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ABSTRACT

Ocean mixing processes have traditionally been formulated using one-point turbulence closure models, spe-
cifically the Mellor and Yamada (MY) models, which were pioneered in geophysics using 1980 state-of-the-art
turbulence modeling. These models have been widely applied over the years, but the underlying core physical
assumptions have hardly improved since the 1980s; yet, in the meantime, turbulence modeling has made sufficient
progress to allow four improvements to be made.

1) The value of Ricr. MY-type models yield a low value for the critical Richardson number, Ricr 5 0.2 (the
result of linear stability is Ricr 5 1/4). On the other hand, nonlinear stability analysis, laboratory measurements,
direct numerical simulation, large eddy simulation, and mixed layer studies indicate that Ricr ; 1. The authors
show that by improving the closure for the pressure correlations, the result Ricr ; 1 naturally follows.

2) Nonlocal, third-order moments (TOMs). The downgradient approximation used in all models thus far seriously
underestimates the TOMs. A new expression that includes both stratification and shear is presented here for
the first time. It is obtained by solving the dynamic equations for the third-order moments.

3) Rotation. The MY-type models with rotation assume that the latter does not affect turbulence, specifically,
neither the pressure correlations nor the rate of dissipation of turbulent kinetic energy. Recent studies show
that both quantities are affected.

4) Mixing below the mixed layer. Thus far, the momentum and heat diffusivities below the mixed layer have
been treated as adjustable parameters. A new model that allows use of the same turbulence model throughout
the ocean depth is proposed.

A new model is presented that includes 1), 2), and 4). Rotation will be dealt with in a subsequent paper. The
new model is fully algebraic and easy to use in an ocean code. The new model is used in an OGCM, and the
predicted global temperature and salinity profiles are compared with those of the KPP model and Levitus data.

1. Introduction

When solving an ocean model one solves the equations
for the mean variables, that is, the mean velocity U and
the mean temperature T. Using the standard notation D/
Dt [ ]/]t 1 Ui]/]xi, li 5 gia, gi 5 (0, 0, g), where a
is the volume expansion coefficient, the dynamic equa-
tions for U and T are (a,i [ ]a/]xi, ai,j [ ]ai/]xj):

21DU /Dt 5 2(g 1 r P ) 2 t (1a)i i ,i ij, j

21DT /Dt 5 2h 1 (c r) I , (1b)i,i p ,z

where I is the solar radiation flux. Turbulence enters
through the Reynolds stress tensor t ij and the heat flux
hi, which are defined as
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t 5 u u , h 5 u u , (1c)ij i j i i

where ui and u are the fluctuating components of the
velocity and temperature fields and where the overbar
indicates an ensemble average. Using a well-known pro-
cedure, it is a matter of algebra, not physics, to derive
the dynamic equations for the variables (1c) (Chou
1940, 1945; Lumley and Khajeh-Nouri 1974; Launder
et al. 1975; Pope 1975; Lumley 1978; Rodi 1976; Shih
and Shabbir 1992; Gatski et al. 1992; Canuto 1994).
Thus, we present such equations without derivation. The
reliability of any model is predicated upon the physical
content of its ingredients, which we shall try to improve
vis-à-vis previous models. We have

Reynolds stresses tij:
D

t 1 D (t ) 5 2t U 2 t U 1 l hij f ij jk i,k ik j,k i jDt

2
1 l h 2 P 2 ed , (2a)j i ij ij3

where
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]
D (t ) [ (u u u ), P [ u p 1 u p (2b)f ij i j k ij i , j j ,i]xk

Heat flux hi:

D
2 uh 1 D (h ) 5 2t T 2 h U 1 l u 2 P , (3a)i f i ij , j j i, j i iDt

where

]
uD (h ) 5 (uu u ), P [ up (3b)f i i j i ,i]xj

Temperature variance :2u

2Du
21 D (u ) 5 22h T 2 2e , (4a)f i ,i uDt

where

]
2 2D (u ) [ (u u ) (4b)f i]xi

Turbulent kinetic energy K [ 1/2tii:

