Winds on Titan from ground-based tracking of the Huygens probe

W. M. Folkner,1 S. W. Asmar,1 J. S. Border,1 G. W. Franklin,1 S. G. Finley,1 J. Gorelik,1 D. V. Johnston,1 V. V. Kerzhanovich,1 S. T. Lowe,1 R. A. Preston,1 M. K. Bird,2 R. Dutta-Roy,2 M. Allison,3 D. H. Atkinson,4 P. Edenhofer,5 D. Plettemeier,6 and G. L. Tyler7

Received 24 November 2005; revised 30 April 2006; accepted 4 May 2006; published 20 July 2006.

Large radio telescopes on Earth tracked the radio signal transmitted by the Huygens probe during its mission at Titan. Frequency measurements were conducted as a part of the Huygens Doppler Wind Experiment (DWE) in order to derive the velocity of the probe in the direction to Earth. The DWE instrumentation on board Huygens consisted of an ultrastable oscillator which maintained the high Doppler stability required for a determination of probe horizontal motion during the atmospheric descent. A vertical profile of the zonal wind velocity in Titan’s atmosphere was constructed from the Doppler data under the plausible assumption of generally small meridional wind, as validated by tracked images from the Huygens Descent Imager/Spectral Radiometer (DISR). We report here on improved results based on data with higher temporal resolution than that presented in the preliminary analysis by Bird et al. (2005), corroborating the first in situ measurement of Titan’s atmospheric superrotation and a region of strong vertical shear reversal within the lower stratosphere. We also present the first high-resolution display and interpretation of the winds near the surface and planetary boundary layer.

1. Introduction

The Doppler Wind Experiment (DWE) was one of the six scientific investigations conducted on the Huygens probe during its mission to Titan [Lebreton et al., 2005]. The DWE was intended to determine the height profile of the zonal wind velocity in Titan’s atmosphere by measuring the Doppler shift associated with a radio signal transmitted from the probe and received on both the Cassini spacecraft and the Earth, thus determining the components of the probe’s velocity in both directions [Bird et al., 2002]. The probe’s transmitter and the receiver on Cassini were each equipped with an identical rubidium ultrastable oscillator (USO) in one of the two radio channels in order to achieve the required measurement accuracy for this investigation. Similar Doppler tracking measurements to estimate Jupiter’s vertical wind profile were successfully performed with the Galileo probe including probe signal reception on both the Galileo spacecraft [Atkinson et al., 1996; Atkinson, 2001] and the Earth [Folkner et al., 1997].

The planned Doppler measurements on the Cassini orbiter were unsuccessful due to an error in configuring the receiver’s ultrastable oscillator. (A second channel that did not utilize ultrastable oscillators successfully delivered telemetry data from the other instruments to the orbiter for relay to Earth.) Several large radio telescopes on Earth, however, were able to receive and record the Huygens radio signal. It was expected that the combined Cassini and ground-based tracking of Huygens would enable a separation of the zonal and meridional wind profiles, since a third component of the probe’s velocity, the vertical descent rate, could be determined from in situ measurements on the probe. Although the projections of the probe’s horizontal velocity in the directions to Cassini and to Earth were largely in the east-west direction, the angle between the two projections was approximately 20°, which was considered sufficient to allow an estimate of the meridional velocity under the original plan of the experiment.

As a result of the loss of the DWE data on board Cassini, the ground-based Doppler measurements became the only available Huygens DWE data and formed the basis for the initial zonal wind profile reported by Bird et al. [2005]. With only one Doppler component available, this preliminary profile was derived under the assumption that the meridional wind speed was zero. A determination of the...
Huygens ground track on Titan from descent images shows that the meridional wind speed is less than a few m/s at altitudes below approximately 50 km [Tomasko et al., 2005]. The probe altitude and descent velocity as a function of time were provided by a separate, project-managed, Descent Trajectory Working Group (DTWG), which used a combination of dynamical modeling and pressure/temperature measurements made during the descent [Lebreton et al., 2005; Fulchignoni et al., 2005].

[8] Here we report improved results from a new analysis based on Doppler estimates with higher temporal resolution than the data used by Bird et al. [2005]. The higher time (vertical) resolution improves our ability to (1) determine the existence and (if yes) the more exact extent of the near-surface planetary boundary layer, (2) determine the detailed vertical structure of the slow wind layer, where the gradient is quite strong, and (3) determine atmospheric motions on shorter time scales to learn more about probe dynamics (buffeting and coupled probe/parachute motions) and thus smaller-scale atmospheric turbulence. The present work also provides a more comprehensive description of the experiment, instrumentation, and data analysis, as well as the actual Doppler measurements.

