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Abstract

McDougall, Gent, and Drijfhout’s [McDougall, T.J., Gent, P., Drijfhout, S.S., in press. Comment on ‘‘Dynamical model
of mesoscales in z-coordinates” and ‘‘The effect of mesoscales on the tracer equation in z-coordinates OGCMs” by V.M.
Canuto and M.S. Dubovikov. Ocean Modell. doi:10.1016/j.ocemod.2006.11.004, cited as MGD] opening sentence is that
we have suggested that OGCMs have ignored a large diapycnal flux R in the mean buoyancy equation. As everybody knows,
they have. The fact that in the Eulerian framework R exists and is large is uncontroversial. The real question is whether one
should include R in OGCMs or whether there exists a formalism in which R does not show up in the mean buoyancy
equation while at the same time the momentum equations are the same as the ones solved by OGCMs.

MGD present a defense of the TRM formalism which they claim does exactly that. The belief in TRM, they write, is
widely spread among oceanographers and thus they cast our work as going against popular wisdom. Since we are not deal-
ing with a popular context but with a scientific issue that is either correct or incorrect, the MGD claim about TRM must be
scrutinized in detail. We have done so and our result, which we present in detail so that it can be checked, tested and ver-
ified, is that a key assumption concerning the TRM momentum equation is badly violated.

Specifically, when compared with the OGCMs mean momentum equations, the TRM version of the Eulerian mean
momentum equations contain an additional term which MGD claim is smaller than other terms and thus negligible. By
contrast, we show it is much larger than the non-linear terms. Our conclusion is that MGD’s contention that TRM exon-
erates OGCMs from having to include R is true but incomplete. The question concerning the presence or not of R in the
mean buoyancy equation remains unresolved.

A final comment may be of interest. MGD’s lengthy and fervent defense of TRM is at odds with the fact that in our
papers [Canuto, V.M., Dubovikov, M.S., 2006. Dynamical model of mesoscales in z-coordinates. Ocean Modell. 11, 123–
166; Canuto, V.M., Dubovikov, M.S., 2007. The effect of mesoscales on the tracer equation in z coordinates OGCMs.
Ocean Modell. 16, 17–27] we never criticized it since it had little overlap with our mesoscale model. On the other hand,
the Comments by MGD forced us to dwell into TRM and what we found is that it does not do what the authors promised
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and the community, including us, took to be true. At the same time, none of the criticisms of MGD has any effect on any
results we have derived in our work.
� 2006 Elsevier Ltd. All rights reserved.
1. MGD’s assert that TRM makes modeling R unnecessary

The aim of this section is to prove that MGD’s (McDougall et al., in press) assertion that TRM (McDou-
gall and McIntosh, 2001, cited as MM1) makes the modeling of R unnecessary, is not the full story. Consider
the TRM mean buoyancy equation:
~bt þ ðUþUþTRMÞ � r~b ¼ Q ð1aÞ

which does not contain R which appears in the Eulerian mean buoyancy equation (3a) below. Due to the
similarity of (1a) with the OGCM equation,
�bt þ ðUþUþÞ � r�b ¼ Q ð1bÞ

it has been assumed that, if properly re-interpreted within the TRM formalism, the results of (1b) are correct.
However, there is a constraint: the solution of the OGCMs horizontal momentum equations in which one has
used the buoyancy field from the TRM buoyancy equation (1a), must be the Eulerian mean velocity. Is this
correct? While MGD assume it is, we show it is not so by a wide margin. Consider the Eulerian OGCMs mean
momentum equations:
ot�uþ �u � rH�u ¼ �q�1
0 rH�p þ � � � ð1cÞ
where
�p ¼ q0

