Microphysical approach to polarized radiative

transfer:
observation point

Michael |. Mishchenko

extension to the case of an external

The self-consistent microphysical approach applied recently to the transfer of polarized radiation inside
a volume of anisotropic discrete random medium is extended to the case of an external observation point.
Specifically, it is demonstrated that the solution of the vector radiative transfer equation yields all
quantities necessary to calculate the response of an external collimated detector of polarized radiation as
a function of the detector orientation and position relative to the scattering volume.

OCIS codes:

1. Introduction

In a recent paper,! I used methods of statistical
electromagnetics to give a self-consistent micro-
physical derivation of the general vector radiative
transfer equation (VRTE) describing multiple scat-
tering of light in a volume filled with randomly and
sparsely positioned particles of arbitrary size,
shape, refractive index, and orientation. That der-
ivation assumed that an observation point was lo-
cated inside the scattering volume. This short
note is a natural outgrowth of Ref. 1 in that it
explains how the solution of VRTE can be used to
calculate the response of a collimated detector of
polarized radiation placed outside the scattering
volume. This problem is important in practice,
since scattering objects are often studied with use of
external detectors of electromagnetic radiation.
Typical examples are remote-sensing observations
of the terrestrial atmosphere from earth-orbiting
satellites, ground-based telescopic observations of
other planets and various astrophysical objects, and
bidirectional reflectometry of particle suspensions
and particulate surfaces.

The lengthy derivation of Ref. 1 required the in-
troduction of several concepts and specific notation

M. I. Mishchenko (crmim@giss.nasa.gov) is with the NASA God-
dard Institute for Space Studies, 2880 Broadway, New York, New
York 10025.

Received 11 February 2003; revised manuscript received 14 May
2003.

0003-6935/03/244963-05$0.00/0

030.5620, 260.2110, 260.5430, 280.1310, 290.4210, 290.5850.

and the explicit listing of numerous equations.
Therefore I will avoid redundancy and save space
by assuming that the reader is familiar with Ref. 1
and by using exactly the same terminology and no-
tation.

2. Coherent Field

As in Ref. 1, I consider the scattering of a plane
electromagnetic wave E™“(r) = Ei exp(ik;§ - r) by a
bounded volume V uniformly filled with indepen-
dently scattering particles of arbitrary size, shape,
refractive index, and orientation. The wave propa-
gates in the direction of the unit vector § and is char-
acterized by the amplitude E¢’° and the wave number
k.. Using the approximations summarized in Sec-
tion 4 of Ref. 1, let us first address the computation of
the coherent field ES*(r) at an external observation
point r ¢ V, where “ex” stands for external. The
analysis described in Subsection 3.E of Ref. 1 indi-
cates that only forward-scattering particles that lie
on the line connecting the source of illumination and
the observation point can contribute to the coherent
field. Hence, let us consider three possible types of
location of the observation point with respect to the
scattering volume, as shown in Fig. 1. The line con-
necting the source of illumination and observation
point 1 does not go through the scattering volume,
whereas the lines through the source of illumination
and observation points 2 and 3 do. However, only in
the case of observation point 3 does the scattering
volume lie between the source of illumination and the
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Coherent field at external observation points.

Fig. 1.

observation point. Therefore repeating the deriva-
tion of Subsection 3.E of Ref. 1 yields

(1)
(2)

EZ(r;) = E™(ry),

E(ry) = E™(ry),
i2"ﬂ'n0 < A inc

7 As(A(S, §)) | - E™(r;), (3)

1

Ec(rs) = exp

where n, is the particle number density, As is the
length of the light path inside the scattering volume
as shown in Fig. 1, and (A(S, §)) is the ensemble-
averaged forward-scattering amplitude matrix per
particle. This result can be summarized by the fol-
lowing formula:
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z2
ey,
>
7

G,

Fig. 2. Coherency dyad at an external observation point.

3. Coherency Dyad

The derivation of the formula for the coherency dyad
C*(r) = (E(r) ® E*(r)) defined in terms of the total
electric field E(r) at an external observation point r ¢
V is very similar to that for the coherency dyad at an
internal point, as described in Subsections 3.G and
3.H of Ref. 1. The only significant difference is that
now only a part of the line connecting the observation
point and particle 1 (see Fig. 2) lies inside the scat-
tering volume (see Fig. 17 of Ref. 1). Therefore the

E""(r) if r is not “shadowed” by V,
X(p) = i2 o .
E(r) ! ;:”" As(r)(A(8, 8)) | -E™(r)  ifris “shadowed” by V, @)
1
where As is a function of r. final result is as follows:
By analogy with Subsection 3.F of Ref. 1, Eq. (4)

can be rewritten in terms of the Stokes column vector é’eX(r) = f df)(ieX(r, -D), (6)

of the external coherent field I3 (r): i
- if r is not “shadowed” by V, 5)