DK 1
1 D (K ) 5 2t U 1 l u u 2 P 2 e (5a)f ij i, j i i iiDt 2

] 1
2 2D (K ) [ q u , q [ u u (5b)f i i i1 2]x 2i

Dissipation rate of turbulent kinetic energy, e

De
211 D (e) 5 (P 2 c e)eK 1 c |N |e (5c)f 2 sDt

]
D (e) [ (eu ), P 5 2t S ,f i s ij ij]xi

P 5 ag h (5d)b i i

Here P [ c1Ps 1 c3Pb is the total production due to
buoyancy and shear. Dissipation of potential energy, eu:

21 2e 5 t uu u (5e)

Let us now discuss each equation in turn. The first
four terms on the right-hand side of (2a) represent the
sources and sinks of tij due to shear and stratification
and they present no closure problems. The difficulties
lie in the terms Df, Pij, and e. The first represents the
diffusion of Reynolds stresses, and from the definition
in (2b) one sees that it entails higher-order moments,
specifically the third-order moments (TOMs). This is
the first closure problem. The terms Pij represent the
contribution of pressure forces. Since pressure is an en-
ergy, Pij is a third-order moment that needs closure.
Finally, e is rate of dissipation of tij due to viscous forces
and also needs closure. The same general considerations
hold true for Eq. (3a), where the first three terms present
no closure problems, whereas the diffusion term Df and
the pressure correlation term must be expressed inuPi

terms of the other variables in order for the equation to
be solved. The same difficulties arise in trying to solve

Eq. (4a) for the potential energy, where one must know
the diffusion term Df and the rate of dissipation of po-
tential energy eu. Finally, Eq. (5e) has been widely used
over the years, as discussed in the literature cited after
Eq. (1c) above. Once substituted in (4a), it amounts to
finding the dissipation timescale tu. For many years, the
relation tu 5 ct was used and the coefficient c deter-
mined on a specific flow. Recent theoretical work (Can-
uto and Dubovikov 1996a) has allowed for the deter-
mination of the function tu versus t, as discussed in
section 6, where we also discuss the coefficients in Eq.
(5c).

In summary, the full problem demands (i) a closure
for the pressure correlation terms, (ii) the effect of ro-
tation, (iii) a closure for the TOM, and (iv) the effect
of rotation on the dissipation terms. We have developed
a new model that includes (i)–(iv), but due to space
limitations, here we discuss only topics (i) and (iii),
while (ii) and (iv) will be dealt with in a subsequent
paper.

2. Pressure correlations

The literature on this topic is quite extensive (Lumley
and Khajeh-Nouri 1974; Launder et al. 1975; Pope
1975; Lumley 1978; Rodi 1976; Shih and Shabbir 1992;
Gatski et al. 1992). We only recall that it is generally
agreed that the tensor Pij contains three terms: the return
to isotropy (Rotta term or slow part), the mean shear
interaction (rapid part), and the buoyancy contribution.
They are expressed as

4
21P 5 2t b 2 KS 1 (1 2 b )B , (6a)ij py ij ij 5 ij5

where

2 1
b 5 t 2 Kd , S 5 (U 1 U ),ij ij ij ij i, j j,i3 2

2
B 5 l h 1 l h 2 d l h . (6b)ij i j j i ij k k3

Equation (6a) is, however, not complete since one can
notice that vorticity Vij is missing in (6a), which is not
justified since shear and vorticity are two independent
tensors and both should be present. However, since Vij

is antisymmetric while Pij is symmetric, one cannot sim-
ply add a term like the second term in (6a) with Vij

instead of Sij. One must first construct a symmetric ten-
sor using Vij and bij and then add it to (6a). The simplest
such (traceless) term is

Z 5 V b 1 V b , 2V 5 U 2 U . (6c)ij ik kj jk ik ij i, j j,i

There is an additional problem: There is no reason a
priori why all the terms on the right-hand side of (6a),
which we can call ‘‘production’’ of pressure correla-
tions, should be ‘‘aligned’’ with Pij as the terms in (6a)
are. It has, in fact, been found that one must also have
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an ‘‘anisotropic production’’ term that can clearly be
contributed only by the shear. The simplest such (trace-
less) term is of a form analogous to (6c),

2
S 5 S b 1 S b 2 d S b . (6d)ij ik kj jk ik ij kl kl3

Adding the two new terms (6c,d) to (6a) leads to the
general form for Pij:

4
21P 5 2t b 2 KS 1 (1 2 b )B 2 a Sij py ij ij 5 ij 1 ij5

2 a Z . (7a)2 ij

The ratio tpy/t (pressure–velocity), b5, and a1,2 will be
discussed in section 6.