Z
�bðzÞdz ð1dÞ
However, the TRM mean buoyancy equation provides:
~p ¼ q0

Z
~bðzÞdz ð1eÞ
which does not coincide with (1d) needed in (1c). The difference of the two pressure terms causes the appear-
ance of an additional term which changes (1c) to:
ot�uþ �u � rH�uþ � � � ¼ �q�1
0 rH~p � rHW|fflffl{zfflffl}

additional term

ð1fÞ
where W ¼ � 1
2
gq�1

0 ðq02=qzÞ is the eddy potential energy. If OGCMs included the additional term in (1f), the
result would be the Eulerian mean velocity and the MGD’s claim would be correct. However, when the last
term is neglected as done in all OGCMs, the resulting mean momentum is no longer Eulerian. MGD try to
solve the difficulty by claiming that the additional term is small and does not affect (1f). In particular, they
claim it can be neglected since it is smaller than terms due to cabelling which are usually neglected. We find
the opposite result (see below). However, there is a more general argument that reveals the importance of the
additional term. If we take the ratio of the additional term to the non-linear term in the lhs of (1f), we obtain
rHW
rH � �u�u

ffi 1

2

W
MKE

ð1gÞ
where MKE is the mean kinetic energy. To compute (1g), we use three sources:

(a) the work of Boning and Budich (1992) tells that the maximum value of W/Kt (where Kt is the surface
eddy kinetic energy given by Schmitz, 1996) is between 2.7 and 3,

(b) the work of Wunsch (1997) shows that W/K (K is the eddy kinetic energy) is about 4, and finally,
(c) the work of Stammer (1997, Fig. 4), based on the Topex/Poseidon data, shows that K/MKE� 1.
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On this basis, Eq. (1g) gives
rHW
rH � �u�u

� 2
K

MKE
� 1 ð1hÞ
Therefore, the additional term in the mean momentum equations is much larger than the non-linear terms that
are usually accounted for. We may further notice that in (1f) there should also be a term representing the
mesoscale-induced Reynolds stresses which in their simplest and model independent form, give rise to a term
of the form:
Dt�u ¼ � � � � rHW|fflffl{zfflffl}
additional term

� rHK|ffl{zffl}
Reynolds Stresses

¼ � � � � rHTEE ð1iÞ
where TEE = K + W is the total eddy energy whose dynamic equation is
DTEE

Dt
¼ FH � Lþ � � � ¼ F v � Rþ � � � ð1jÞ
where Fv is the vertical buoyancy flux F v ¼ w0b0.
Let us now consider the MM1-MGD argument about cabelling. Another way of looking at the additional

term in (1f) is by recalling that the difference in the pressure terms corresponds to a difference in the densities
which, as shown in MM1, amounts to
dqTRM ¼ �
1

2
ðq02=�qzÞz ð2aÞ
MM1 argue that since there is a term of the form:
dqcab ¼ aHq02 ð2bÞ
due to cabelling (caused by the non-linearity in the equation of state of seawater) which is usually neglected in
all OGCMs and which is larger than (2a), there is no reason to worry about the latter. Since we were unable to
find an explicit proof of such a statement, in either McDougall and McIntosh (1996) or MM1, we have done
so. As shown in Appendix A, we have obtained the following results (corresponding to different depths):
dqcab

dqTRM

< 0:13;
dqcab

dqTRM

< 0:25 ð2cÞ
Thus, contrary to what MM1 claim, dqTRM exceeds dqcab and the neglect of dqcab cannot justify the neglect of
dqTRM.

MGD also briefly argue that the additional term ‘‘spatially average to zero”. Since it enters the momentum
equations under $H, when one averages it, the result tends asymptotically to zero as ‘�1, where ‘ is the scale of
the averaging process. However, the asymptotic regime begins at ‘� ‘0 where ‘0 � 103 km is the characteristic
scale of variation of the mean fields. However, at scales ‘, all the terms in the mean momentum equations also
vanish. In fact, the pressure term which also appears under $H, as well as the Reynolds stresses and the mean
non-linear terms, have the same asymptotic behavior; the same is true of the Coriolis term which is generally
balanced by the pressure term. Thus, the asymptotic behavior of the additional term is irrelevant to the prob-
lem of whether such a term is negligible or not.

