Use of circular cylinders as surrogates for
hexagonal pristine ice crystals in scattering
calculations at infrared wavelengths
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We investigate the errors associated with the use of circular cylinders as surrogates for hexagonal
columns in computing the optical properties of pristine ice crystals at infrared (8—12-pm) wavelengths.
The equivalent circular cylinders are specified in terms of volume (V), projected area (A), and volume-
to-area ratio that are equal to those of the hexagonal columns. We use the T-matrix method to compute
the optical properties of the equivalent circular cylinders. We apply the finite-difference time-domain
method to compute the optical properties of hexagonal ice columns smaller than 40 pm. For hexagonal
columns larger than 40 pm we employ an improved geometric optics method and a stretched scattering
potential technique developed in previous studies to calculate the phase function and the extinction (or
absorption) efficiency, respectively. The differences between the results for circular cylinders and hex-
agonal columns are of the order of a few percent. Thus it is quite reasonable to use a circular cylinder
geometry as a surrogate for pristine hexagonal ice columns for scattering calculations at infrared
(8—12-pm) wavelengths. Although the pristine ice crystals can be approximated as circular cylinders in
scattering calculations at infrared wavelengths, it is shown that optical properties of individual aggre-

gates cannot be well approximated by those of individual finite columns or cylinders. © 2003 Optical

Society of America
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1. Introduction

It is quite challenging to assess quantitatively the
radiative effect of cirrus clouds in the atmosphere.-3
One of the major difficulties encountered in modeling
the radiative properties of cirrus clouds is that these
clouds are composed almost exclusively of nonspheri-
cal ice crystals. Although various ice crystal config-
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urations, including hexagonal columns, plates,
hollow columns, bullet rosettes, and aggregates, have
been observed,*7 it is a common practice to assume
that the geometry of ice crystals is that of hexagonal
columns in climate and remote-sensing applica-
tions.8-11  This simplification is based mainly on two
facts: First, the halos observed at visible wave-
lengths are scattering characteristics that are typical
of a hexagonal crystal geometry, although it has been
argued that halos are not often observed in the at-
mosphere (see, e.g., Foot!'?). Second, pristine ice
crystals that form at extremely cold temperatures,
such as in cirrus clouds and polar stratospheric
clouds, tend to have basic hexagonal structures.
Various parameterization efforts and radiative sen-
sitivity studies assume a hexagonal geometry for ice
crystals in cirrus clouds. However, in a few recent
studies a mixture of various ice crystal configurations
was assumed,!3-18 but those studies were essentially
limited to the solar spectrum.

At solar wavelengths, particularly at visible wave-
lengths, the scattering properties of hexagonal ice
crystals can be approximated by use of the geometric
optics ray-tracing method. At infrared wave-
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lengths, for which the sizes of ice crystals are not
substantially larger than the incident wavelength,
the geometric optics method breaks down. In addi-
tion, ice crystals have strong absorption at infrared
wavelengths. Because of the substantial absorption
within ice crystals at infrared wavelengths, the elec-
tromagnetic wavelengths refracted into ice crystals
are inhomogeneous waves.1?20 The inhomogeneity
of the refracted electromagnetic wave can signifi-
cantly complicate the ray-tracing computation and
degrade the accuracy of the conventional ray-tracing
technique.2! Therefore, accurate scattering compu-
tational methods must be used in calculating the
scattering properties of ice crystals at infrared wave-
lengths. The finite-difference time-domain (FDTD)
method?2-25 and the discrete dipole approxima-
tion26-28 (DDA) are accurate numerical methods that
can be applied to an arbitrarily shaped particle, as-
suming that a sufficiently fine resolution is used for
the grid meshes (FDTD) or the sizes of the dipole
elements (DDA). However, these two methods re-
quire extremely large computational resources in
terms of computer CPU time and memory. The ap-
plicability of the FDTD and the DDA is quite limited
in practice, particularly when scattering calculations
are required for various size parameters and multiple
wavelengths. The T-matrix method, if it is imple-
mented for axisymmetric particles, is the most com-
putationally efficient method available now for
accurately computing the single-scattering proper-
ties of nonspherical particles.2?