The Mellor and Yamada (1982; Mellor 1989) and
Kantha and Clayson (1994) models use

4
21P 5 2t b 2 KS , (7b)ij py ij ij5

which lacks buoyancy, anisotropic production, and vor-
ticity contribution.

An analogous problem arises with the other pressure
correlation . Using general arguments like the pro-uPi

ceeding ones, one obtains the general form

3 5
u 21 2P 5 t h 1 g l u 2 a S 1 V h , (7c)i pu i 1 i 3 ij ij j1 24 3

where g1 and a3 are constants and so is the ratio tpu/t.
The MY and D’Alessio et al. (1998) models take

u 21 u 21 2P 5 t h , P 5 t h 1 g l u , (7d)i pu i i pu i 1 i

which are incomplete vis-à-vis (7c). In the present work,
we adopt the general expressions (7a) and (7c). As we
shall show, the inclusion of buoyancy, shear, and vor-
ticity has the consequence of changing the MY-type
models prediction, Ricr 5 0.2 to Ricr ø 1.

3. Third-order moments (TOMs)
The diffusion terms Df appearing in Eqs. (2)–(5),

which entail third-order moments, physically represent
the nonlocal character of turbulence. The prototype is
the flux of turbulent kinetic energy appearing in Eq.
(5b). The physical meaning of this term is as follows.
Even if there were no external forces and the right-hand
side of (5a) were negative (e.g., one can imagine a sit-
uation with negligible shear and stable stratification),
Eq. (5a) could still be balanced since Df(K) may act as
a source of turbulent kinetic energy that is not produced
locally but diffused from other regions. The most widely
used expression for Df(K) is the so-called downgradient
approximation (DGA):

] 1
2D (K ) 5 F(K ), F(K ) 5 q w ,f ]z 2

]K
F(K ) 5 2K , (8a)m ]z

where Km is the momentum diffusivity that must be
specified. The third equation of (8a) predicts regions of
negative F(K), contrary to what is observed in the PBL
(Canuto et al. 1994). Furthermore, Moeng and Wyn-
gaard (1989) have shown that the DGA severely un-
derestimates (up to a factor of ;30) the true value of
the TOM. However, all ocean turbulence models thus
far that employ a prognostic equation for K have adopted
(8a) (Rosati and Miyakoda 1988; Galperin et al. 1988;
Gaspar et al. 1990; Baum and Caponi 1992; Blanke and
Delecluse 1993; Ma et al. 1994; Kantha and Clayson
1994; Burchard and Baumert 1995; D’Alessio et al.
1998).

Once the downgradient approximation is abandoned,
the only alternative is to consider the dynamic equations
for the third-order moments (Canuto 1992):

D
211 t u u u3 i j k1 2Dt

5 2(u u u U 1 perm) 2 (t t 1 perm)i j l k,l il jk,l

1 (1 2 c )(l uu u 1 perm)11 i j k

2
22 (d q u 1 perm) (8b)ij k3t

D
211 t u u u3 i j1 2Dt

5 u u u b 2 (u u uU 1 u u uU )i j k k i k j,k j k i,k

2
22 (t h 1 t h 1 h t ) 1 c d l u uik j,k jk i,k k ij,k 11 ij k k3

2 21 (1 2 c )(l u u 1 l u u ) (8c)11 i j j i

D
21 21 21 t 1 2t u u3 u i1 2Dt

]hi25 2b uu u 2 u u U 2 2hj i j j i, j j ]xj

] 2
31 (1 2 c )l u 2 t u (8d)11 i ij ]xj

D c ]10 21 3 2 21 t u 5 3b u u 2 3h u . (8e)3 j j j1 2Dt c ]x8 j

Here bi [ 2]T/]xi, t3 [ t/2c8 and perm means the one
must add the terms with the (not dummy) indices per-
muted; the values of the constants c are given in Canuto
et al. (1994).