The previous arguments show that the TRM assumption that the solution of (1f) without the additional
term is still the Eulerian mean velocity, is incorrect. It follows that TRM cannot be used to justify the OGCMs
neglect of R whose inclusion or not in the mean buoyancy equation remains an open problem.

2. MGD assert that R is a purely diabatic term

The aim of this section is to disprove MGD’s assertion that R represents only diabatic processes, a problem
that entails basic considerations of physics. We begin with the model independent, Eulerian mean buoyancy
equation (Treguier et al., 1997):
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�bt þ ðUþUþÞ � r�bþ oR
oz
¼ Q ð3aÞ
where the eddy-induced velocity u+ and the diapycnal flux R are defined as
uþ � �ozð �u0b0=�bzÞ; R ¼ �b�1
z u0b0 � rH

�bþ w0b0 ð3bÞ
For numerical estimates of R, see Gille and Davis (1999, Figs. 8 and 10) and Henning and Vallis (2005, Fig. 6).
MGD basic assumption is that R represents only diabatic processes, an assumption that we represents as
follows:
R () Diabaticity ð3cÞ
In fact, MGD write that: ‘‘The mean density Eq. (3a) has a diabatic term �Rz” and furthermore, ‘‘because of

the presence of the �Rz term, Eq. (3a) will not preserve the adiabatic property”. Later, they criticize us for the
‘‘diabatic nature of the approach” (CD6: Canuto and Dubovikov, 2006; CD7: Canuto and Dubovikov, 2007)
and add that we have built a model that must be ‘‘diabatic even though the same flow in density coordinates is
adiabatic”.

We have done nothing of the sort. The incorrect characterization of our work is rooted in (3c), namely in
MGD’s belief that the presence of R violates adiabaticity. Below (see Proof) we show that exactly the opposite
is true. Specifically, we prove that any flux across any surface consists of two components: the first is the flux
across the surface taken at a given moment in time, i.e., across ‘‘frozen” surfaces, while the second component
is due to the time variation of the surface itself. Adiabaticity requires that when we consider isopycnal sur-
faces, the total flux must be zero.

In isopycnal coordinates, isopycnal surfaces are fixed planes (although they vary in physical space) and
therefore any flux across such planes has only the first (diapycnal) component. Thus, in isopycnal coordinates
the diapycnal flux in an adiabatic regime must be zero. However, in z-coordinates, both contributions exist and
to ensure adiabaticity, their sum must vanish. Since by definition R is the component across frozen isopycnals,
it must be non-zero in order to cancel the second component so as to ensure adiabaticity. Therefore, we reach
exactly the opposite conclusion of MGD: R is instrumental to ensure adiabaticity while MGD claim that its

presence violates adiabaticity.

Proof. To show that R is compatible with an adiabatic regime, consider the velocity ws across a moving
surface:
ws ¼ ðU�UsÞ � n ð4aÞ
where U is the fluid velocity, Us is the velocity of the surface and n is the unit vector normal to the surface. For
an arbitrary scalar u, the flux F(u) across this surface is given by
F ðuÞ ¼ wsu ¼ ðU�UsÞ � nu ð4bÞ

where the overbar represents an average over a sub-grid cell. From (4b) it follows that the flux is the sum of
two fluxes:
F ðuÞ ¼ U � nu�Us � nu ¼ F ðuÞ|ffl{zffl}
froz: surf :

þ F ðuÞ|ffl{zffl}
var: surf :

ð4cÞ
The first term represents the flux across frozen surfaces while the second represents the flux due to the variation

in time of the surfaces themselves. Clearly, the above relations are valid in any system of coordinates. Next, we
specialize them to the case of isopycnal surfaces which are characterized by the following variables:
n ¼ kþ b�1
z rHb Us ¼ �kb�1

z bt ð5aÞ
It follows that
Us � n ¼ �b�1bt; U � n ¼ wþ b�1u � rHb ð5bÞ
z z
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Next, we choose u ¼ N�2bzb
0 ðN 2 ¼ �bzÞ. Substituting the results in (4c), the two fluxes become
F bðfroz: surf :Þ ¼ Rþ N�2 U � r 1

