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Abstract

As climate is a key agro-ecosystem driving force, climate change could have a severe

impact on agriculture. Many assessments have been carried out to date on the possible

effects of climate change (temperature, precipitation and carbon dioxide concentration

changes) on plant physiology. At present however, likely effects on plant pathogens have

not been investigated deeply. The aim of this work was to simulate future scenarios of

downy mildew (Plasmopara viticola) epidemics on grape under climate change, by

combining a disease model to output from two general circulation models (GCMs).

Model runs corresponding to the SRES-A2 emissions scenario, characterized by high

projections of both population and greenhouse gas emissions from present to 2100, were

chosen in order to investigate impacts of worst-case scenarios, among those currently

available from IPCC. Three future decades were simulated (2030, 2050, 2080), using as

baseline historical series of meteorological data collected from 1955 to 2001 in Acqui

Terme, an important grape-growing area in the north-west of Italy. Both GCMs predicted

increase of temperature and decrease of precipitation in this region. The simulations

obtained by combining the disease model to the two GCM outputs predicted an increase

of the disease pressure in each decade: more severe epidemics were a direct consequence

of more favourable temperature conditions during the months of May and June. These

negative effects of increasing temperatures more than counterbalanced the effects of

precipitation reductions, which alone would have diminished disease pressure. Results

suggested that, as adaptation response to future climate change, more attention would

have to be paid in the management of early downy mildew infections; two more

fungicide sprays were necessary under the most negative climate scenario, compared

with present management regimes. At the same time, increased knowledge on the effects

of climate change on host–pathogen interactions will be necessary to improve current

predictions.
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Introduction

Anthropogenic emissions of greenhouse gases into the

atmosphere will likely modify the Earth’s climate over

the coming decades (IPCC, 2001a). According to model

projections, global and regional climate change in this

century will be characterized by higher temperatures,

altered precipitation regimes and increases in the fre-

quency of extreme events, with serious consequences to

many human activities; agriculture is a sector particu-

larly at risk, given its strong dependence on climate

(IPCC, 2001b; Rosenzweig et al., 2002; Tubiello, 2005).
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Many studies have investigated the likely impacts of

climate change on the growth and yield of agricultural

plants worldwide experimentally, as well as via model-

ling studies (e.g. Rosenzweig & Parry, 1994; Tubiello

et al., 2000; IPCC, 2001b; Ziska et al., 2001; Wolf & Van

Oijen M., 2003; Fischer et al., 2005). Yet, knowledge

about climate change effects on diseases, pests and

weed development and related plant responses is still

lacking, and thus insufficiently implemented within

crop models (Goudriaan & Zadoks, 1995; Jwa & Wall-

ing, 2001; Tubiello & Ewert, 2002; Chakraborty et al.,

2000b).

In particular, plant pathogens may be specifically

responsive to global change, given both short genera-

tion times and effective dispersal mechanisms (Coakley

et al., 1999). Because of altered temperature and pre-

cipitation regimes, climate change may alter growth

stages and/or rates of development in the life cycle

and pathogenicity of pathogens, as well as modify the

physiology and resistance of host plants (Chakraborty

et al., 1998; Chakraborty & Datta, 2003).

Clearly, there is a need to understand and anticipate

potential climate impacts on host–pathogen interac-

tions, in order to evaluate appropriate disease manage-

ment strategies under future climate change. To this

end, plant pathology research should provide an assess-

ment of how plant diseases may impact agricultural

systems under climate change, in order to suggest

adaptations that minimize crop losses as measured in

both production and quality.

The currently limited information about climate

change effects on plant diseases largely derives from

experiments under controlled conditions; a handful of

modelling studies have extrapolated such results for

impact assessment (Manning & Tiedemann, 1995; Hib-

berd et al., 1996; Luo et al., 1998a, b; Tiedemann &

Firsching, 1998; Chakraborty et al., 2000a; Mitchell

et al., 2003).

In most simulation studies, forecasts of climate

change derived from general circulation models were

employed as inputs for epidemiological models that

simulated disease risk (Seem, 2004).