2. Experiment Description

[6] The Huygens probe was released from the Cassini spacecraft on 25 December 2004 [Lebreton et al., 2005]. It entered the atmosphere of Titan with a velocity of 6 km/s (relative to a nominally co-rotating atmosphere) on 14 January 2005 at 10:13:01 UTC (all times given in this paper are Earth receive times). A heat shield used to protect the probe during the initial deceleration was ejected after atmospheric entry and shortly after deployment of the main parachute. Radio transmission was started about 45 seconds after parachute deployment. Signals reached Earth 67 minutes later. After 15 minutes of descent under the main parachute, a second stabilizer parachute was deployed for the final descent. Huygens landed on Titan at 12:45:17 UTC, approximately 2.5 hours after entering the atmosphere. After landing the probe continued to transmit. The radio signal was recorded by Cassini until 13:57 UTC and by Earth radio telescopes up to 16:00 UTC.

[7] The Huygens descent was on the sun-lit, anti-Saturn hemisphere of Titan. Figure 1 shows the observation geometry as viewed from Earth at the start of radio transmission. Titan, with rotation period of 15.945 days, rotated by 2.32° about its spin axis during the descent. This rotation resulted in the landing site moving closer to the sub-Earth point shown in Figure 1 during the descent. The zonal winds carried the probe a net distance on Titan of 166 km, or 3.63° of longitude, eastward relative to Titan, over the course of the descent.

[8] The Huygens radio system utilized two channels to transmit data. Channel A transmission at 2.040 GHz was referenced to a rubidium ultrastable oscillator in order to provide a frequency reference sufficiently stable to achieve the required Doppler measurement accuracy. Channel B, at a frequency of 2.098 GHz and in opposite (circular) polarization to channel A, was driven by a temperature compensated crystal oscillator that was not stable enough for useful Doppler measurements. The relevant radio parameters of the experiment are summarized in Table 1. The antenna was fixed to the body of the spinning probe and pointed vertically upward along the nominal spin axis. The antenna gain pattern, a measure affecting the strength of the signal in a given direction, was fairly broad with a peak of 5 dB and a gain of about 4 dB in the direction of the Earth.

[9] Reliable detection of the Huygens signal at Earth required the use of antennas of diameter 50 m or greater with receivers operating at the Huygens transmission frequency. With no single such radio telescope on Earth able to view Titan for the entire probe descent, a combination of several telescopes was used. The 100 m diameter Robert C. Byrd Green Bank Telescope (GBT) in West Virginia was used to observe the initial part of the descent. The 64 m diameter Parkes Telescope in Australia was used to observe the final part of the descent and an extended period of time after the probe had landed. An interval of approximately 24 minutes of the descent was not observable by either large telescope. Four 25 m diameter telescopes of the Very Long Baseline Array (VLBA) in the USA were enlisted to fill in this period: Pie Town, Owens Valley, Mauna Kea, and Kitt Peak. In principle, the signals from the four small antennas can be combined to an equivalent 50 m diameter antenna. In that case, the combined signal-to-noise ratio would still be significantly
smaller than that obtained at Green Bank or at Parkes, and would be just barely detectable. If the telemetry modulating the signal had been recovered, the received signal could have been demodulated and resulted in an easily detectable signal. In the absence of the telemetry, our efforts to combine the signals have shown that the signal was detected but has not yet been modeled well enough to extract useful Doppler measurements. We hope that further modeling will eventually be successful.

[10] These six telescopes were also a subset of a larger network participating in Very Long Baseline Interferometry (VLBI) observations for the purpose of determining the probe’s precise position on the sky [Pogrebenko et al., 2004; Lebreton et al., 2005]. The overview paper by Witasse et al. [2006] summarizes the VLBI experiment and facilities used. The sharing of resources for the Doppler experiment with the VLBI experiment resulted in compromises on the resulting measurements. The VLBI experiment calibration required that the telescopes alternately point at Titan and at an extragalactic radio source over a three-minute cycle, of which about 100 seconds were available for Huygens tracking.