I(r) = {

exp[ —n,As(r)(K(8)) 1™

if r is “shadowed” by V,

where I'*° is the Stokes column vector of the incident
field and (K(S)) is the ensemble-averaged extinction
matrix per particle. The physical interpretation of
this formula is very simple: The intensity of the
coherent wave is exponentially attenuated and its
polarization state changes if and only if the wave
travels through the scattering medium.
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where the vector p originates at the observation
point, p = p/p is the unit vector in the direction of p,
and the specific coherency dyad fex(r, —pP) is the sum
of the coherent and diffuse parts:

S(e, —p) = 3H(r, —Pp) + 3¥(x, —p). (D



The coherent part is given by

S&(r, —p) =3(p + 8)C(v), ®)
where 3(q) is the solid-angle Dirac delta function,
C(r) = EX(r) ® [EX(r)]* 9)

is the coherent part of the “external” coherency
dyad C**(r), and the external coherent field Ec*(r) is
given by Eq. (4). The diffuse part of the external
specific coherency dyad %5*(r, —P) vanishes if p ¢
Q(r), where Q(r) is the solid angle subtended by the
scattering volume when it is viewed from the exter-
nal observation point r (see Fig. 2). Otherwise it is
given by

is the external coherent specific intensity vector,

ifp ¢ Qv),

ifpeamr Y

cox A 0

e, —B) {Id[rc<r, p), ~p]
is the external diffuse specific intensity vector, IS (r)
is given by Eq. (5), and 0 is a four-component zero-
column. As was the case with the external diffuse
specific coherency dyad, the external diffuse specific
intensity vector for a direction —p such that p € Q(r)
is equal to the internal diffuse specific intensity vec-
tor at that boundary point where the line drawn
through the observation point in the direction p en-
ters the scattering volume (Fig. 2). Furthermore, I5*

23(r, —p) = nof
c

. Cl
4 (=P, p) + ni f
c

dp f dé,H(—P, p) - Ai(—P, 8) - Co(r + p) - AT'(—p, 8

dp J. d¢; f dRQldRmdgz"?l(_ﬁ, p) 'Xl(_ﬁr _R21)

: 'Y(_)](_RZD R,) 'Zz(_RZh §) - ((i(r +p+ Ry) 'Zg*(_RZI, S)

T (=Ryy, Ryy) - AT (—p, —Ro) 17 (—P, p) + - -,

p € Q(r), (10)

where C, is the coherent part of the internal coher-
ency dyad, 7 is the coherent transmission dyad, and
the variable & collectively denotes the particle state.
The rest of the notation is clear from Fig. 2.

Direct comparison of Eq. (10) with Eq. (113) of Ref.
1 leads us to a fundamental conclusion: The exter-
nal diffuse specific coherency dyad %3*(r, —p) for a
direction —p such that p € Q(r) is equal to the in-
ternal diffuse specific coherency dyad at a boundary
point C where the line drawn through the observa-
tion point in the direction P enters the scattering
volume (see Fig. 2). Thus

- O if peQ(r),
25, —p) =14 _ o 1D
Sidre(r, p), —p] if P E Q(r),

where O is the zero dyad and r. is the position
vector of the point C (see Fig. 2). Obviously, r. is
a function of r and p. Equations (6) and (7) then
demonstrate that the coherency dyad at the exter-
nal observation point can be expressed in terms of
the internal diffuse specific coherency dyad at those
boundary points of the scattering volume that are
“visible” from the observation point (the part of the
boundary visible from the observation point r is
highlighted in Fig. 2).

4. Specific Intensity Vector

It is straightforward to rewrite Eqgs. (7)—(9) and (11)
in terms of the specific intensity vector at the external
observation point:

I*(r, —p) = IX(x, —p) + I¥(xr, —P), (12)
where

IX(r, —p) = 3(p + §IX(r) (13)

(r, —P) vanishes for all directions —p such that p ¢
Q(r).

5. Discussion

The physical significance of these results follows from
the discussion in Section 4 of Ref. 1 and is illustrated
in Fig. 3. All four external polarization-sensitive,
well-collimated detectors have the same surface area
AS and the same (small) angular aperture. How-
ever, the orientations of the detectors and their posi-
tions are different. To emphasize the difference in
the orientations of the four detector acceptance solid
angles, we denote the latter as AQ, AQ,, AQ,, and
AQ,, whereas the position vectors of the respective
observation points are denoted as ry, ry, rg, and r,.