In the present study we ascertain the accuracy of
using circular cylinders as surrogates for computa-
tion of the scattering properties of hexagonal ice crys-
tals at infrared wavelengths. The hexagonal
geometry is regarded as more complex than the cir-
cular cylinder geometry, as the former has a lower
degree of symmetry. The accuracy of using a sim-
pler geometry as a surrogate for a more-complex ge-
ometry in light-scattering computations was
investigated in several previous studies. Liou and
Takano3° showed that an equivalent sphere with the
same surface area or the same volume does not re-
produce the proper single-scattering properties of
hexagonal ice crystals at infrared wavelengths.
Chylek and Videen3! also showed that the equivalent
spheres of equal volume or equal surface area are not
suitable for approximating hexagonal columns or
plates. Macke and Mishchenko?? investigated the
accuracy of approximating a hexagonal geometry by
using ellipsoidal and circular cylinders in light-
scattering calculations at visible and near-infrared
wavelengths. Those authors found substantial dif-
ferences in light-scattering calculations for three ge-
ometries (hexagonal, ellipsoidal, and circular
cylinder particles) at a nonabsorbing wavelength
(e.g., 0.55 pm) and recommended against the substi-
tution of ellipsoidal and circular cylinder geometries
for the hexagonal structure. However, for the inte-
grated scattering properties such as the asymmetry
factor at absorbing wavelengths (e.g., 1.6 and 3.7
pm), the overall differences among the three geome-
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tries are much smaller in magnitude. Kahnert et al.33
investigated the accuracy of approximating an en-
semble of wavelength-sized prisms by spheroids and
cylinders in light-scattering calculations based on the
extended boundary condition method. Their results
show that the optical properties of cylinders are
closer to those of prisms than of spheroids. Baran et
al.3* investigated the accuracy of using a size—shape
distribution of randomly oriented circular ice cylin-
ders to simulate scattering from a distribution of ran-
domly oriented ice aggregates. Grenfell and
Warren35 suggested that a nonspherical particle can
be approximated by a collection of monodisperse
spheres that have the same volume-to-surface (V/A)
ratio. Those authors also carried out intensive val-
idation studies of the accuracy of their method for
calculating the bulk optical properties of ice crystals
and modeling radiative transfer processes that in-
volve ice clouds. The present study is an extension
of that of Grenfell and Warren3> in the sense that a
simpler geometry is used to approximate a more-
complex geometry for scattering and absorption com-
putations.

Motivated by the computational efficiency of the
T-matrix method when it is applied to a circular cyl-
inder geometry with small and moderate size param-
eters, one may inquire whether a hexagonal
geometry can be approximated by a circular cylinder
at infrared wavelengths with acceptable errors in the
scattering properties. From physical intuition, one
may expect that the detailed sharp edges of side faces
of a hexagon may not be so important in light-
scattering calculations in the infrared region because
of strong absorption within the particle and because
the wavelength is of the same order as the particle
size. In addition, in the atmosphere the surface
edges of pristine ice crystals may be rounded owing to
sublimation or riming.32 Thus an investigation of
the scattering properties of circular cylinders may be
interesting in its own right. The efficient computa-
tion of single-scattering properties for circular cylin-
ders by the T-matrix method may provide the optical
properties of small ice crystals and also provide a
data set for constructing the approximate optical
properties of large particles based on the composite
method developed by Fu et al.,36:37 which is one of the
most practical approaches available for covering a
wide range of size parameters.

This paper is organized as follows. In Section 2
we present the approach used for light-scattering cal-
culations. Seven ways to approximate a hexagonal
geometry by a circular cylinder are presented. Nu-
merical computations and an associated discussion
are provided in Section 3. Finally, conclusions are
given in Section 4.