The aim of this work was to assess the impacts of

projected climate change on the pressure of downy

mildew infections on grapevine (Vitis vinifera L.) in

Acqui Terme (district of Alessandria), a location in

northern Italy where viticulture is the most important

agricultural activity.

Downy mildew, caused by Plasmopara viticola (Berk et

Curt.) Berl. et de Toni, an obligate parasite, ascribed to

the kingdom of Chromista (Goeker et al., 2003), is the

most serious grapevine disease in northern Italy. It

affects both the quantity of harvest and the quality of

wine produced from infected grapes. The organism is

strongly influenced by weather conditions (Rossi et al.,

2005). It overwinters as oospores in fallen grape leaves

and produces zoosporangia (conidia) in spring. In the

presence of water zoosporangia eject zoospores that

travel to leaves or bunches by rain splashes. Zoospores

can cause primary infections when the host surface

remains wet for a sufficient time period. Dry periods

are able to kill zoosporangia and zoospores. Also, the

secondary infection cycles, caused by zoosporangia

produced on affected host tissue, need wetness to cause

infection. The minimum temperature for pathogen

growth is 9–10 1C, while temperatures higher than 34–

35 1C inhibit the pathogen.

The economic cost of controlling downy mildew may

be significant. For the 53 000 ha cultivated with grapes

in Piedmont – the Italian region of this study – it is

estimated to be on average 30 hha–1 spray–1 (www.

regione.piemonte.it/agri/osser_vitivin/dwd/1_03_04.xls;

Monchiero et al., 2005), considering both fungicide

and distribution costs. For the whole Piedmont region,

annual costs for downy mildew control typically

range from 8 million in years with low disease pressure,

to 16 million in years with a high level of disease

pressure.

We considered current and future impacts of this

disease at Acqui Terme, an important area of grape

and wine production, Piedmont, Italy. In order to assess

the potential impacts of climate changes on the disease,

an empirical disease model developed for the area of

study (Salinari et al., 2004a) was run using climate

change scenarios generated by two general circulation

models (GCM), the Hadley Centre (Gordon et al., 2000;

Pope et al., 2000) and the NASA Goddard Institute for

Space Studies (Schmidt et al., 2005), for three future time

horizons: 2030s, 2050s and 2080s.

Materials and methods

Climate and epidemiological data

Climate and epidemiological data were derived from

registers drawn up by growers belonging to the ‘Osser-

vatorio antiperonosporico’, a network aimed at effec-

tively controlling downy mildew in an important vine-

growing area of Piedmont, Acqui Terme (district of

Alessandria, 44.71 N, 8.51 E). These data were collected

from 1955 to 2001.

Observed meteorological data represented a complete

time series of daily minimum/maximum air tempera-

ture and precipitation. These series had been previously

analysed to identify trends in both climate means and

variations at this site, showing a significant increase in

maximum temperatures of the May–August period

during the last two decades (Salinari et al., 2004b).
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Only the dates of fungicide treatment against downy

mildew infections were collected consistently through-

out the observation period of the dataset, 1955–2001; the

number of treatments per year was then assumed as a

proxy of disease pressure. This assumption was possi-

ble because local disease management tactics suggested

that growers spray fungicide against each infection

cycle, on the last days of the correspondent incubation

period. The robustness of this assumption was tested,

by verifying correspondence between the date of each

treatment and the date of each infection outbreak,

whenever both data were present in the dataset. In the

present work, downy mildew epidemics were thus

expressed as disease pressure, rather than as incidence

or severity of the disease symptoms; disease pressure

was defined as the number of fungicide sprays neces-

sary to control the disease.

Disease model

An empirical model previously elaborated by the

authors was used in order to simulate disease pressure

under future scenarios. This model had been developed

using the data from the historical period 1955–1989 at

Acqui Terme, and validated using data between 1990

and 2001 (Salinari et al., 2004a). The model uses daily

precipitation and air temperature to estimate the pres-

sure of downy mildew epidemics and classifies years in

three groups, based on the number of fungicide treat-

ments applied on an average per season: Group 1 (low

pressure, 3 sprays), Group 2 (medium, 6 sprays) and

Group 3 (high, 10 sprays). After calibration, this model

correctly classified more than 90% of the years in the

validation period, 1990–2001; it was, thus, considered

sufficiently accurate and robust to be applied to future

climate scenarios.