3. Signal Processing

[11] At each telescope, the Huygens signal at frequency 2.040 GHz was multiplied by a fixed local oscillator of frequency 2.0403 GHz to down-convert the signal to a frequency of approximately 300 kHz. This was sampled at a rate of 1.25 MHz with 8 bit resolution.

\[
\phi_m(t) = 2\pi(x/\lambda - f_0 t)
\]

(1) The recorded samples were processed to determine the frequency of the received signal. A model for the expected signal phase as a function of time, \(\phi_m(t) \) was constructed using the nominal value of the transmission frequency \(f_0 \) and wavelength \(\lambda \) and the distance \(x \) between the probe and the radio telescopes from nominal values of the orbits and rotation of Titan and Earth. The signal sampled voltage \(V(t_n) \) at time \(t_n \) was multiplied by cosine and sine of the model phase \(\phi_m \) to generate a time series of signal components in-phase and out-of-phase with the phase model, \(I_n \) and \(Q_n \).

\[
I_n = V(t_n) \cos(\phi_m(t_n))
\]

(2) \[Q_n = -V(t_n) \sin(\phi_m(t_n)) \]

(3) The time series of \(I_n \) and \(Q_n \) would be constant except for small errors in the phase model due to wind or any other effect not included in the phase model. The residual frequency was estimated by forming the power spectrum of the complex time series of \(I_n + iQ_n \) over a given integration time. In general the time interval is chosen to be long enough to obtain acceptable signal-to-noise and frequency resolution while being short enough to provide adequate temporal resolution. The integration time cannot be longer than the time over which the model fits the real signal to a fraction of a radian of phase. For weak signals and/or large unknowns in the phase model, better detection can be achieved by averaging several consecutive power spectra.

[14] The final results were obtained using integration times of 2 s at GBT, 3 s at Parkes for the time before landing and 5 s at Parkes after landing, with no averaging of spectra. For each time interval, the phase model was formed from a dynamical model of the predicted motion of the probe combined with a linear change of frequency over the time interval. The frequency rate was varied independently for each time interval as necessary to give the highest signal-to-noise ratio (SNR). The typical SNR for each interval was about 4 for the chosen integration times. Samples of the resulting estimates are shown in Figure 2. The best fit for the frequency rate sometimes agrees well with the trend in the frequency estimates (Figure 2a). For other intervals the best fit frequency rate does not match up with the change in estimated frequency over time (Figure 2b). This could be due to effects that changed the phase of the radio signal over time scales shorter than 2 s, such as variation in the probe spin rate, coupled oscillations of the probe/parachute system, buffeting from wind gusts, etc., and/or to fluctuations in the delay due to atmospheric effects.

[15] Figure 3 shows the estimated frequency as a function of time as measured at GBT and Parkes. The largest change in Doppler shift over the descent period is due to the change in relative velocity of Earth and Titan; the changing Doppler due to rotation of the Earth (approximately 3 kHz) is evident in the change in frequency between the last measurement made at GBT (at which Titan was setting below the horizon) and the first point measured at Parkes (at which Titan was...
Distinct probe dynamics are clearly visible during the early part of the descent. The landing is just apparent shortly after the start of measurements at Parkes. There is a gap of approximately 24 minutes in the data between the end of the track at GBT and the start of the track at Parkes when Titan was not in view of either telescope. Another gap in the data occurred a few hours after the probe landing where the antenna was pointed at an extragalactic radio source for calibration of the VLBI experiment. The measurements ended when Titan could no longer be tracked at Parkes.

Figure 4 shows the Doppler measurement residuals (measured minus model frequency) to a fit of the post-landed data. The landed Doppler data combined with the integrated descent trajectory determine the landing position to be latitude 10.33°S, longitude 192.32°W (167.68°E). The standard deviation of the Doppler residuals in Figure 4 is 0.11 Hz. This measurement noise is consistent with in-flight test data and is limited by the stability of the locking of the radio transmitter signal to the ultrastable oscillator. The measurement noise represents the best possible accuracy with which the wind profile could be estimated, corresponding to ±16 mm/s in radial velocity. Systematic effects result in larger uncertainty in the zonal wind speed, which we estimate to have accuracy of 80 cm/s near the start of descent and 15 cm/s shortly before landing. Details of the systematic uncertainties are given by Dutta-Roy and Bird [2004].

