THE ASTROPHYSICAL JOURNAL, 643:423—-425, 2006 May 20
© 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A.

GENERALIZED ANALYTIC STELLAR STABILITY CRITERIA WITH APPLICATIONS
TO LUMINOUS STELLAR ENVELOPES

RicHARD B. STOTHERS
Institute for Space Studies, NASA Goddard Space Flight Center, 2880 Broadway, New York, NY 10025
Received 2005 July 8; accepted 2005 December 29

ABSTRACT

Baker’s one-zone model of a radiative stellar envelope is generalized here to include additional forces that can be
represented as a function of only the stellar radius. The criteria for dynamical, secular, and pulsational stability against
radial perturbations are derived and expressed in simple, general analytic forms. Applications are made to the outer
envelopes of luminous blue variables (LBVs). The acceleration of stellar-wind mass loss has no effect on the stability
criteria, but axial rotation and slowly adapting convective turbulence produce more complicated effects, depending
on whether the envelope is dynamically stable or not. On the other hand, rotation and turbulence are probably very

weak in most LBV outer envelopes.

Subject headings: stars: mass loss — stars: oscillations — stars: rotation — stars: variables: other — turbulence

1. INTRODUCTION

Linear nonadiabatic stability criteria for a simple model of a star
have been derived by Jeans (1929), Baker (1966), Stellingwerf &
Gautschy (1988), and others, who considered the effects of the
gravitational force and the force due to the thermal pressure.
Centrifugal force due to axial rotation and the Lorentz force due
to tangled magnetic fields were added later (Stothers 1981),
while the turbulent pressure force, which is not so straightforward
to treat, has been studied only in part (Cowling 1935; Unno &
Kamijo 1966; Unno 1967; Gough 1967; Stellingwerf 1986).
Antonello (1982) has considered a very generalized force law
that acts radially and contains the gravitational force; however,
he applied his results only to the already studied cases of axial
rotation and tangled magnetic fields and got the same answers.

Some of these forces, even if they are not strictly conservative,
can, under certain assumptions, be represented as functions of
only the stellar radius. These include the forces due to gravity,
stellar-wind mass loss, axial rotation, and slowly adapting con-
vective turbulence. It seems worthwhile to study the effects of
these particular forces explicitly on the threefold problem of
stellar stability—dynamical, pulsational, and secular. The fourth
type of stability—radiative—involves calculating the generalized
Eddington luminosity limit, which is a very different problem
that has been recently treated elsewhere (Stothers 2003b and ref-
erences therein). The present results have potential implications
for observed instabilities in luminous blue variables (LBVs),
where the acceleration of mass loss becomes significant, even
though axial rotation and turbulent pressure are less important
factors.

2. PHYSICAL ASSUMPTIONS

The additional forces can be conveniently expressed in the form
of a generalized acceleration /(r, ) o r(¢)°, under the assumption
of spherical symmetry of the star. The gravitational acceleration,
g = GM(r)/r?, is then replaced by the effective gravity,

gerr =9 —S=9(1 =), (1)
where ) = f/g; the effective gravity appears in the hydrodynamic
equation of motion. Only the stellar outer envelope is considered
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here, in a one-zone model that employs the approximation of
complete radiative equilibrium. Although the outer envelopes
of luminous blue supergiants are in part convectively unstable,
the convective flux is very small compared to the radiative flux,
except deep within the iron convection zone, which is formed
by an opacity bump at temperatures around 2 x 10° K. The
turbulent pressure, however, can occasionally be quite high,
especially in the bluest, most luminous objects.

The additional forces considered here are represented by the
following expressions for v (Stothers 1974, 2002, 2003a):

axial rotation, ¢y = (2/3)0% /03, b= —3; (2)

mass 10ss,  Yjpss = (hM)z/(aoAM)z, b= -2; (3)
drr

turbulent pressure, Yy = —(—2) dPus /dM(r), b =2.
90

(4)

Here 0§ = GM(r)/r, AM is the mass contained in a single zone,
) is the angular velocity of rotation, M is the mass-loss rate, / is
a constant of the order of unity, and Py, is the turbulent pres-
sure, taken to be constant in time.

3. STABILITY ANALYSIS OF THE ONE-ZONE MODEL

For the linearized radial stability analysis, we adopt Baker’s
(1966) one-zone model of a stellar envelope. Small perturbations
are made in the form of a radial displacement multiplied by
exp (st), where s is a complex temporal frequency. Linearizing
all of the constitutive equations leads to a fully nonadiabatic
dispersion relation, given by Baker’s equation (29):

4 Kopds? + ang + KO’SD =0.

(5)

Here K = (2pL)/(PéoyA M), 6 is defined below, and all of the
other physical symbols have their usual meanings. The para-
meter K represents the degree of nonadiabaticity, which is ap-
proximately equal to the ratio of the free-fall collapse time, oy, ',
to the thermal timescale, Ey, /L.
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The three critical coefficients are given here by