To solve Eqs. (8b–e) we consider the stationary case.
The system of equations (8b–e) then becomes a set of
algebraic equations that we have solved using methods
of symbolic algebra. The result generalizes the pure
convective case (Canuto et al. 1994):
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2 2]q ]w ]wu
21 2t q w 5 A 1 B 1 C(gat)

]z ]z ]z
2

]u ] ]2 221 (gat) D 1 E (u 2 y ) 1 F uy
]z ]z ]z

] ] ]
1 G uw 1 H yw 1 gatI uu

]z ]z ]z

]
1 gatJ yu .

]z
(9a)

Contrary to the DGA (8a), Eq. (9a) entails the gradients
of all the second-order moments, 2, 2, , etc., whichq w wu
will be given below, Eqs. (14)–(16). All the ‘‘turbulent
diffusivities’’ tA, tB, tC, . . . have the general form

2DA 5 A w 1 A gatwu 1 A uw 1 A yw. (9b)1 2 3 4

The dimensionless coefficient Ai and the denominator
D are algebraic functions of the dimensionless variables
tN 2 and t2S2, where S is the mean shear. To facilitate
the use, a numerical code is available upon request that
gives the functions A, . . . , J of Eq. (9a).

4. The complete model
The procedure is as follows. We insert (7a) and (7c)

into Eqs. (2a) and (3a). In its general form, the resulting
equations are too complex to be used in an ocean model,
and one must reduce their complexity while preserving
the main physical features. The methodology that we
follow is well founded physically: due to the wide spec-
trum of eddies, one chooses a variable to represent the
large scales (the turbulent kinetic energy) and another
variable to represent the small scales that contain little
energy but have a large vorticity (the dissipation e). The
resulting model is the K-e model. To obtain the Reynolds
stresses bij and the heat fluxes hi, we adopt the ARSM
(algebraic Reynolds stress model). In its simplest rep-
resentation, the model amounts to neglecting the D/Dt

and the diffusion terms in Eqs. (2a), (3a), and (4a). The
resulting equations become algebraic; specifically, they
are a system of coupled linear equations:

Reynolds stresses:

2
b 5 t 2 Kdij ij ij3

5 2l tKS 1 l tB 2 l tS 2 l tZ (10a)1 ij 4 ij 2 ij 3 ij

heat flux hi:

]T
A h 5 2(K ) (10b)ik k h ij ]xj

The tensors Aij and (Kh)ij are defined by
2A 5 l d 1 l t l T 1 l tS 1 l tVij 5 ij 8 i , j 6 ij 7 ij

2
(K ) 5 t b 1 d K . (10c)h ij ij ij1 23

Furthermore, B, S, and Z are defined as

2
B 5 l h 1 l h 2 d l h (11a)ij i j j i ij k k3

2
S 5 S b 1 S b 2 d S b (11b)ij ik kj jk ik ij kl kl3

Z 5 b V 1 b V , (11c)ij ik jk jk ik

where shear Sij and vorticity Vij have already been de-
fined. In order to homogenize the notation, we have
introduced the dimensionless constants:

t 4 1py
l 5 , l 5 l, l 5 (12 a )l,1 2 1t 15 2

1 1 t
l 5 (12 a )l, l 5 b l, l 5 ,3 2 4 5 52 2 tpu

3 5 tul 5 12 a , l 5 12 a , l 5 (12 g ) .6 3 7 3 8 14 4 t

(12)

Equations (5a–d) for K and e have remained unchanged.