4. Profile of Winds on Titan

The zonal wind speed as a function of altitude down to the surface of Titan, as derived from the ground-based Doppler measurements, is shown in Figure 5. As described above, the sampling time for this profile has been decreased (to 2–3 s) compared with that of the preliminary profile (10 s) by Bird et al. [2005]. Also shown in Figure 5 are wind profiles computed from General Circulation Model (GCM) simulations of Titan. The GCM results, from Hourdin et al. [1995] and Luz et al. [2003], are for the latitude of the Huygens descent and for the northern winter solstice season (Sun orbital longitude \(L_s \approx 270° \)). The Huygens descent was somewhat later in the seasonal cycle (\(L_s \approx 300° \)).

The zonal wind profile in Figure 5 was estimated with the assumption of no meridional wind speed. The descent images show that the meridional wind speed is low for altitudes below approximately 50 km. Figure 6, adapted
from Tomasko et al. [2005], shows the wind direction derived from the descent images. Between altitudes of 10 km and 50 km the wind direction is seen to be within 10° of east. For altitudes below 10 km the wind speed reverses from eastward to westward. In this range the total wind velocity is small, less than 5 m/s, and the angle deviation from westward is about 30°, indicating a meridional wind speed of about half that of the zonal wind speed. At altitudes above 50 km, the meridional wind profile may yet be estimated by the VLBI experiment. Other possible errors in the zonal wind velocity estimates are related to the uncertainties in the descent rate and in the landed position, which are expected to be reduced with further processing of the various data sets.

[19] The estimated wind profile shows a sharp drop in wind speed to near zero at an altitude between 60 km and 75 km, or approximately 40 hPa and 20 hPa, defining a region of strong reversed shear at 40 hPa under a region of strong prograde shear between 75 km and 100 km. The wind shear shows a decrease in the zonal wind speed by 40 m/s and then back up again by 40 m/s over a time interval of 15 minutes. This feature appears at an altitude where slight wind shear was computed in the models of Luz et al. [2003] and Hourdin et al. [1995]. The observed shear is much stronger than in the simulations. Our profile assumes that the wind speed is purely zonal, which is known from the descent imaging to be a very good approximation up to 50 km altitude (see Figure 6). If instead the wind shear was meridional and the zonal wind was roughly constant over that 15 minute time interval, the Doppler measurements could have been produced by a northward meridional wind that grew swiftly to 90 m/s and then receded back to zero within 15 minutes. It seems more likely that the wind shear is zonal. The results from the VLBI experiment may be able to confirm this. In any case a strong wind shear is certain.

[20] The cause of this reversed shear region bears further study, but is probably related to the vertical maximum in the static stability at the same altitude within Titan’s lower stratosphere, according to the measured vertical profiles of temperature [Lindal et al., 1983; Fulchignoni et al., 2005], which modulates the efficiency of the advective and eddy transports of both thermal energy and momentum. As shown in the models of Luz et al. [2003] and Hourdin et al. [1995], the inflected vertical shear region in the GCM simulations is bounded from above by a vertically segregated region of the pole-to-pole Hadley circulation. The rising motion near the south pole, sinking near the north, flows northward at 30–50 hPa, but is surmounted by southward flow across the equator just above, itself the lower portion of a vertically distinct pole-to-pole cell extending to the top of the model domains. This stacked cell structure, as enforced by the radiatively imposed
vertical maximum in the static stability, may in turn impose the vertical alternation of wind shear in this region. The reversed shear zone may also be due to the effect of momentum damping by vertically propagating waves or to gravitational tides [Walterscheid and Schubert, 2006].

[21] Further analysis of the residual small-scale variation of the measured Doppler frequency and correlated temperature variations measured by the Huygens Atmospheric Structure Instrument [Fulchignoni et al., 2005] could provide a diagnostic constraint on this process. If, for example, a regular vertical wavelength and amplitude can be detected along with their variation with altitude, as in the related work on the Galileo Doppler experiment at Jupiter [Allison and Atkinson, 2001], then such structure may be associated with a particular gravitational wave mode. Once identified, the dispersive properties of any such mode as constrained by linear wave theory for the indicated background flow and vertical shear, may suggest an estimate of the wave-induced deceleration of the flow [cf. Lindzen, 1981]. Alternatively, this issue might be addressed with the incorporation of a tunable wave-drag parameterization or the explicit resolution of momentum fluxes by small-scale waves in an advanced Titan GCM, as yet lacking in the published models. By this approach numerical modelers might attempt to vary the adjustable parameters or assumed forcing representation of these processes until the vertical structure of the simulated zonal flow bears a closer resemblance to our measured profile.