2
b02 þ 1

2
U0 � rb02

� �

F bðvar: surf :Þ ¼ N�2ot
1

2
b02

ð5cÞ
where the diapycnal flux R was defined in (3b). Since in an diabatic regime fluxes across isopycnal surfaces
vanish, we have F(u) = 0. Using (4c) and (5c), we obtain:
Adiabaticity : F ðuÞ ¼ 0! ot
1

2
b02 þ U � r 1

2
b02 þ 1

2
U0 � rb02

� �
¼ �N 2R ð5dÞ
which is the well-known dynamic equation for the buoyancy variance (Treguier et al., 1997). This is an inter-
esting result in and by itself.

The terms in brackets represent advection and diffusion of the buoyancy variance whereas the right-hand
side represents its production. MM1 have argued that the diffusion term is negligible in comparison with
advection since the former is a third order term in fluctuating fields. Thus, Eq. (5d) becomes
Adiabaticity : F ðuÞ ¼ 0 ! ot
1

2
b02 þU � r 1

2
b02 ¼ �N 2R ð5eÞ
Next, we discuss the balance among the three terms in (5e) and here is where we strongly disagree with MGD.
We do so by presenting both numerical and physical considerations which begin with Eq. (6a) below. The re-
sult is that the second term in the lhs of (5e) is smaller the rhs and thus, going back to (5c), Eq. (5e) can be
rewritten as
F bðvar: surf :Þ þ F bðfroz: surf :Þ ¼ 0; R ¼ F ðfroz: surf :Þ ð5fÞ
Eq. (5f) says that the adiabaticity requirement of zero flux can be achieved only if R is not zero.
Of course one can claim that the first of (5f) is also satisfied when both terms are zero. This would be

mathematically correct but physically incorrect. In a strictly adiabatic regime, dissipation of energy is absent
while production is not, being always positive. This implies that the eddy energy grows and the tendency term
in (5e) is always positive. In turn, this implies that the first term in (5f) is positive (no stationarity). To satisfy
the first of (5f), one therefore needs a non-zero and negative R. Thus, R is not only compatible with an
adiabatic regime but is instrumental to satisfy the zero flux condition.
The balance in (5e). Let us consider (5e) rewritten as
otW þU � rW ¼ �R ð6aÞ
Eq. (6a) shows that �R > 0 acts as the source of potential energy. Let us compare the various term in (6a).
First, we have
U � rW � 10�10 m2 s�3 ð6bÞ

where we have used U � 10�2 m s�1, r � 10�6 m, W � 10�2 m2 s�2 (if we took W ten times larger the rhs side
would be 10�9, see below). Next, since we know that the rate of production of total eddy energy (kinetic +
potential) given by (R = Fv � FH � L where L is the slope of the isopycnals, 10�3):
P Tðm3s�3Þ ¼
Z

dzFH � L � HR ð6cÞ
must be such that (Wunsch, 1998):
qAP T � 1TW ð6dÞ

where A is ocean’s surface area, it follows that
R � 1TW
qAH

� 10�8 m2 s�3 ð6eÞ
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Thus, (6e) is larger than (6b) even in the largest W case and it does not seem possible to balance the rhs of (6a)
but with the tendency term, that is, via the relation:
xW ¼ R ð6fÞ

where x represents the growth rate. It is interesting to note that if one uses x = 1/3LN derived from the Eady
model, Eq. (6f) yields:
R � 10�8m2 s�3 ð6gÞ

which is consistent with (6e). Furthermore, to get a feeling about the magnitude of R, consider Eq. (3a) and
compare Uþ � r�b vs. oR=oz. We obtain
Uþ � r�b
Rz

� UþN 2L

H�1R
� Uþ

105R
� 103Uþ ð6hÞ
This ratio is O(1) for U+ � 10�3 m s�1, which is of the right order. Thus, the eddy-induced velocity and the Rz

term with R given by (6g), are of the same order. Therefore,

(1) MGD’s assertion that the balance is between R and the advection term U � rW , is not borne out by the
previous calculation.