2. Approach

In the present study we use the T-matrix computa-
tion program developed by Mishchenko38 to calculate
the single-scattering properties of randomly oriented
circular cylinders. A detailed description of the
T-matrix method and documentation of the compu-



tational program have been provided by Mishchenko
and Travis3® and will not be reiterated here. The
T-matrix method pioneered by Waterman*® can be
applied in principle to any arbitrary geometry. The
application of the T-matrix method based on the ex-
tended boundary condition method for rotationally
symmetric shapes can be traced back to the studies of
Wiscombe and Mugnai,*! Barber and Hill,42 and
Mishchenko and Travis.3® Recently the numerical
implementation of this method was extended to ge-
ometries other than axisymmetric particles.43-45
Havemann and Baran® employed the T-matrix
method to compute the single-scattering properties of
hexagonal ice crystals with size parameters up to 40.
In the numerical computation, the applicable size
parameter region of the T-matrix, if it is implemented
as a nonaxisymmetric geometry, is usually narrower
than for axisymmetric particles. A combination of
the T-matrix method and other numerical light-
scattering computational methods, such as the DDA
and the FDTD, may shed new light on efficient com-
putation of the optical properties of nonspherical par-
ticles.4748 In practice, the analytical approach of
averaging the effect of particle orientations in the
T-matrix method%® can substantially speed up nu-
merical computations.

To ascertain the difference in the optical properties
of hexagonal and circular cylindrical ice crystals we
take the extinction efficiency, the single-scattering
albedo, the phase function, and the asymmetry factor
calculated by Yang et al.5° as the reference data set.
In that study the FDTD method was applied to small
hexagonal ice crystals with maximum dimensions
smaller than 40 pwm. For the computation of the
asymmetry factor, Yang et al.5° used a combination of
the FDTD method and an improved geometric optics
method (for particle sizes larger than 40 pm) to com-
pute the phase function. In the computation of ex-
tinction and absorption efficiencies, the stretched
scattering potential method (SSPM) is applied to ice
crystals with maximum dimensions larger than 40
pm. The SSPM results are refined by the weighted
summation of the SSPM, the Lorenz—Mie solution for
equivalent spheres, and the geometric optics solution
in a manner similar to the composite approach devel-
oped by Fu et al.36 When the FDTD and the refined
SSPM solutions are combined, the results computed
by Yang et al.?% encompass ice crystal sizes specified
in terms of their maximum dimensions from 1 to
10000 pm.

In the present study we consider particle sizes that
range from 1 to 180 wm. Over this size range, the
T-matrix method gives convergent solutions in the
8—12-pm spectral region. For a given maximum di-
mension, the aspect ratio given by Yang et al.?° is
followed, which is

where a is the semiwidth of the cross section and L is
the length of a hexagonal column. Ice crystals de-
fined by Eq. (1) are compact hexagons with aspect
ratios of unity if their maximum dimensions are
smaller than 40 pm, whereas crystals larger than 40
pm are essentially hexagonal columns.

The radius of the cross section and the length of a
circular cylinder are denoted R and H, respectively.
To define an equivalent circular cylinder for a hexag-
onal particle, one can assume that the two particles
have the same projected area, volume, or ratio of
volume to projected area under the condition that the
two particles have the same length or aspect ratio.
If circular and hexagonal cylinders have the same
length (i.e., H = L), the radius of the circular cylinder
with the same volume is given by

‘3(

\, 211' @

R,=

where the subscript v indicates that the circular cyl-
inder has the same volume as the hexagon. The
cross-sectional radius of a circular cylinder with the
same projected area as the hexagon is given by

[L?+ (6y3a® + 12aL)/7]"? -
“ 2

3

Similarly, the cross-sectional radius of the circular
cylinder that has the same ratio of volume to pro-
jected area as a hexagon is given by

Rv/a =

3
\? a. (4)

To define the equivalence of a circular cylinder and
a hexagonal column in scattering calculations, one
can also let the two particles have the same aspect
ratio, that is, a/L = R/H. For this condition the
cross-sectional radius of a circular cylinder with an
equivalent volume, an equivalent projected area, or
an equivalent ratio of volume to projected area is

given by
1/3
( 9",

1
2a/L =
5.916/LY?

exp[—0.017835(L — 40)]

[3y3a +6L]|’ ©
BECE )
3(a + L
Ru/a* = #a. (7)
ysa + 2L
L =40 pm
40 pm <L =50 pm, (D
L >50 pm
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Fig. 1. Radii and lengths of circular cylinders defined as having

the same volume, surface area, or ratio of volume to surface area
as hexagonal columns when the same length or aspect ratio is
applied to the two geometries. Left, same lengths of circular cyl-
inders and hexagonal columns; Middle and right, aspect ratio kept
constant in defining the equivalence.

