; kTxÞ�db

ð20Þ

dfi ¼
nb

2pc

ffiffiffiffiffiffiffiffi
8kT
pm

r

�
Z 1

0

xe�xdx
Z 1

0

2pbe�ReS2ðb;kTxÞ sin gfiðb; kTxÞdb

� nb

2pc

ffiffiffiffiffiffiffiffi
8kT
pm

r Z 1

0

xe�xdx
Z 1

0

2pb sin gfiðb; kTxÞdb;

where nb is the number density of the bath molecule, m is
the reduced mass of the colliding pair, x(= E/kT) is a
dimensionless variable, and E is the initial translational ki-
netic energy. In the above expressions, gfi(b,E) is defined by

gfiðb;EÞ ¼ S1ðb;EÞ þ ImS2ðb;EÞ ð21Þ

and is approximately represented by S1(b,E) here.
The original potential surface from Schaefer and Köhler

[12] is given by tabulated values at dozens of R values and
at five vibrational displacement r of H2 (i.e., r = 0.900,
1.280, 1.449, 1.618, and 2.000 a.u.). In order to perform
numerical calculations, we need to know Viso(R(t),n = 0)
and <ajViso(R(t),n) ja>. The former is taken directly from
the original values at re = 1.449 a.u. and the latter is calcu-
lated from the following formula

< ajV isoðRðtÞ; nÞja >¼
Z þ1

0

w2
vaj¼0ðrÞV isoðRðtÞ; rÞdr; ð22Þ

where wvajðrÞ is the ro-vibrational wave function of H2. In
practice, we do not carry out the integration of Eq. (22) di-
rectly, rather we calculate values of <ajViso(R(t), n) ja>
from polynomial expansions of Viso(R(t),n) derived
from the least squares polynomial fitting over r and values
of <v = 0, j = 0 jnkjv = 0, j = 0> and <v = 1, j = 0
jnkj v = 1, j = 0> with k = 0, . . . ,5 provided by Sch-
wartz and Le Roy for matrix elements of H2 [16]. After
<ajViso(R(t),n) ja> and Viso(R(t),n = 0) are available, val-
ues of <ajDViso(R(t),n) ja> are simply their differences.

As shown by Eq. (20), the width and shift are given by
two-dimensional integrations over x and b. We do not pres-
ent the definitions of the broadening and shifting cross sec-
tions here, rather we note that they are nothing but that
represented by the integrations over b on the right-hand sides
of Eq. (20). The calculated results are given in Figs. 1 and 2.
From these two figures, we can draw several conclusions.

It is well known that values obtained from the close
coupling calculation are the most accurate ones and they
can serve as a bench mark to judge accuracies achieved by
other methods. One of original purposes of the paper by
Joubert et al. [15] was to study the effects from adopting a
better trajectory model in calculations. Because advanta-
ges of the ‘‘exact’’ trajectory model over the ‘‘parabolic’’
one is obvious, one expects to find an improvement of
agreement with the MOLSCAT [17] values for results
obtained from this better model in the RB formalism.
By comparing two dot-dashed lines representing these
two different trajectory models, one can see that effects
are significant because there are big gaps between these
two lines. However, in comparisons with the dashed line
denoting the MOLSCAT values, the expected improve-
ment does not happen at all because the dashed line lies
just at the middle between the two dot-dashed ones.
One can also find the same features by checking
Fig. 1(a) and (b) of the paper by Joubert et al. [15] On
the other hand, if one compares the two solid lines
derived from the new formula with the MOLSCAT val-
ues, the expected improvement is clearly demonstrated
because values from the ‘‘exact’’ trajectory model are
much closer to the latter than those from the ‘‘parabolic’’
model. This implies that the previous two results both
from the RB formalism have been distorted and the
source of the distortion is nothing but the vibration- inde-
pendent trajectory assumption. The above comparisons
can serve as an argument to justify the new modification
suggested in the present study.