[22] Figure 7 shows the profile of the lowest 5 km altitude. The wind speed is slow and retrograde between 1 km and 5 km altitude, reversing to slightly prograde at the surface. As already noted by Bird et al. [2005], the low-altitude vertical shear of the DWE profile, with wind speed increasingly westward with increasing altitude, could indicate the thermal wind balance of warmer-poleward temperatures in the lower atmosphere during southern summer solstice, consistent with the generation of episodic cloud-convective centers near the south pole [Brown et al., 2002]. If such a warmer-poleward region is supported by the seasonal surface heating, the roughly 3 km height of this reversed shear zone may be indicative of the height of a convectively well-mixed layer. This would appear to be consistent with the indication of an approximately uniform mixing ratio of CH₄ measured by the Huygens Gas Chromatograph Mass Spectrometer below 5 km altitude [Niemann et al., 2005]. It is interesting that the Titan GCM simulation of Tokano and Neubauer [2005] for the Huygens landing date shows a very thin region of eastward surface flow surmounted above by weak westward winds of approximately 2 m/s. This would be consistent with the results retrieved from the Parkes data.

[23] The ≈1 m/s eastward surface wind is consistent with the theoretical prediction [Flasar and Conrath, 1992; Allison, 1992] of a surface gradient-wind less than 2 m/s. The inferred eastward direction of the surface flow would be consistent with the indicated direction of possible surface wind gusts associated with the morphology of low-latitude surface streaks observed by Cassini imaging [Porco et al., 2004]. Eastward surface flow at southern low-latitudes would also be dynamically consistent with the Coriolis deflection there of a southward, cross-equatorial Hadley circulation, as simulated
for the southern summer season by Titan GCMs [Luz et al., 2003; Hourdin et al., 1995].

[24] The Huygens landing location, near the equator, and Titan orbit phase, 12.9 Earth days after periapsis, was in a region where gravitational tidal winds were expected to be low. In a model by Tokano and Neubauer [2002], Huygens might have been expected to experience a small northwest-directed tidal wind. The observed near surface winds were comparable in magnitude. However, it would be premature to draw conclusions on the drivers of the large-scale circulation on Titan from the height profile of a single descent probe, especially in a region where tidal effects were expected to be small. Experimental verification of the effects due to tidal winds remains a goal for future exploration, most efficiently with a fleet of passive balloons released at various different Titan latitudes [Tokano and Lorenz, 2006].

5. Conclusion

[25] Improved results have been obtained of the vertical profile of the zonal wind on Titan based on data with higher temporal resolution than those reported earlier. The wind profile shows an unanticipated drop in wind speed in a region of strong reversed shear toward weaker-upward flow for the southern summer season by Titan GCMs [Luz et al., 2003; Hourdin et al., 1995].

[24] The Huygens landing location, near the equator, and Titan orbit phase, 12.9 Earth days after periapsis, was in a region where gravitational tidal winds were expected to be low. In a model by Tokano and Neubauer [2002], Huygens might have been expected to experience a small northwest-directed tidal wind. The observed near surface winds were comparable in magnitude. However, it would be premature to draw conclusions on the drivers of the large-scale circulation on Titan from the height profile of a single descent probe, especially in a region where tidal effects were expected to be small. Experimental verification of the effects due to tidal winds remains a goal for future exploration, most efficiently with a fleet of passive balloons released at various different Titan latitudes [Tokano and Lorenz, 2006].

5. Conclusion

[25] Improved results have been obtained of the vertical profile of the zonal wind on Titan based on data with higher temporal resolution than those reported earlier. The wind profile shows an unanticipated drop in wind speed in a region of strong reversed shear toward weaker-upward flow for the southern summer season by Titan GCMs [Luz et al., 2003; Hourdin et al., 1995].