The lengths associated with the radii in Eqs. (5)—(7)
are given by

3 \““‘sg 1/3
I‘IU>X< = 27 L, (8)
3\3a + 6L]""
Hy=|"Y"""2| L
¢ { 2m(a + L) ’ ©)
-
3(a + L
H, = 2D (10)
y3a + 2L

Figure 1 shows the radii and lengths defined in
Eqgs. (3)—(7) versus semiwidth (a) and length (L) of a
hexagonal column. The aspect ratio defined in Eq.
(1) is used for defining the semiwidth of the cross
section of a hexagonal column of a given length. At
the left in Fig. 1 the radius of a circular cylinder with
the same surface (A), volume (V), or ratio of volume
to surface area (V/A) as a hexagonal column when
the lengths of the two geometries are the same is
shown. Evidently, the circular cylinder specified on
the basis of surface-area equivalence is largest,
whereas that based on V/A equivalence is smallest in
terms of the radius of cross section. In the middle
and at the right in Fig. 1 are the radii and lengths of
cylinders with aspect ratios that are the same as for
the hexagonal crystals.

3. Numerical Results and Discussion

The results presented here focus on the scalar optical
properties of scattering particles, including extinc-
tion efficiency, absorption efficiency, phase function,
and asymmetry factor. Similarly to Yang et al.,?° we
use the refractive index compiled by Warren5! in our
numerical computations. The T-matrix computa-
tional code is implemented with the extended double
precision algorithm.52

Figure 2 shows a comparison of the phase functions
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Fig. 2. Comparison of phase functions of circular cylinders and
hexagonal columns. The circular cylinders are defined to have
the same volume and length as the hexagonal columns. The re-
sults for circular cylinders are computed by Mishchenko’s T-matrix
code.?® For hexagonal columns the FDTD method is used for
small particles (L = 10, 20, 40 pm), whereas an improved geomet-
ric optics method is used for L = 140 pm.

of hexagonal ice columns and circular ice cylinders.
The circular cylinders are defined to have the same
length and volume as the hexagonal columns. For
sizes L = 10, 20, 40 pm, the phase functions of the
hexagonal columns are computed by the FDTD
method, whereas the results for L = 140 pm are
computed with an improved geometric optics method.
For small sizes, the phase functions of circular cylin-
ders are essentially the same as those of hexagonal
columns. The slight differences between the two re-
sults near backscattering angles for L = 40 pm might
be caused by the inaccuracy of the FDTD method
because of insufficient resolution for the grid mesh.
The performance of the FDTD method for hexagonal
ice crystals was recently assessed by Baran et al.53 in
comparison with the implementation of the T-matrix
method in a hexagonal geometry. From Fig. 2 ex-
cellent agreement between the results at L = 140 pm
can be noted. Evidently, the sharp edges of side
faces of hexagonal geometry are not important in
specifying the optical properties of the particles. In-
stead, the overall morphology of the particle as a
cylinder or a column is the major factor that affects
the particle’s optical properties.

For infrared radiative transfer simulations, the
phase function of cirrus particles can be approxi-
mated by the Henyey—Greenstein (H-G) function,
given by

1-g°
(1+g%— 2g cos 0)%?2

PH»G(B) =

N
= E (21 + 1)g'Py(cos 6), (11)
=0
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Fig. 3. Comparison of extinction efficiencies at a wavelength of 8.5 pm for hexagonal columns and various equivalent circular cylinders.

The results for hexagonal particles are taken from Yang et al.5°

where 0 is the scattering angle and g is the asymme-
try factor of ice crystal, which is defined as

g=Y J'Tr P(0)cos(0)sin(0)do, (12)
0

where P(0) is the phase function of nonspherical ice
crystals. P;(cos 8) in Eq. (11) is the /th Legendre
polynomial. The Henyey—Greenstein phase func-
tion is used frequently for its simplicity and efficiency
in numerical computations. In the following discus-
sion, emphasis will be given to the asymmetry factor
of the phase function instead of to the detailed angu-
lar variation of the computed scattering phase func-
tion. Note that the present computations are
limited to scalar optical properties. The computa-
tion of the full phase matrix elements of the circular
ice cylinders at a number of infrared wavelengths
was recently reported by Xu et al.,>* who used Mish-
chenko’s T-matrix code for their numerical computa-
tion.