The model consists of two equations (discriminant

functions, Eqns (1) and (2)) elaborated by a discriminant

analysis

DF1 ¼ 0:538RDD-1þ 1:599TMIN-2
þ 0:0022MMDD-2� 0:392Tð9� 34Þ-2
þ 0:001PMM-1

: 3þ 0:043PMM-4� 16:142 ð1Þ

DF2 ¼ 0:021RDD-1� 1:106TMIN-2
þ 0:0066MMDD-2þ 0:796Tð9� 34Þ-2
� 0:020PMM-1

: 3� 0:012PMM-4þ 4:427 ð2Þ

where
RDD_1: number of rainy days, for the first time
period (1–14 May);
TMIN_2: mean minimum temperature ( 1C), for the
second period (15–29 May);

MMDD_2: product between the total amount of rain
and the number of rainy days (mm�day), for the
second period;
T(9–34)_2: number of days with favourable tempera-
ture for the pathogen development (minimum daily
temperature � 9 1C and maximum daily tempera-
ture � 34 1C), for the second period;
PMM_1:3: cumulative sum of the amounts of pre-
cipitation (mm) fallen over the first three periods
(from 1 May to 13 June);
PMM_4: amounts of precipitation (mm) fallen in the
fourth period (14–28 June).

For any year analysed, the two functions produce

values, DF1 and DF2, which represent coordinates on

a territorial map (see Fig. 1). Such a map is produced

by the discriminant analysis (Salinari et al., 2004a): the

disease pressure group of the year analysed is then

determined by its position (DF1, DF2) on the map. For

instance, a given year with RDD_1 5 5, TMIN_2 5 12.89,

MMDD_2 5 151.20, T(9–34) _2 5 15, PMM_1:3 5 100.40

and PMM_4 5 49, has coordinates DF1 5 3.79 and

DF2 5 0.68. Therefore, it belongs into the area of Group

3 with high downy mildew pressure.

The model considers daily meteorological data of

May and June (model periods 1–4) to paint a picture

of the downy mildew epidemics over the season. This is

usually the period when primary infections occur,

caused by the inoculum rising from its over-wintering

forms (Pearson & Goheen, 1994). Recent studies have

demonstrated that the primary infections play a key

role in disease development, as secondary cycles are
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Fig. 1 Territorial map related to the disease model simulating

the pressure of downy mildew epidemics on grapevine. Equa-

tions (1) and (2) (see text) produce coordinates of the map, DF1

and DF2, that define in turn the disease pressure group: 1 (low

pressure), 2 (intermediate), 3 (high). The three dots locate the

centroid of each group.
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restricted to limited foci around primary infection sites

(Gobbin et al., 2005). During this period, rainfall and

temperature are the the key factors for disease devel-

opment. Frequency, distribution and rates of rainfall are

important both as a cause of wetting and as a dispersal

agent: wetting favours oospore germination, zoospore

ejection, survival and infection, while rain droplets

drive zoospore dispersal. The model accounts for these

effects of rainfall using the independent variables RDD,

MMDD and PMM. The MMDD variable is an index

linking the amount of rain with the number of rainy

days. Temperature is also quite important for oospore

germination, zoospore ejection and infection. Low tem-

peratures represent a limiting factor for pathogen

growth and disease development. The model accounts

for the effect of temperature using the variable T(9–34),

defining number of days with minimum temperature

equal to or higher than 9 1C, and maximum temperature

equal to or lower than 34 1C. Under the observed

climate collected at the study site, average air tempera-

ture in May is frequently below 9 1C (10 days out of

31 in the historical series), and never above 34 1C.