(2) Gille and Davis (1999) showed that in the Eady case, which is physically close to the picture we had in
mind (no dissipation), there is no stationarity and their Fig. 10 show that the tendency term is balanced
by R, and thus (6f) is indeed satisfied.

(3) The model for the GM diffusivity (Visbeck et al., 1997) that achieved the largest ‘‘skill” of about 40%
(which is much better than the 10% of the horizontal diffusivity models) is based on the Eady model with
the growth rate modeled based on the work of previous authors (e.g., Green and Stone). Actually, it was
precisely those Eady-based computations that steered us toward our model (6f).

(4) The stationary case advocated by MGD can be valid only when sinks are included in (6a). In fact, Gille
and Davis (1999) showed that in the shear driven case, which is no longer representative of an adiabatic
regime, stationarity sets in, but this is to be expected since having changed the physical conditions of the
problem, the balance of the various terms in Eq. (6a) also changes.

In conclusion, the key difference between our interpretation and the one by MGD hinges on different
physical interpretations of the implications of adiabaticity vs. stationarity: MGD assume that stationarity is

possible within an adiabatic regime whereas we believe that is physically incorrect. Clearly, our interpretation of
R as given by (6f) is reflected in the model that was developed in CD6. To assess our model of R, we ask the
reader to compare Fig. 4 of CD6 with Fig. 10 of Gille and Davis (1999) and to assess the predicted behavior of
Rz of Fig. 6b of CD6 to consult Fig. 6 of Henning and Vallis (2005). The overall signs are in accord with those
of our model. It must be pointed out that in the real ocean there is dissipation and exact adiabaticity is not
satisfied. The model of R on the basis of (6f) presented in CD6 assumed that the violation of adiabaticity is
sufficiently small not to invalidate the results we obtained. h
3. Tapering and baroclinicity

MGD criticize us for relating the tapering for W to baroclinicity of the eddy-induced velocity and write that
‘‘the near surface tapering of the quasi-Stokes stream function W is not a device to ensure that the eddy-
induced velocity has no depth integrated transport”. Actually, it is trivial to show that the tapering of W results
in the baroclinicity of the eddy induced velocity. In fact, since
uþ ¼ ozW ð7aÞ

due to the boundary conditions W(0,�H) = 0, it follows that the baroclinicity condition:
Z 0

�H
uþðzÞdz ¼ 0 ð7bÞ
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must be satisfied by any model of u+. If one adopts Eq. (12) of MGD, that is, the GM model W = �jML, it
follows that the tapering of W requires the tapering of jM(z), that is, jM(0) = 0 which contradicts numerous
studies cited in CD6, as well with the most recent work by Marshall et al. (2006).

As an aside, we recall that the derivation of the eddy-induced velocity presented in CD6 Eqs. (4) automat-
ically satisfies (7b) without having to impose it and that comes about because the form of u+ is no longer a
simple GM form but it contains three additional terms. The latter not only do not require jM(0) = 0 but imply
that the maximum of jM(z) occurs at the surface, in agreement with the conclusions of several studies (e.g.,
Ferreira et al., 2005; Marshall et al., 2006).

As independent proof for the need of additional terms to GM, it must also be noted that using an eddy
resolving code, Bryan et al. (1999) concluded that the GM form is incomplete and that the missing terms
‘‘are not related to the gradient of thickness”, which is what our model predicts it should be the case.

4. Advection–diffusion balance

In this context, MGD raise a non-issue since the multiple terms in the diapycnal upwelling in z-coordinates
were discussed by us only in connection with the work done by previously authors (Radko and Marshall,
2004a,b) who did not have a model for such terms and were forced to use a heuristic expression. Our CD6
model provided a closure for each of those terms. If anything, MGD should criticize the authors just cited
rather than us.