The present computations cover the terrestrial in-
frared window (8—12-pm) region, but in this paper
the discussion is limited to numerical results at 8.5-
and 11-pm wavelengths. The radiometric measure-
ments at the spectral bands centered at these two
wavelengths are often used to retrieve cloud proper-
ties.'* For investigations involving ice particles, the
11-pm wavelength is unique because it is within the

Christiansen band.?556 To ascertain the differences
between the optical properties of circular ice cylin-
ders and hexagonal ice columns, we define the rela-
tive difference € as follows:

_ ReSUItcirc eyl — Resulthexag col

X 100%. (13)

Resu“’hexag col

Figure 3 shows the extinction efficiencies of hexag-
onal ice columns and various equivalent circular ice
cylinders at A = 8.5 pm. Also shown are the relative
differences between the results for the hexagonal and
the circular cylinder geometries. At the left, the
hexagons and the circular cylinders have the same
length; at the right, the two geometries have the
same aspect ratio. Evidently, for large particles
(>120 wm) the differences among various equivalent
definitions are reduced in magnitude, particularly
when the aspect ratio is kept constant for the two
geometries. The extinction efficiency of the
equivalent-volume circular cylinder (L = H) is closer
than other equivalence definitions to that of a hexag-
onal column. The maximum difference is less than
10%, except when the two geometries have the same
length and radius. For large sizes (>100 pm) the
maximum difference is reduced to approximately 3%.
In a previous study Baran and Havemann®? noticed
that for large size parameters the single-scattering
properties become asymptotic to their limiting values
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Fig. 4. Absorption efficiencies that correspond to the extinction efficiencies shown in Fig. 3.

and as such become independent of crystal shape at
infrared wavelengths.

Figure 4 shows the absorption efficiencies and rel-
ative differences that correspond to the results shown
in Fig. 3. Evidently, for large particle sizes (>100
pm) the results for various definitions of equivalent
circular cylinders converge, and the relative differ-
ences converge to approximately 2%. The differ-
ences between the absorption efficiency of hexagonal
columns and that of the circular cylinders with the
same ratio of volume to projected area are smaller
than the results for other equivalence definitions.
Fu et al.3¢ ascertained the errors of approximating
hexagonal columns by spheres with various equiva-
lent definitions in the computation of absorption ef-
ficiency. They also noticed that the equivalent
sphere based on the same ratio of volume to projected
area leads to the smallest errors. Our conclusion is
consistent with the previous study. For practical
applications of infrared radiative transfer, the most
important process is absorption. From this perspec-
tive, hexagonal ice columns may be approximated by
circular cylinders with the same ratio of volume to
projected area. In fact, the ratio of particle volume
to particle projected area is proportional to the mean
path length of the rays inside particle in the frame-
work of anomalous diffraction theory.

Figure 5 shows the asymmetry factor values that
correspond to the extinction and absorption efficien-
cies shown in Figs. 3 and 4. The definition of the
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equivalent circular cylinder for a hexagonal column
seems to have a negligible effect on the value of the
asymmetry factor when the particle size is larger
than approximately 80 wm. In this case the differ-
ences of the asymmetry factors between the hexago-
nal and circular cylinder geometries are less than 2%.
For particle sizes smaller than 20 pwm it is important
how the equivalent circular cylinder is defined.
When L H, the asymmetry factor for the
equivalent-volume circular cylinders is closer than
the other equivalent circular cylinder definitions to
that of hexagonal columns. Another property shown
in Fig. 5 is that the asymmetry factor is small for
small particles (less than 15 pm), whereas the asym-
metry factor reaches its asymptotic value for large
particle sizes. For small particles, the scattering
pattern is close to that of Rayleigh scattering and the
phase function is not strongly asymmetric with re-
spect to scattering angle, leading to a small asymme-
try factor. When the particle size is large, any rays
refracted into the particles are essentially absorbed
because of the strong absorption of ice at infrared
wavelengths. The scattered energy is derived pri-
marily from the diffracted energy that is concen-
trated in the forward direction.