Climate model

GCMs are the main tools used for the prediction and

quantification of climate change (e.g. daily temperature

and precipitation changes) as a function of greenhouse

gas emission scenarios (IPCC, 2001a, c). These models

simulate on three-dimensional grids the regional and

global movements of water, energy and mass, solving

complex mathematical equations at discrete time (min-

utes to hours) and spatial (tens to hundreds kilometres)

scales. Two-coupled atmosphere–ocean GCMs were

considered in this study: the GISS model, of the God-

dard Institute for Space Studies (www.giss.nasa.gov)

and the HadCM3 model of the Hadley Center (http:

//www.meto.gov.uk/research/hadleycentre/models/

HadCM3.html), referred to as HAD in this work. Both

models run on a 4� 51 horizontal resolution grid (cor-

responding to about 400 km at the equator) and predict

increases in global mean surface temperatures of 4–5 1C

by the end of this century under ‘business-as-usual’

emission scenarios. Specifically, outputs from these

GCMs corresponding to the Special Report on Emission

Scenario A2 (SRES A2 emissions scenario) were used in

this work. Such a scenario includes high projections of

both population and greenhouse gas emissions growth

well into this century (IPCC, 2000; www.grida.no/

climate/ipcc/emission/094.htm). Climate change pro-

jections associated with the A2 scenario are considered

to be at the high range of current forecasts; therefore,

assessment studies using A2 climate provide an inves-

tigation of the maximum potential impacts of future

climate on specific dynamics (Fischer et al., 2005), in this

case disease pressure in the studied area.

Climate change scenarios

Scenarios of future disease pressure were produced

using outputs from the two GCMs, linearly interpolated

among neighbouring grid points for the Acqui Terme

study site (daily temperature and precipitation changes

from GCM baseline runs), for three future time periods:

2030s (representing averages for the period 2020–2039),

2050s (for the period 2040–2059) and 2080s (for the

period 2070–2089).

The new climate files consisted of continuous time

series of daily temperature and precipitation, produced

from the original observed weather files using standard

methodology (e.g. Reilly et al., 2003). Specifically for

each month, GCM-predicted average monthly tempera-

ture and precipitation changes were applied to each

daily value in the historical data series (Table 2). In this

way, three new 47-year climate change series (tempera-

ture and precipitation) were generated, for each future

decade of interest. For temperature, delta changes (dif-

ference in 1C compared with the historical series)

added daily implied that monthly mean values corre-

sponded to the GCM projections, but with the same

variability as current climate. For daily precipitation

series, we followed a two-step procedure. First, the

GCM-predicted monthly variation ratio from the base-

line was applied to each daily rain event in the histor-

ical series, again implying monthly means consistent

with the GCM projections, but with the same number of

rainy days of the historical series.

However, because the number of rainy days is a key

climatic variable in the disease model, a second step

was implemented, consisting of a redistribution of the

number of rainy days in each new climate series. For

this purpose, a preliminary outlier analysis was per-

formed on the ratio between rain amount (PMM) and

number of rainy days (RDD) for each model period, 1–4,

in each year, 1955–2001: four anomalous years out of

47 were discarded. Afterwards, for each model period,

the RDD was regressed against PMM using a simple

regression model: RDD 5 b �PMM. In this model, the

intercept is set to zero because there is no rain in a dry

day. The four equations in Table. 1, were used to

estimate the RDD as a function of PMM, the latter

variable being generated by the climate change simula-

tors. Finally, new series of rainy days were calculated

for every year of each scenario. We recognize that this

methodology does not consider future changes on pre-

cipitation frequency, introducing additional uncertain-

ties in our simulation results. Nevertheless – based on

the type of data available to us – it was the only simple
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means to quantifying number of rainy days under

future scenarios.

In conclusion, seven long-term climate scenarios,

each comprising 47 years of daily data, were used in

the analyses. They will be referred herein as historical

series (baseline scenario 1955–2001); HAD2030 and

GISS2030; HAD2050 and GISS2050; HAD2080 and

GISS2080.