5. Shear and arbitrary stratification

Here, we present the analytic solution of Eqs. (10a–
c) for the following case:

]T ]T
→ d , U 5 [U(z), V(z), 0]. (13a)i i3]x ]zi

The shear and vorticity acquire the form

0 0 ]U/]z 
1  

S 5 0 0 ]V /]z , ij  2
]U/]z ]V /]z 0 

0 0 ]U/]z 
1  

V 5 0 0 ]V /]z . (13b) ij  2
]U/]z 2]V /]z 0 

Eqs. (10a–c) are then solved using methods of symbolic
algebra. The results are

Reynolds stresses:

]U ]V
uw 5 2K , yw 5 2K (14a)m m]z ]z

]U ]V
uy 5 (l 1 l )tK (14b)2 3 m ]z ]z

Timescale:

1 K
t 5 (14c)

2 e

Turbulent kinetic energies:
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2 22 1 ]U ]V
2u 5 K 1 tK (l 1 3l ) 2 2lm 2 3 21 2 1 2[ ]3 3 ]z ]z

2
21 l K tN (15a)4 h3

2 22 1 ]V ]U
2y 5 K 1 tK (l 1 3l ) 2 2lm 2 3 21 2 1 2[ ]3 3 ]z ]z

2
21 l K tN (15b)4 h3

2 1 4
2 2 2w 5 K 1 (l 2 3l )K tS 2 l K tN (15c)2 3 m 4 h3 3 3

Mean shear, temperature gradient and Richardson num-
ber:

2 2
]U ]V ]T

2 2S [ 1 , N 5 ga ,1 2 1 2]z ]z ]z
2 22Ri [ N S (15d)

Heat fluxes:

]T
wu 5 2K (16a)h ]z

1 ]T ]U
21uu 5 l K 1 (l 1 l )K t (16b)5 m 6 7 h[ ]2 ]z ]z

1 ]T ]V
21yu 5 l K 1 (l 1 l )K t (16c)5 m 6 7 h[ ]2 ]z ]z

Turbulent momentum and heat diffusivities:
2 2K K

K 5 2S , K 5 2S (16d)m m h he e

Structure functions Sm,h:
2 2DS 5 s 1 s (tN ) 1 s (tS) (17a)m 0 1 2

2 2DS 5 s 1 s (tN ) 1 s (tS) (17b)h 4 5 6

2 2 4D 5 d 1 d (tN ) 1 d (tS) 1 d (tN )0 1 2 3

2 2 41 d (t NS) 1 d (tS) (17c)4 5

Dimensionless variables sk:

3
2s 5 l l (18a)0 1 52

1
s [ 2l (l 1 l ) 1 2l l l 2 l 2 l1 4 6 7 4 5 1 2 31 23

3
1 l l l (18b)1 5 82

3
2 2s [ 2 l (l 2 l ), s [ 2l ,2 1 6 7 4 58

s 5 2l (18c)5 4

2 1
2 2s 5 l (3l 2 l ) 2 l l (3l 2 l )6 5 3 2 5 1 3 23 2

3
1 l (l 2 l ) (18d)1 6 74

Dimensionless variables dk:
2d 5 3l (19a)0 5

d [ l (7l 1 3l ),1 5 4 8

3
2 2 2 2 2d [ l (3l 2 l ) 2 (l 2 l ) (19b)2 5 3 2 6 74

d [ l (4l 1 3l ),3 4 4 8

1
2 2 2 2d [ (l 2 3l )(l 2 l ) (19c)5 2 3 6 74

2 2d [ l [l l 2 3l l 2 l (l 2 l )]4 4 2 6 3 7 5 2 3

2 21 l l (3l 2 l ). (19d)5 8 3 2

Some general considerations are in order. As ex-
pected, the structure functions Sm,h depend on the two
independent variables that represent the external fields
of stratification N and shear S, as well as on the turbulent
timescale t. As one can notice, N and S enter in a
symmetric manner in Sm,h, that is, the exponents are
symmetric. This is not the case with the MY-type mod-
els, for they lack the terms s2 and d5, which are solely
due to the new term in the pressure correlation (7c),
specifically, the coefficient a3, which is zero in these
models. That makes l6 5 l7 5 1 [see Eq. (12)], and
thus s2 5 0, d5 5 0; see Eqs. (18c,d). In these models,
the maximum powers of S and N are 2 and 4. See, for
example, Eqs. (20)–(21) of Hassid and Galperin (1983)
in which, in addition, the numerator of Sm does not
depend on shear, while that of Sh does, a somewhat
counterintuitive result.