[24] The Huygens landing location, near the equator, and Titan orbit phase, 12.9 Earth days after periapsis, was in a region where gravitational tidal winds were expected to be low. In a model by Tokano and Neubauer [2002], Huygens might have been expected to experience a small northwest-directed tidal wind. The observed near surface winds were comparable in magnitude. However, it would be premature to draw conclusions on the drivers of the large-scale circulation on Titan from the height profile of a single descent probe, especially in a region where tidal effects were expected to be small. Experimental verification of the effects due to tidal winds remains a goal for future exploration, most efficiently with a fleet of passive balloons released at various different Titan latitudes [Tokano and Lorenz, 2006].

5. Conclusion

[25] Improved results have been obtained of the vertical profile of the zonal wind on Titan based on data with higher temporal resolution than those reported earlier. The wind profile shows an unanticipated drop in wind speed in a region of strong reversed shear toward weaker-upward flow for the southern summer season by Titan GCMs [Luz et al., 2003; Hourdin et al., 1995].

[24] The Huygens landing location, near the equator, and Titan orbit phase, 12.9 Earth days after periapsis, was in a region where gravitational tidal winds were expected to be low. In a model by Tokano and Neubauer [2002], Huygens might have been expected to experience a small northwest-directed tidal wind. The observed near surface winds were comparable in magnitude. However, it would be premature to draw conclusions on the drivers of the large-scale circulation on Titan from the height profile of a single descent probe, especially in a region where tidal effects were expected to be small. Experimental verification of the effects due to tidal winds remains a goal for future exploration, most efficiently with a fleet of passive balloons released at various different Titan latitudes [Tokano and Lorenz, 2006].
with strong prograde shear aloft. This may be related to the vertical maximum in the static stability at the same altitude within Titan’s lower stratosphere, or to the possibility that the reversed shear zone is the effect of momentum damping by vertically propagating waves. The wind speed is slow and retrograde between 1 km and 5 km altitude, reversing to slightly prograde at the surface, possibly indicating the thermal wind balance of warmer-poleward temperatures in the lower atmosphere during southern summer solstice. Future work will include filling the gap in the ground-based observations between the Green Bank and Parkes view periods as well as inclusion of VLBI results and constraints on meridional motion in the upper atmosphere. Further analysis of the residual small-scale variation of the measured Doppler frequency may provide a diagnostic constraint on the process generating the wind shear layer.

Acknowledgments. The authors thank the following colleagues for their assistance in carrying out this experiment: Jim Ulvestad, Jon Romney, Don Haenichen, Paul Rhodes, Mark McKinney, Ray McFarlin, Duane Clark, Jim Brown, Frank Ghiro, Bill Robins, Bill Hancock, and Tony Sylvester from the National Radio Astronomy Observatory for their assistance in the use of the Robert C. Byrd Green Bank Telescope and antennas of the Very Long Baseline Array, Manebender and Ian Avruch for their collaborative use of the Parkes telescope operated by the Australia Telescope National Facility, Leonid Gurvits, Sergei Pogrebko and Ian Avruch for their collaborative use of the radio antennas and for the creation of schedule files, Lindley Johnson and Berry Geldzahler of NASA, and Charles Elachi, Robert Mitchell, and William Weber of the Jet Propulsion Laboratory for their encouragement and financial support. We also thank Asael Anabtawi and Andre Jongeling of the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration, and presents results of a research project partially funded by the Deutsches Zentrum für Luft- und Raumfahrt.

References

Figure 7. Vertical zonal wind profile during the last 5 km of descent. The wind at the surface of Titan is an eastward breeze (prograde) that switches direction and becomes a weak westward wind (retrograde) at about 1 km altitude. This trend, which continues up to the start of the Parkes measurements at about 4.8 km, has been verified by ground track determinations from Huygens images [Tomasko et al., 2005].

M. Allison, NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA.

S. W. Asmar, J. S. Border, S. G. Finley, W. M. Folkner, G. W. Franklin, J. Gorelik, D. V. Johnston, V. V. Kerzhanovich, S. T. Lowe, and R. A. Preston, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Mail Stop 301-460, Pasadena, CA 91001, USA. (william.folkner@jpl.nasa.gov)

D. H. Atkinson, Department of Electrical and Computer Engineering, University of Idaho, Moscow, ID 83844-1023, USA.

P. Edenhofer, Institut für HF-Technik, Universität Bochum, D-44780 Bochum, Germany.

D. Plettemeier, Elektrotechnisches Institut, Technische Universität Dresden, D-01062 Dresden, Germany.

G. L. Tyler, Center for Radar Astronomy, Stanford University, Stanford, CA 94305, USA.