Running the disease model under climate change scenarios

The climatic variables used as independent variables in

the disease model were computed from each new time

series. DF1 and DF2 were computed for every year of

each scenario, and used to classify years into the three

groups of downy mildew pressure. The percent propor-

tion of years belonging to each group of disease pres-

sure was then calculated. Changes in disease pressure

for each one of the six scenarios (three decades with two

GCMs) were compared with the historical series, by

using contingency tables. Contingency tables consisted

of two rows (the historical series and a future scenario)

and three columns (the groups of disease pressure 1, 2

or 3). The w2 test was applied to test the null hypothesis

of independence between scenarios and disease groups.

Finally, expected numbers of fungicide treatments per

year was determined based on the estimated disease

pressure in that year (Group 1, 3 sprays; Group 2, 6

sprays; Group three, 10 sprays), for each of the six

GCMs scenarios. Because of the lack of independence

of the datasets (as future scenarios were obtained from

the historical series), a simple comparison of the num-

ber of treatments between the historical and future

series was performed using a paired t-test, to test the

null hypothesis of equality of the average number of

treatments in the two series.

Results

Climate change analyses

Monthly changes predicted by both HAD and GISS

consisted in rather consistent temperature increases

and precipitation decreases throughout the decades

considered (Table 2). An increase of precipitation pre-

dicted for July 2030 and August 2080 by the GISS

model, and for May 2050 by HAD, were the only

exceptions.

Predicted temperature increases and precipitation

decreases were overall greater (nine cases out of 12)

in HAD compared with GISS (Table 2). In 2030, both

GCMs predicted similar precipitation changes; by con-

trast, HAD showed almost twice as much temperature

increases compared with GISS. The greatest differences

between the two models were found for the decade

of 2080.

Table 1 Linear regression equations describing the relation-

ship between the amount of rain (PMM) and the number of

rainy days (RDD) in each period of the model simulating

downy mildew pressure in grapevine

Disease model

periods Equations R2

1 (1–14 May ) RDD_1 5 0.076291 PMM_1 0.92

2 (15–29 May) RDD_2 5 0.116634 PMM_2 0.93

3 (30 May–13 June) RDD_3 5 0.121370 PMM_3 0.94

4 (14–28 June) RDD_4 5 0.142703 PMM_4 0.91

R2 is the determination coefficient.

Table 2 Changes of monthly temperature and precipitation predicted by two climate change models (GISS and HAD) for three

future decades (2030, 2050 and 2080), at Acqui Terme

Decade Month

Climate change model

HAD GISS

Temperature* Rainfallw

Temperature*

RainfallwMinimum Maximum

2030 May 1.81 0.739 0.66 0.69 0.999

June 1.89 0.781 0.84 0.84 0.837

2050 May 1.98 1.059 1.29 1.30 0.969

June 1.85 0.806 1.17 1.14 0.814

2080 May 3.90 0.900 2.21 2.39 0.770

June 4.80 0.684 2.87 3.12 0.760

*Difference, in 1C, compared with the historical series, 1955–2001.
wCoefficient accounting for rainfall change: ratio of the rainfall of the scenario to that of the historical record.

G R A P E D I S E A S E U N D E R C L I M A T E C H A N G E 1303

r 2006 The Authors
Journal compilation r 2006 Blackwell Publishing Ltd, Global Change Biology, 12, 1299–1307



Changes in disease pressure under climate change
scenarios

Values of the meteorological variables used as indepen-

dent variables in the epidemiological model were cal-

culated for each climate change scenarios (Table 3).

Comparison between historical and future time series

suggested which variables might be determinant under

climate change in terms of disease outbreaks. The

decrease of RDD_1 (number of rainy days from May 1

to 14) was consistent with decreased precipitation in the

two GCMs. Compared with the historical series, the

RDD_1 reduction was smaller than 1 day for all scenar-

ios. TMIN_2 (minimum temperature mean between

May 15 and 29) increased in all scenarios, again in

line with GCM-predicted climate. Mean-temperature

changes ranged from 0.6 1C for GISS 2030 to about

4 1C for HAD 2080. Results for the variable MMDD_2

(the product between total amount of rain and number

of rainy days for the second half of May) showed an

increase in the GISS 2030 and GISS 2050 scenarios –

despite decreases of the correspondent projected pre-

cipitations. This was possibly an artefact of the regres-

sion method used to compute number of rainy days: in

historical years with a small number of exceptionally

high-precipitation events, the method correctly com-

puted reduced total precipitation under climate change,

but apportioned it over significantly more days than in

the historical series, resulting in high MMDD_2 values.