A=—(al'y — )] a(kr — 4) + Kp), (6)
B =316, — 46,, (7)

D= (al'y — 1)[6 "(4aby — 30,) (k1 — 4) + 4025p + 40, ],
(8)

where
a=(0np/0nP);, é6=—(0lnp/0InT),  (9)
kp=(0Ink/OInP);, kr=(0Ink/0InT),, (10)
0=1—1, 6,=1—(2—0b)/4, (11)

and I'; is the first generalized adiabatic exponent (Cox & Giuli
1968). A useful combination of these coefficients is

AB —D = — 39]F1(O¢F1 - 1)
< [(6T)) (@l — 1)(k7 — 4) + kp + 4/(3r1)]
(12)

Stability conditions for the envelope follow from consider-
ation of the nature of the three roots of equation (5) and are as
follows:

dynamical stability, B > 0; (13)
secular stability, D > 0; (14)
pulsational stability, 4B — D > 0. (15)

4. APPLICATIONS WITH K =0

In the adiabatic case, K = 0, equation (5) reduces to a simple
quadratic, with the solution

s = +iB' 20y, (16)

If B > 0, this implies an adiabatic oscillation, while if B < 0,
exponential growth occurs, implying dynamical instability, in
conformity with equation (13).

The stability condition B > 0 can be written

Iy > (4/3)(62/61). (17)

In this form it is easy to see that the acceleration of mass loss
has no effect on the standard criterion, I'y > 4/3. Axial rota-
tion, however, tends to stabilize the envelope. As for Py, if
dPyw/dM(r) > 0 (as in the deeper layers of a convection zone),
slowly adapting turbulent pressure likewise tends to stabilize,
but if dPy,/dM(r) < 0 (as in the upper layers of a convection
zone), the effect is reversed. These results have already been
found in substance in previous studies focused specifically on
dynamical stability (Ledoux 1945; Stothers 1981, 2002, 2003a).
However, the present integrated approach is new and yields a
transparently simple result, equation (17).

5. APPLICATIONS WITH SMALL, NONZERO K
5.1. Dynamical Stability

For any value of K other than infinite K, the criterion for
dynamical stability is given by equation (13). The discussion of
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§ 4, therefore, also pertains to the present, nonadiabatic case.
This conclusion has been confirmed by numerical hydrody-
namic simulations at least for highly nonadiabatic LBV enve-
lope models with ¥ = 0 (Stothers 1999a).

5.2. Secular Stability

Secular stability for small K requires D/B > 0 (Baker 1966).
If B > 0, this criterion reduces simply to D > 0.

Although all previous analytic studies using the one-zone
model assumed B > 0, there is now semiempirical evidence
that at least some LBVs are dynamically unstable (Stothers
1999b; de Jager et al. 2001). In this case the criterion for secular
stability is opposite in sign from before and becomes D < 0.

In either case, equation (8) for D is so complicated a function
of the additional force terms that in order to achieve any useful
insight we must consider the simplifying conditions inside an
LBV envelope. In such an envelope, radiation pressure is so
high compared to gas pressure that we can assume o = 1/3 and
0= (4—-33)/3, where (B = Pgs/(Prag + Pgas). Furthermore,
I'} = 4/3. Since the opacity lies close to the constant electron-
scattering limit, we also have |k7| << 1 and |kp| < 1. With these
simplifications,

D~ 16(38) " (0) - 62) = —4(38) " (b + 2. (18)

The acceleration of mass loss clearly has no effect on D.
Axial rotation, however, leads to a larger value of D and there-
fore enhances secular stability if the envelope is dynamically
stable but diminishes it if the envelope is dynamically unstable.
Slowly adapting turbulent pressure raises D if dPyu,/dM(r) > 0
but lowers D if dPy,/dM(r) < 0. The consequences for secular
stability in this case depend, again, on whether the envelope is
dynamically stable or unstable.

To first order in K, Baker (1966) showed that

s = —(D/B)Ko. (19)

Therefore, the secular timescale is ~(Koo)~'. In LBV envelopes,
quasi-static stellar evolutionary calculations indicate that this
timescale is only about 1 order of magnitude greater than the
pulsation period (Stothers & Chin 1997). To see why it is so short,
consider the fact of the rough constancy of density p throughout
the LBV envelope, such that AM ~ (4/3)7R>p. Then using L =
mR*acT}, we find Koo ~ (9/8)3(c/R)(T,/T)*. Although the ra-
dius R is large and 3 is small, the effective temperature T, is
quite high with respect to the envelope mean temperature 7. Con-
sequently, K turns out to be fairly large; i.e., the envelope is highly
nonadiabatic, and therefore the secular timescale becomes short.