Detector 1 faces the incident wave, but its accep-
tance solid angle AQ), captures no boundary points of
the scattering volume. Therefore the polarization
signal measured by the first detector per unit time is
given by

Signal 1 = AST™. (15)

Detector 2 is positioned and oriented such that its
acceptance solid angle AQ), does not capture the in-
cidence direction, but captures all points of the part of
the boundary denoted S,. Therefore the polarized
signal measured by this detector per unit time is
given by

Signal 2 = AS f dpISi(ry, —P)

4w

_AS f dpL{xc(rs, B), —Bl, (16)
AQo
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Fig. 3. Polarized signal measured by an external collimated de-
tector depends on the detector position and orientation with re-
spect to the scattering volume.

where, as before, the unit vector P originates at ob-
servation point 2 and r € V is the position vector of
the point where the line drawn through the observa-
tion point in the direction P crosses the boundary of
the scattering volume (see Fig. 2).

The acceptance solid angle of detector 3 captures
both the incidence direction and all points of the part
of the boundary denoted S5. Therefore the polarized
signal measured by detector 3 per unit time is

Signal 3 = AS exp[ —n,As(r;)(K(8))[I™

+ ASf dpIrc(rs, ), —pl, (17)
AQ3

where, as before, As(rs) is the length of the path
traveled by the coherent wave inside the scattering
volume before it reaches observation point 3 (see Fig.
1).

Finally, neither the incidence direction nor any
boundary point is captured by the acceptance solid
angle of detector 4. Therefore this detector mea-
sures no signal:

Signal 4 = 0. (18)

6. First-Order Scattering by a Small Volume Element

In this section we will use the above results to derive
the formulas of the so-called first-order-scattering ap-
proximation for a small volume element containing a
tenuous collection of randomly positioned particles.
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Fig. 4. First-order scattering by a small volume element.

Specifically, let us assume that the number of parti-
cles is sufficiently small that

[noL(K(Q)),| <1 and  [noL{Z(Q, &)yl < 1

(19)

forp,gq =1,...,4 and for any q and q’, where L is
the largest linear dimension of the volume element
and (Z(q, q')) is the ensemble-averaged phase matrix
per particle. As a consequence, one may neglect all
terms proportional to powers of n, higher than the
first.

This situation is shown schematically in Fig. 4,
where the diameter of the sensitive area of either
detector is assumed to be significantly greater than L,
and the angular aperture AQ of either detector is
large enough to encompass the entire scattering vol-
ume. We will further assume that the distance r
from the volume element to the detectors is much
greater than L so that the waves scattered by differ-
ent particles toward either detector propagate in es-
sentially the same direction, and the distance from
the observation point to any particle inside the vol-
ume element is approximately the same. Compari-
son with Fig. 3 shows that the electromagnetic
response of detector 1 is described by Eq. (17),
whereas that of detector 2 is given by Eq. (16). Let
us now recall the integral form of the VRTE,

5 Q
1(Q, 4 = noj dgH(q, @ — q){Z(q, §))I(q)

0

Q
e f dq f W@ HE, Q — q)
41

0
X (Z(§, §')i(q, @), (20)

where H is the coherent transmission Stokes matrix
and the scattering geometry is shown in Fig. 18 of
Ref. 1. We can now use Egs. (102) and (103) of Ref.



1 to derive that the polarized signal measured by
detector 1 per unit time is given by

Signal 1 = ASI™ — N(K(8))I'™
1 A
+ — ASN(Z(S, s)I™, (21
r

whereas that measured by detector 2 per unit time is
given by

1 )
Signal 2 = 2 ASN(Z(q, 8))I™, (22)

where N = n,V is the total number of particles in the
volume element.

Equations (21) and (22) are usually used as an a
priori starting point in the phenomenological deriva-
tion of the VRTE (e.g., Ref. 2). The deficiencies of
the phenomenological approach are many and have
been thoroughly discussed in Refs. 1 and 2. It is,
therefore, logical to derive Eqgs. (21) and (22) from the
self-consistent microphysical radiative transfer the-
ory, which also helps to define the range of applica-
bility of these formulas.

7. Concluding Remarks

I have shown in this paper that if VRTE has been
solved and, as a consequence, the diffuse specific in-
tensity vector is known at all points of the scattering

volume, then Eqgs. (12)—(18) can be used to calculate
the polarization response of an external collimated
detector arbitrarily oriented and positioned with re-
spect to V. T have also used Egs. (16) and (17) along
with the integral form of the VRTE to derive the
formulas of the first-order-scattering approximation
for a small volume element observed from a distance
much greater than the largest linear dimension of the
volume element. Although heuristic analogues of
these results have been widely used in the framework
of the phenomenological radiative transfer theory, it
was important to demonstrate that Eqs. (12)—(18),
(21), and (22) can be consistently derived using the
microphysical approach based on methods of statis-
tical electromagnetics.
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