The number of days with favourable temperature for

disease development in the second half of May (T(9–

34)_2) ranged from 13 (GISS on average across decades)

to 14 (HAD on average across decades), compared with

11 days in the baseline. The cumulative precipitations in

the period May 1–June 13 (PMM_1:3) and in the second

half of June (PMM_4) were consistently lower than

in the historical series, owing to projected decreases in

precipitation in all climate scenarios.

The above-mentioned changes in the model para-

meters determined in turn an increase of the projected

disease pressure in future decades; increases were more

severe under HAD than under GISS climate scenarios

(Table 4). The frequency of years belonging to group 1

was 11 in the historical series and varied from 13 to 8

under GISS. Under HAD2030 the frequency of years in

the first group was the same as in the historical series

(11), it decreased to 6 in 2050 and 0 in 2080. Twenty

years belonged to group 2 in the historical series; they

decreased to 8–10 under the GISS scenarios and to 11–16

under the HAD scenarios. The number of years in the

group of high disease pressure (3) was 16 in the

Table 3 Values of the independent variables in the Eqns (1) and (2) (see text) that constitute the disease model simulating the

downy mildew pressure in grapevine, for the historical series (1955–2001) at Acqui Terme, and for six different climate change

scenarios produced using two models (GISS and HAD) for three future decades (2030, 2050 and 2080)

RDD_1 TMIN_2 MMDD_2 T(9–34)_2 PMM_1:3 PMM_4

Historical series 3.6 11.1 165.2 11.3 98.4 21.9

2030 GISS 3.0 11.7 180.2 12.7 93.9 18.3

2050 GISS 2.9 12.3 171.5 13.6 91.2 17.8

2080 GISS 2.4 13.3 117.4 14.2 75.5 16.6

Average GISS 2.8 12.4 156.4 13.5 86.9 17.6

2030 HAD 2.3 12.9 109.8 13.8 73.9 17.1

2050 HAD 3.1 13.0 197.0 13.8 97.4 17.6

2080 HAD 2.7 15.0 151.7 14.5 82.7 15.0

Average HAD 2.7 13.6 152.8 14.0 84.7 16.6

Table 4 Distribution of the number of years belonging to the

three groups of grapevine downy mildew pressure in the

historical series (1955–2001), at Acqui Terme, and under six

different climate change scenarios produced using two models

(GISS and HAD) for three future decades (2030, 2050 and

2080); results of the w2 test applied to contingency tables,

elaborated for comparing each scenario with the historical

series (ns, not significant; *significant at P � 0.05; **significant

at P � 0.01)

Downy mildew pressure

Group 1

(low)

Group 2

(intermediate)

Group 3

(high)

w2

Value

Signifi-

cance

Historical

series

11 20 16 – –

GISS2030 13 10 24 5.100 ns

GISS2050 13 8 26 7.690 *

GISS2080 8 8 31 10.404 **

HAD2030 11 11 25 4.589 ns

HAD2050 6 13 28 6.228 *

HAD2080 0 16 31 16.232 **
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historical series and ranged between 24 and 31 under

the GISS scenarios and between 25 and 31 under the

HAD ones.

Changes in the distribution of disease groups in the

different climate scenarios were significant compared

with the historical series (Table 4) under both GISS and

HAD 2050 and 2080.

In order to better quantify what the projected shifts

towards more severe downy mildew epidemics might

mean for viticulture at the study site, the effects of

different scenarios on the expected number of treat-

ments were tested using an analysis of variance. Results

indicated a progressive increase of sprays through time

compared with the historical situation, becoming sta-

tistically significant in 2050 for HAD projections and in

2080 for GISS (Fig. 2). By 2050 eight fungicide sprays

needed to be planned per year to control the disease,

two more treatments than for the period 1955–2001.