Figures 6, 7, and 8 show the extinction efficiency,
the absorption efficiency, and the asymmetry factor,
respectively, but at A\ = 11 pm. The Christiansen
band lies near 11 pm.5556 In this region the extinc-
tion reaches its minimum and the absorption within



Asymmetry parameter

Relative Error (%)

Extinction Efficiency

Relative Error(%e)

g j S o1 T )t +—F ¥ £ ¥ 1
0.94 0.9
3 A =8.5pum L=H L=8.5um a/Ll=R/H
0.85 0.8
0.7 0.7
0.6 0.6
0531 05
0.4% 0.4 Hexagon
0 3_1 E  Hexagon 0.3 Equivalent Surface (A) Circular Cylinder
35 . . _ .
09 3 - - Equivalent Surface (A) Circular Cylinder o2dl Equivalent Volume (V) Circular Cylinder
’ il Equivalent Volume (V) Circutar Cylinder —— Equivalent V/A Circular Cylinder
0‘1‘: —— Equivalent V/A Circular Cylinder 0.1 1 Equal Radius and Height
---—r——T—7r—rrrrrr—r +r—+r—rrrrrrr e e
0 20 40 60 80 100 120 140 160 O 20 40 60 80 100 120 140 160 180
13 13
3 ]I
84 8
3 1
39, 33%
] I ] 1 LLLadede=gg £ L I b }
24 2] /'L’I TP
7P e B T T e e T o T A M

0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160 180

Maximum particle dimension (um)

Fig. 5. Asymmetry factors that correspond to the efficiencies shown in Figs. 3 and 4.

25
L=H ] A =11.0 pm a/L=R/H
2] g —F——F——4
H E 1
E E 1 T EEEEE E E
151
] ] E Hexagon
E 14 - - Equivalent Surface (A) Circular Cylinder
1 E  Hexagon B ) A Equivalent Volume (V) Circular Cylinder
05 - - Equivalent Surface (A) Circular Cylinder 05] Equivalent V/A Circular Cylinder
R G Equivalent Volume (V) Circular Cylinder 1 Equal Radius and Height
;‘ —— Equivalent V/A Circular Cylinder
04— O+ T
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160 180
10
10: %
8 8+ II
6] 64 ~alay,
x /2 S ———
2_2.' 2—:
0 04
-2 24—

LB B B e S S S L B B AN L B N L B SN B

0 20 40 60 80 100 120 140 160 O 20 40 60 80 100 120 140 160 180

Maximum particle dimension (um)

Fig. 6. Same as Fig. 3, except that the calculations are performed at a wavelength of 11 pm.

20 May 2003 / Vol. 42, No. 15 / APPLIED OPTICS 2659



2660

51“_ EEEEEEE E E E E E E E i EEEE E T %
o ] — —
B 48] 2 =11.0 pm L=H A =11.0um a/L=R/H
5 0.8
o]
— 0.6+
o
= ] E Hexagon
g 0.4+ E Hexagon 0.4 - - Equivalent Surface (A) Circular Cylinder
ﬁ 1 - - Equivalent Surface (A) Circular Cylinder | § .. Equivalent Volume (V) Circular Cylinder
0.2 = - Equivalent Volume (V) Circular Cylinder 0.2 —— Equivalent V/A Circular Cylinder
4 —— Equivalent V/A Circular Cylinder 1 Equal Radius and Height
R e R R e o oo T e —
0 20 40 60 80 100 120 140 160 0 200 40 60 80 100 120 140 160 180
9 104 10
9—-‘ 3 i
8 8
o 1 1
£ 6] 6-
Q 1 b
2 23 23
o ] ]
T % °3
o o e MRSNNSSUSSSMESSNSSMIS |y X S
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160 180
Maximum particle dimension (um)
Fig. 7. Same as Fig. 4, except that the calculations are performed at a wavelength of 11 pm.
1 1
E Ep~—+—F—F—F—F E E A EE—FB—-E+—F F E E A
0.9 0.9
] = = A=11.0 um a/Ll=R/H
5 08 A =11.0 ym L=H 0.8
L p
[45] ]
0.74 0.7
£
6 0.6
ig- 06E
0.54 0.5
2
D 0.44 04 Hexagon
E 0.3 i Hexagon 03 Equivalent Surface (A) Circular Cylinder
% ' ] Equivalent Surface (A) Circular Cylinder R | E— Equivalent Volume (V) Circular Cylinder
<L 0'2—; Equivalent Volume (V) Circular Cylinder 0.2 —— Equivalent V/A Circular Cylinder
0.1 —— Equivalent V/A Circular Cylinder 0.1 I  Equal Radius and Height
[y 5 2
0 20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160 180
ey 3
127 12
- ] 5[
=] 1 ]
= 7 &
w3 .
g 2 T iy e §
E -3—_' '3‘:IK
[<5] ] ]
c s+ 8
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160 180