5. Mixed layer, bottom boundary layer and TRM

In the mixed layer (ML) and in the TL (transition layer), TRM cannot be used and like the isopycnal mod-
els, it must be substituted with an Eulerian, z-coordinate model. In addition, since evidence is accumulating
about the importance of tidal dissipation at the ocean’s bottom and since the shear produced by tidal currents
is much larger than the one due to the mean flow, the shear will be correspondingly larger, implying a smaller
Ri to the point that a tide-generated BBL (bottom boundary layer) will have to be constructed, something that
isopycnals models are unsuitable to handle. The GISS vertical mixing scheme has recently been extended to
account for these processes (Canuto et al., submitted for publication-a).

Thus, both top/bottom of the ocean, where these driving processes operate, will have to be treated with an
Eulerian, z-coordinates model since TRM cannot be used. Eqs. (3a) and (3b) will have to be solved and a
model for R will be needed, that being the aim of CD6,7.

Concerning the mixed layer, no mesoscale model exists today to treat this regime whose importance stems
from the fact that it is where the air–ocean interaction occurs and whose proper description is instrumental to
achieve a credible coupled ocean–atmospheric model. Recently, we have analyzed two heuristic models and
found they have severe internal problems. In particular, we found that the heuristic model that yields re-strat-
ification is based on a stream function that violates parity conservation and it is unphysical. In that respect,
MGD’s assertion that ‘‘we are a long way from achieving a satisfactory parameterization of near surface mix-
ing processes”, is a correct reflection of today’s state of the art in ML mesoscale modeling.

However, the CD6,7 model has been recently used to construct a ML mesoscale model. The results were
successfully checked against data from an eddy resolving code (Canuto et al., submitted for publication-b).

6. The mesoscale model CD6,7

It must be stressed that the present discussion does not alter in any way any of the results of the mesoscale
model presented in CD6,7 whose key results we reiterate for completeness.

(1) to the best of our knowledge, CD6,7 represent the only non-heuristic mesoscale model presently
available,

(2) all relations are derived from the solution of the vertical eigenvalue problem to which the primitive
mesoscale equations reduce,

(3) a key result is the derivation of the expression for the eddy induced velocity u+, CD6, Eqs. (4)(a–f),
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(4) the model predicts that u+ contains four terms, the first of which has the structure of the GM model,
(5) while the GM model does not satisfy the baroclinicity relation (7b) for an arbitrary mesoscale diffusivity,

the new model does it automatically, CD6, Eq. (4i),
(6) the expression for u+ contains non-local terms, namely integrals that involve the value of various fields

over the entire water column,
(7) the model predicts a specific form for the mesoscale diffusivity that is in accord with a host of heuristic

models, CD6, Eq. (4b),
(8) the model predicts the profiles of K(z) and W(z), kinetic and potential energies, in agreement with the

data, CD6, Eqs. (5) and (7a),
(9) the model makes an explicit prediction for the eddy drift velocity and predicts that it is not the same as

the mean velocity field, CD7, Eq. (6d),
(10) the model predicts the explicit form of the Reynolds stresses to be employed in the mean momentum

equations, CD6, Eq. (12c). To the best of our knowledge, no other model has done so.