Discussion

Scenarios of future pressure of downy mildew epi-

demics on grapevine obtained by combining outputs

from two climate change models to a disease model

indicated a potential increase of the impact of this

pathogen in the viticulture at the study site. The climate

change models predicted air temperature increases and

rainfall reductions during the months of May and June,

leading to increases in disease pressure from P. viticola.

In the worst-case climate scenario to this end, generated

by the GISS model for the decade 2080, for both months

daily minimum and maximum temperatures increased

by 2–3 1C, while rainfall will decrease by 76–77%.

As P. viticola is strictly dependent on wetness for both,

its life and pathogenicity, an increase in epidemic

pressure under less rainy weather was unexpected.

Analyses of our simulation results found that the im-

pact of increased temperatures on enhancing disease

pressure exceeded the limiting effect of reduced rain-

fall. From a biological point of view, this result can be

explained by considering that temperature and wetness

act together on the pathogen. For instance, Blaeser &

Weltzien (1979) found that the minimum requirement

for infection is a value of 60, calculated as the product of

temperature times hours of wetness: at 12 1C, at least 5 h

of wetness are necessary. Therefore, a higher tempera-

ture can compensate for reduced wetness durations. In

addition, high temperature accelerates oospore germi-

nation when the leaf residues are wet onto the soil

surface, so that less humidity can be easily compensated

(Rossi et al., 2005). Yet, because both our model and the

climate dataset employed herein had daily time steps,

most of these biological factors could only enter com-

putations indirectly, at best. Most importantly, in terms

of our simulations, it must be considered that in the

disease model temperature strongly affects disease

pressure in May, when, under current climate, tempera-

ture is often limiting P. viticola activity. Therefore, our

simulations indicated that under climate change, war-

mer temperature regimes in this critical early period can

significantly increase the opportunities for the pathogen

to growth, leading to increases of downy mildew pres-

sure in grapevine in the coming decades, even if

precipitation decreases.

These results suggest specific climate change adapta-

tion techniques to cope with climate risks. Under in-
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Fig. 2 Average number of fungicide treatments per year against grapevine downy mildew in the historical series (1995–2001)

at Acqui Terme, and under six different climate change scenarios produced using the two models (GISS and HAD) for three future

decades (2030, 2050 and 2080). Results from the paired t-test between scenarios and the historical series are shown (ns, not significant;

*significant at P � 0.05; **significant at P � 0.01).
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creased disease pressure scenarios, certainly more at-

tention would has to be paid to manage disease attacks

in the field. The main response suggested by our

computations is that the number of fungicide sprays

necessary to control the disease will need to be in-

creased. In particular, the worst-case GISS projections

indicated that at least two more sprays per season were

necessary. As a consequence, the costs for disease

management will also increase in future scenarios. In

Piedmont, these additional costs can be estimated in

about 3.2 hmillion , assuming current values of spray

costs and land cultivated for grapes (30 hha–1 spray–1

and 53 000 ha, respectively). This corresponds to signif-

icant cost increases of 20–50%, depending on the level of

disease incidence.

Furthermore, our simulations suggested that poten-

tial increases of disease pressure under climate change

might be related to more severe incidence of primary

infections occurring in May and June. Therefore, addi-

tional adaptation strategies would have to focus on the

higher risk of early infections at the beginning of the

growing season: a more severe primary infection in

grapevine could have significant consequences for the

development of successive secondary infection devel-

opment, in agreement with the polycyclic nature of the

P. viticola biological cycle (Zadoks & Schein, 1979).

In conclusion, this work was a first attempt to quan-

tifying climate change–disease interactions using simu-

lation models. Clearly much more needs to be done in

order to assess potential climate change impacts on

plant disease. In particular, this first assessment relied

on a relatively simple, stand-alone disease model. Im-

portantly, disease dynamics may critically be affected

both directly and indirectly: for instance alteration in

plant metabolism, development and morphology could

influence host–pathogen interactions. Increased experi-

mental results, leading to coupled plant–pathogen

models, would greatly enhance our capacity to assess

the impacts of future climate scenarios on grapevine–

host dynamics.
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