Maximum particle dimension (um)

Fig. 8. Same as Fig. 5, except that the calculations are performed at a wavelength of 11 pm.

APPLIED OPTICS / Vol. 42, No. 15 / 20 May 2003



Table 1. Minimum and Maximum Relative Errors of the Approximation of Hexagonal Column by a Circular Cylinder by Use of a T Matrix Compared
with Reference Results Given by Yang et al.*

H=L a/L = R/H
Equivalent Equivalent = Equivalent Equivalent Equivalent = Equivalent
Surface Area Volume Ratio of V Surface Area Volume Ratio of V' a = R and
Property A) W) to A A) V) to A H=1L
A =85 pm
Extinction efficiency (2.4, 6.6) (—0.6, 5.5) (—6.5, 8.9) (0.7, 8.4) (1.7, 7.8) (—0.7, 7.0) (—2.0, 15.5)
Absorption efficiency (2.7, 5.2) (2.1,4.7) (—1.9, 3.8) (2.5, 7.1) (2.5,5.7) (2.0, 4.6) (2.5, 10.8)
Asymmetry factor 0.1, 2.9) (-0.1,1.2) (-6.9, 1.0) (—0.1,6.2) (-0.2, 3.6) (—3.0,1.2) (—0.4, 13.4)
AN=11 pm
Extinction efficiency (3.8, 5.6) (2.3, 5.0) (—=1.2,4.7) (3.9, 6.2) 3.9, 5.7) (2.2, 4.8) (3.9, 9.5)
Absorption efficiency (2.7, 6.9) (2.3, 6.8) (-1.1,6.9) (2.1, 7.0 (2.2, 6.8) (2.3, 6.5) (2.0,9.1)
Asymmetry factor (0.0, 3.1) (—-1.8,0.2) (-6.9,0.1) (—0.1, 5.7) 0.1, 3.2) (—3.6,0.2) (0.1, 12.8)

“Ref. 50.

the ice crystal is substantial. Unlike at A = 8.5 pm,
the extinction efficiency at A = 11 pm converges for
various definitions of equivalent circular cylinders for
particle sizes larger than 60 wm. The asymptotic
value for the differences between the extinction effi-
ciencies of the hexagonal column and the circular
cylinder is approximately 4%.

For the absorption efficiency shown in Fig. 7, the
results for the equivalent volume, the equivalent sur-
face area, and the equivalent ratio of volume to sur-
face area yield similar differences. All three
definitions yield a maximum relative difference in the
size range 15-40 pm. However, the magnitude of
the differences is less than 7%. For very small ice
crystals, with sizes from 1 to 10 wm, the equivalence
based on equal radius and height can lead to differ-
ences much larger than differences for other defini-
tions. For the asymmetry factor shown in Fig. 8,
convergence of the results for various equivalence
definitions is obtained for particle sizes larger than
20 pm. For small sizes (<20 wm), the equivalent-
volume circular cylinder yields the minimum differ-
ence when the two geometries have the same length
(i.e., L = H).

Table 1 lists the errors obtained from approximat-
ing hexagonal columns by circular cylinders based on
the calculation of the various optical properties
shown in Figs. 3-8. Based on these error values, the
equivalence based on the ratio V/A performs the best
for calculation of the absorption efficiency. For the
asymmetry factor the volume equivalence definition
yields the minimum errors. For extinction effi-
ciency, various equivalence definitions have a similar
error range, except when the equivalence is based on
a=Rand H = L.