7. Conclusions

Contrary to the impression of our work that MGD try to give the reader, we have no reasons whatsoever to
defend the presence of R in the mean tracer equation. It is an undisputed fact that in Eulerian z-coordinates, R
exists, is large and must be modeled; in CD6,7 we offered and tested a model for it. Whether there is a way to
rewrite the mean buoyancy equation so as to make R superfluous is an altogether different matter, one of great
importance for OGCMs that ought to be clarified beyond any reasonable doubt. TRM was presented as the
formalism that dispenses with R since the TRM mean buoyancy equation no longer contains R. That is true
but it is only half of the story. The other part concerns the mean momentum equations in which there appears
an ‘‘additional term” that must be negligible for the TRM claim with respect to R to be valid. The only fleeting
discussion of such a topic in MGD is a repetition of what was written in MM1, namely that the ‘‘additional
term” amounts to no more than a few % since it is smaller than a cabelling term that is ordinarily neglected.
Since we were unable to find any explicit proof of such a statement, we checked it ourselves and found it to be
the other way around, cabelling terms are smaller than the correction terms and the neglect of the former has
no bearing in the discussion of the additional terms. That alone calls into question MGD’s claim about the
TRM formalism with regard to R. However, we have presented a new and much more general argument to
show that the additional terms are even larger than the non-linear terms, a conclusion that in our opinion
undermines the claim that TRM is the formalism that exonerates OGCMs from having to account for a dia-
pycnal flux. If MGD’s claim were correct, it would be greatly advantageous for OGCMs, but even then, only
in the adiabatic ocean since in the Mixed Layer TRM does not apply to begin with. However, we were not able
to confirm MGD’s claim about the smallness of the additional terms which we have found instead to be very
large.

We can only conclude that TRM does not do what MGD say it does and as of today, the question con-
cerning the presence or not of R in the mean buoyancy equation remains unresolved.

Appendix A

The mesoscale induced correction to the density due the non-linearity of equation of state (EOS) is given by
dq
q0

� �
cab

¼ � 1

2
ahh

02 þ 1

2
bss02 � ash

0s0 ðA:1Þ
where ah � oa/oh, as � oa/os, bs � ob/os and a,b are the thermal expansion and haline contraction coefficients.
The variables h0, s0 are due to the z-fluctuations of isopycnal surfaces (fluctuations within isopycnals are orders
of magnitude smaller). Thus, to the leading order in the fluctuating fields, we have
h0 ¼ �hzz0; s0 ¼ �szz0 ¼
o�s

o�h
h0 ðA:2Þ
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where o�s=o�h is computed along the vertical direction. To compare (A.1) with the TRM correction given in
MM1:
dqTRM ¼ �
1

2
q02=�qz

� �
z

ðA:3Þ
it is convenient to express (A.1) in terms of q02 making use of the relation:
q0

q0

¼ �ah0 þ bs0 ¼ � a� b
o�s

o�h

� �
h0 ðA:4Þ
Substituting (A.2) and (A.4) into (A.1), we obtain
dq
q0

� �
cab

¼ a� b
o�s

o�h

� ��2

� 1

2
ah þ

1

2
bs

o�s

o�h

� �2

� as

o�s

o�h

 !
q02

q2
0

ðA:5Þ
both ah,bs are positive and o�s
o�h
< 0 in the largest majority of places in the ocean, one concludes from (A.5) that
dq
q0

� �
cab

����
���� < 1

2

ah

a2

q02

q2
0

ðA:6Þ
To compare (A.6) with (A.3), we use oz � H�1, H = 1 km. Then
dqTRM

q0

� 1

2
gH�1N�2q�2

0 q02 ðA:7Þ
which implies that
dqcab

dqTRM

< g�1a�2ahHN 2 ðA:8Þ
For example, using the Levitus data, at a latitude 42.50S, the temperature of 1 �C considered in MM1 occurs
at a depth of 3.7 km where N2 = 0.8 	 10�6 s�2. Using the UNESCO equation of state, we computed
a = 0.88 	 10�4 C�1, ah = 1.25 	 10�5 C�2 (S = 35 psu). Substituting these values into (A.8), we obtain:
dqcab

dqTRM

< 0:13 ðA:9Þ
In addition, we also considered a depth of 250 m (same latitude), where T = 8.5 �C and N2 = 0.7 	 10�5 s�2. It
follows that a = 1.83 	 10�4 C�1, ah = 1.25 	 10�5 C�2 which implies that
dqcab

dqTRM

< 0:25 ðA:10Þ
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