Secondly, by comparing the bold solid and the bold dot-
dashed lines, the former is closer to the MOLSCAT values
than the latter. The comparisons become more favorable



 

Fig. 3. Calculated line broadening for the Q(1) line of v = 1 ‹ v = 0 band
of H2 broadened by He as function of the temperature T. Values derived
from the RB formalism are plotted by two dot-dashed lines: the bold one
comes from the ‘‘exact’’ trajectory model and the thin one from the
‘‘parabolic’’ trajectory model. Similarly, results derived from the new
formula with these two trajectory models are represented by two solid
curves. In addition, values calculated from the MOLSCAT code are given
by a bold dashed line.

Fig. 1. Calculated broadening cross sections for the Q(1) line of
v = 1 ‹ v = 0 band of H2 broadened by He as function of the initial
kinetic energy E. Values derived from the RB formalism are plotted by
two dot-dashed lines: the bold one comes from the ‘‘exact’’ trajectory
model and the thin one from the ‘‘parabolic’’ trajectory model. Similarly,
results derived from the new formula with these two trajectory models are
represented by two solid curves. In addition, values calculated from the
MOLSCAT code are given by a bold dashed line. In order to be
consistent, there is only the isotropic part of the potential surface used in
the MOLSCAT calculations. For a reference, one (i.e., T = 1000 K) of the
weighting functions introduced later in calculating the line parameters is
plotted by a thin dotted line with arbitrary units.

Fig. 2. The same as Fig. 1 except for the shifting cross sections.
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for the new results as the energy increases. This is consistent
with the fact that as the kinetic energy (or temperature)
increases, the gap between classical theory and quantum the-
ory becomes smaller. Finally, by comparing gaps between a
bold and a thin line with the same format with gaps between a
bold (or thin) dot-dashed and a bold (or thin) solid line, one
can conclude that the effect from the modification of the tra-
jectory model (i.e., from the ‘‘parabolic’’ to the ‘‘exact’’ tra-
jectories) and the effect from the new modification suggested
here (i.e., from the vibration-independent to the vibration-
dependent trajectories) are comparable. In summary, one
can conclude that at least for the H2–He pair, when one
makes refinements of the RB formalism by improving the
trajectory modeling, it is worthwhile also to consider effects
from the vibration-dependent trajectories. Of course, one
cannot simply extend the above conclusion drawn from
H2–He to other systems without analyzing differences
between their potential features.

After the broadening and shifting cross sections as func-
tions of E are available, one can easily derive the line
broadening and line shifting by performing the remaining
integrations of the corresponding cross sections over x in
Eq. (20). The calculated results are plotted in Figs. 3 and
4. We note that most of conclusions drawn from Figs. 1
and 2 are applicable for the Figs. 3 and 4 so we will not
repeat them again. The only thing we would like to com-
ment on here is that as shown by Fig. 4, it appears in com-
parison with the new shifting cross sections derived from
the ‘‘exact’’ trajectory model, the new line shifting values
become less favorable compared to the MOLSCAT values.
The reason is that as shown by Fig. 2, the weighting func-
tion at T = 1000 K has its maximum value at
E = 695 cm�1. Maximum values of other weighting func-
tions at lower temperatures become even smaller. Within
this low-energy region, the shifting cross sections derived
from MOLSCAT are in between those obtained from the
RB formalism and the new formula with the ‘‘exact’ trajec-
tory model.



Fig. 4. The same as Fig. 3 except for the line shifting. Fig. 5. Calculated S1 as a function of b from the old and new formulas at
the initial kinetic energy E = 1000 cm�1 are plotted by a dot-dashed and
solid lines. Values of the phase shifts derived from MOLSCAT for dozens
of L values are also presented by crosses.
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9. Conclusions

Because the new modification is built on sound physical
considerations, it appears that a challenge may not come
from the theoretical point of view, but from the practical
point of view. In other words, whether to adopt it or not
depends on how important the effects on the calculated
widths and shifts from this modification are. In cases where
the effects are negligible, the modification is not necessary.
Otherwise, one should adopt it.