In reality, pristine ice crystals are not common in
cirrus clouds. For ice crystals with complex geome-
tries, their optical properties cannot be well approx-
imated by those of a simple morphological structure.
To illustrate this, in Fig. 9 we show the absorption
efficiencies of pristine hexagonal columns and aggre-
gates. The definition of the aggregate geometry is
explained by Yang and Liou.5®8 The numerical com-

putation of the optical properties of aggregates in Fig.
9 is explained by Yang et al.?® Following Foot,2
Francis et al.,5° Mitchell and Arnott,5! and Fu et al.,36
we define the effective radius as

3V

R =""
e 4A’

(14)

where V and A are the volume and the projected area,
respectively, of the nonspherical particles. From
Fig. 9 it is evident that the absorption efficiencies of
the two geometries are quite different, regardless of
whether the sizes of the particles are defined in terms
of maximum dimension or effective size. Note that
Baran et al.62 ascribe the differences in the absorp-
tion efficiencies of aggregates and columns to a tun-
neling effect.

4. Conclusions

The accuracy of approximating hexagonal crystals by
circular cylinders has been investigated in the com-
putation of the scalar optical properties of pristine ice
crystals in the infrared spectral (8—12-um) region.
Various definitions were used to define the equiva-
lence of particles in a circular cylinder with those of a
hexagonal column. The T-matrix computational
program was used to solve for the single-scattering
properties of circular cylinders.

For extinction efficiency, absorption efficiency, and
asymmetry, the differences between the results for
the two geometries are less than 10%. In general,
errors for particles of sizes smaller than 20 pm are
more significant than the errors for larger particles.
For particle sizes larger than 40 pm, the differences
are essentially of the order of a few percent. At A =
8.5 wm, the circular cylinder with an equivalent
volume-to-surface ratio to that of a hexagonal column
yields a smaller difference in the computation of ab-
sorption efficiency than do equivalent-volume or
equivalent-surface circular cylinders. This differ-
ence is particularly pronounced for particle sizes less
than 40 pm. At A = 11 pm, the definition of equiv-
alence for a circular cylinder has a negligible effect on
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Fig. 9. Comparison of absorption efficiencies of pristine hexagonal ice columns and aggregate ice crystals.

the optical properties of aggregates was explained by Yang et al.>®

the calculation of absorption efficiency when particle
sizes are larger than 15 um. A detailed comparison
of the numerical computations associated with vari-
ous equivalence definitions of circular cylinders indi-
cates that the equivalence based on the ratio V/A is
most suitable for absorption efficiency when the two
geometries have the same aspect ratio (a/L = R/H)
and the volume equivalence is suitable for asymme-
try factor or phase function calculations when the two
geometries have the same length (L = H). The error
ranges for equivalence-area, equivalent-volume, and
equivalent V/A are slightly different in the computa-
tion of extinction efficiency. In general, the errors
associated with the use of circular cylinders as sur-
rogates for hexagonal ice crystals in scattering calcu-
lations at infrared wavelengths are of the order of a
few percent. Thus it quite reasonable to approxi-
mate the geometry of pristine ice crystals as circular
cylinders in the study of infrared radiation.

It has also been shown that it is not proper to
approximate a complex aggregate geometry with a
simplified geometry such as a hexagonal column for
computing optical properties. Because aggregates
and bullet rosettes are common in cirrus clouds, there
is a need to include their particle geometry in mod-
eling of the optical properties of cirrus particles, even
at infrared wavelengths. Future research will ex-
plore a surrogate particle that better approximates
the more-complex crystal geometries found in nature.
In particular, it will be worthwhile to investigate
whether it is valid to approximate an aggregate ice
crystal by using a number of individual cylinders
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The procedure for computing

based on the method developed by Grenfell and War-
ren,3% who suggested an equivalence of a circular cyl-
inder and a monodisperse sphere (with the same
volume-to-surface ratio) system for scattering and ra-
diative transfer computations.
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