5.3. Pulsational Stability

To have pulsational stability, the necessary condition for it,
(4B — D)/B > 0, assuming K is small, hinges on the sign of B,
as in the secular stability case. On the other hand, the numer-
ator, AB — D, is completely independent of the additional force
terms, apart from a positive multiplicative factor, 6. This result
first appeared in some specific applications (Stothers 1981) and
was later proven in general (Antonello 1982).

Let us again take up the case of an LBV outer envelope. Since
the additional force terms are wholly irrelevant pulsationally
(except for determining the sign of B), we retain xy and kp,
however small they may be. Then

AB — D ~ —4(303) (k1 + 4£p) 0. (20)
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The sign of AB — D is thus determined only by k7 and kp.
Numerical hydrodynamic simulations of highly nonadiabatic
LBV envelope models with either a constant electron-scattering
opacity or a more realistic variable opacity demonstrate that
pulsational instability does in fact depend only on the opacity
variations (Stothers 1999a). Observationally, many LBVs show
small, rapid quasi-periodic light variations (van Genderen 2001)
that could reflect a radial pulsational instability.

6. APPLICATIONS WITH VERY LARGE K

If K is extremely large, equation (5) becomes approximately
a quadratic, whose solution is

s = +i(D/4)"*0y. (21)

This result was first obtained by Buchler & Regev (1982). If
D/A > 0, a completely nonadiabatic oscillation occurs, but if
DJ/A < 0, exponential growth takes place, which can be regarded
as a dynamical-like secular instability. As long as K is less than
infinite and both B and D/A are positive, two oscillatory modes
of comparable period can therefore coexist, an ordinary mode
(based on B) and a strange mode (based on D/4), as has been
noted elsewhere (Stothers & Chin 1997, Appendix). This strange
mode, of course, is only one type of strange mode among several
types that can occur in stellar envelopes.

Turning to the example of an LBV envelope, we assume, as
before, |k7| < 1 and |kp| < 1, in order to evaluate the influ-
ence of the additional force terms. Under this assumption,
A~ 4(33)""; hence, in view of equation (18),

DA~ —(b+2). (22)

Thus, the effects of the additional force terms on D/A are iden-
tical to their effects on D, which have already been discussed in
§5.2.

7. CONCLUSION
The main results obtained in this paper are as follows:

1. A unified approach has been used to analytically study the
effects of a certain class of forces (those that can be expressed as
a function of only the stellar radius) on the stability of radiative
stellar envelopes, adopting Baker’s (1966) one-zone model.

2. Very simple formulae emerge for the criteria for dynamical
stability and for pulsational stability, although these two results
had already been worked out elsewhere in a somewhat less ex-
plicit fashion. The present result for the criterion for secular
stability is new.
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3. Applications to the outer envelopes of LBVs, where the
physical conditions are such that simplifying mathematical ap-
proximations can be made, lead to easily diagnosable expressions
for the criteria for dynamical, secular, and pulsational stability.
Whether or not the envelope is subject to secular and pulsational
instability critically depends on whether or not it is also dy-
namically unstable.

4. The acceleration of stellar-wind mass loss has no effect on
the stability criteria. However, axial rotation and slowly adapting
turbulence have significant, and also complicated, effects on the
criteria. If the envelope is dynamically unstable, the unperturbed
configuration used for the stability analysis should ideally be as-
sumed to be not a structure in hydrostatic equilibrium but rather
one undergoing dynamical outflow. This can be easily accom-
plished by introducing the acceleration of stellar-wind mass
loss in addition to, rather than separately from, rotation and tur-
bulence. The revised criteria turn out, however, to be unchanged,
since the acceleration of mass loss has been found to have no
effect on the criteria.

Some checks on the one-zone model have already been pub-
lished. A comparison of the results of numerical hydrodynamic
simulations for highly nonadiabatic LBV envelopes, omitting
all additional forces (Stothers 1999a), with the results predicted
by the one-zone model has shown surprisingly close agreement,
at least in the two cases of dynamical instability and pulsational
instability. (Secular instability could not be checked owing to its
longer timescale.) The reason is that in LBV envelopes the
radial gradients of the relative perturbations of all the physical
quantities are nearly zero, just as they are assumed to be in the
one-zone model. Because of this close agreement of the detailed
models and the simple model, it is likely that the predicted effects
of the various additional forces have been correctly portrayed
by the one-zone model.

Other published numerical hydrodynamic simulations for
LBVs have been more restricted in scope and in applicability.
L. Dessart (2000, private communication) has confirmed the
existence of strong convective motions deep in the envelope
and a rapidly accelerated outward mass flux over one dynam-
ical response time for a model that was dynamically unstable.
Guzik et al. (1999), Glatzel et al. (1999), and Dorfi & Gautschy
(2000) found pulsations in models that were probably dynam-
ically stable. Some other hydrodynamic simulations have been
performed solely for the outer atmospheres of LBVs, in par-
ticular for the wind of 7 Car. Consequently, our present ana-
lytic results cannot yet be checked further, but they could prove
to be useful as predictions and interpretive guides for future
work.
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