Based on the present study for the H2–He system, we
would like to make a few comments about this problem.
In order to do this, we analyze profiles of S1(b) at a typical
kinetic energy E = 1000 cm�1 and present the calculated S1

as a function of b from three different methods in Fig. 5.
There values of S1 derived from the previous and the
new formulas with the ‘‘exact’ trajectory model are plotted
by dot-dashed and solid lines, respectively. Also, we have
calculated the phase shifting from MOLSCAT for dozens
of L values. According to the correspondence principle
between the classical expression for the angular momen-
tum mbv where v is the initial speed and its quantum ana-
log ⁄(L + 1/2), for a specified L we can find its
corresponding b value. For L = 0, we assume that it corre-
sponds to b = 0. Because the phase shifting represents the
S1 term, the MOLSCAT results can be plotted in the same
figure and they are represented by x’es in Fig. 5. By com-
paring results derived from these three methods, it is obvi-
ous that as long as b is beyond 3.0 Å, they are the same.
Meanwhile, for b less than 3.0 Å, there are significant dif-
ferences, but the new values are closer to the MOLSCAT
results.

One can infer additional information from this plot. In
order to do this, we focus our attention on the two curves
derived from the semi-classical method. We have already
mentioned above that these two curves differ from each
other significantly for b < 3.0 Å and become the same for
b > 3.0 Å. It is worth mentioning that around the intra-
molecular separation R = 3.0 Å, the isotropic interaction
of H2–He changes signs from the positive repulsive to the
negative repulsive part of the potential energy surface
[12]. This means that r, one of the effective LJ parameters
for Viso, is around 3.0 Å. Therefore, one can conclude that
the new modification mainly affects short-range collisions
with b < r and it does not significantly affect other colli-
sions. This conclusion is not surprising. Meanwhile, in
the range b > r where these two curves are identical, their
values become negative and their magnitudes become very
small as shown by a shallow dip of their profiles in the fig-
ure. It is worth mentioning that the shallowness of the
depth results from the smallness of e, another effective LJ
parameter of Viso, whose value is only about 13.6 K [12].
Based on these detailed analyses, we find that for the
H2–He system there is only one region (i.e., b < r) in which
S1(b) has larger magnitudes and this region is overlapped
with the same region in which the modification of the
vibration-dependent trajectories has the largest influence
on S1(b). As a result, net effects on the cross sections and
line shape parameters from the modification are fully
exhibited. In order to understand the role played by the
effective LJ parameter e more clearly, let’s assume that e
is several times larger than 13.6 K. In this case, the depth
of S1 would be several times larger than that shown in
Fig. 5. As a result, there would be two regions in which
S1(b) has large magnitudes. Among them, one (i.e., b > r)
is just a region which is not affected by the modification.
Because a net effect results from an average process involv-
ing S1(b) over b with 2pb as the weighting function, this
effect would be reduced significantly or even dramatically.
In summary, with respect to the question about how
important the modification could be, our answer is it
depends on a system of interest. For systems similar to
H2–He with small e values, the effect is important. For
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other system with large e values, the effect is not significant
or even negligible.

The above comments result from analyzing the S1(b)
term only because we have assumed that contributions
from the S2(b) term for H2–He are negligible. In gen-
eral, this is not always true and the S2(b) term must
be taken into account. It is well known that usually
the S2 term, especially its real part ReS2(b), plays a cru-
cial role in determining the pressure broadening and
shifting. As shown by the first lines of expressions for
c and d in Eq. (20), there is a factor exp(-ReS2(b,E))
present. Usually, within the region for b < r, values of
ReS2(b,E) are positive. As a result, this factor reduces
contributions from cosgfi(b,E) and singfi(b,E) in these
expressions. Of course, it reduces effects from changes
of gfi(b,E) caused by the modification introduced here
as well. For systems which have strong anisotropic
interactions, we expect that this effect could be signifi-
cant or decisive. As a result, the effects from the new
modification could be washed out, partially or com-
pletely. Of course, by applying the new modification
to derivations of the S2(b) term itself, values of S2(b)
at the region b < r could vary. But, we do not expect
there would be big differences. Therefore, we expect that
the above comments remain true when both S1 and S2

are derived from the vibration-dependent trajectory
models. In summary, based on the considerations given
above, we expect that for systems where the short-range
collisions are the dominant source responsible for the
line widths and shifts, and in addition, the isotropic
interaction has small well depth, the vibration-dependent
trajectory modification effects on the calculated line
shape parameters could be significant. This means that
people should consider this modification if they want
to refine their calculated results. In other cases, how-
ever, the effects are not important or even negligible.
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