6. Model constants

The model constants are determined using two meth-
odologies that yield very similar results. The first ap-
proach uses a previous theoretical turbulence model
based in part on RNG (Renormalization Group) methods
and whose predictions were tested on different types of
turbulent flows (Canuto and Dubovikov 1996a,b,
1997a,b). Since the model contains no adjustable pa-
rameters, the predictions are unique:

2
21 21 21t t 5 , tt 5 5(1 1 s ),py pu t5

1
21t t 5 s , s 5 0.72, g 5 ,u t t 1 3

1
b 5 . (20a)5 2
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The values of the l defined in Eq. (12) are then as
follows: Model A:

(l , l , l , l , l , l , l , l )1 2 3 4 5 6 7 8

5 (0.107, 0.0032, 0.0864, 0.12, 11.9, 0.4, 0, 0.48)

(20b)

Model B: We begin by adopting the expressions (Shih
and Shabbir 1992; Canuto 1994):

21 21l 5 (1 2 a )(2c*) , l 5 (1 2 a )(2c*) ,2 1 4 3 2 4

3
21l 5 b (2c*) , l 5 1 2 a ,4 5 4 6 34

5 tul 5 1 2 a , l 5 (1 2 g ) ,7 3 8 14 t
(21a)

where

2 3/4 1/2c* 5 2 1 6.22F (1 2 F ) 2 F , a 5 6a ,4 1 5

2 4
a 5 (2 2 7a ), a 5 ,2 5 33 5

1 4
1/2a 5 1 1 F , F 5 0.64, b 5 0.48.5 51 210 5

(21b)

The l thus obtained are

(l , l , l , l , l )2 3 4 6 7

5 (0.00336, 0.0906, 0.101, 0.4, 0). (21c)

To determine l1,5, we employ a neutral surface layer in
which the mean profiles are logarithmic, the mean wind
is along the x direction, and z approaches zero. Thus,

dU q 1
2 2 22uw 5 u*, t 5 ( ) , q [ K. (21d)

dz u* 2

Under these conditions, the algebraic equations for 2,u
2, and 2, Eqs. (15a–c), yieldv w

4
2 2 24/3l 5 (3l 2 l ) 1 4B , (21e)1 3 2 13

where B1 [ (q/u*)3 5 16.6 in accord with the MY
model. Using l2,3 from (20b), we obtain

l 5 0.127.1 (21f )

The value of l5 is obtained in a similar fashion. As-
suming that production equals dissipation in the above
neutral surface layer, we have

24/3 21S 5 2B s , s 5 1,h 1 t t0 0
(21g)

where is the turbulent Prandtl number in the neutralst0

case, which we take to be unity. Applying the neutral
condition and z → 0 to the equations for , [Eqs.uu wu
(16b,c)] and using

dT
wu 5 2KtS , (21h)h dz

after some algebra we obtain an algebraic equation for
l5:

1
2 4/3l 2 B (1 1 l 2 3l )s l5 1 2 3 t 503

1
4/32 (l 2 l )B (l 1 l 1 2s ) 5 0. (21i)6 7 1 6 7 t04

The solution is

l 5 11.2.5 (21j)

Similarly, from the algebraic equation for 2, we haveu

tu 21 22/3 2 2 25 s B Q, Q [ u u* /(wu ) 5 3.1, (22a)t 1 s0t

where the subscript s indicates a surface quantity, and
Q 5 3.1 in accordance with Mellor and Yamada (1982).
Substituting (22a) into (21a) and using g1 5 1/3 gives

tul 5 (1 2 g ) 5 0.318. (22b)8 1 t

Thus, finally,

(l , l , l , l , l , l , l , l )1 2 3 4 5 6 7 8

5 (0.127, 0.00336, 0.0906, 0.101, 11.2, 0.4,

0, 0.318). (22c)

As one can observe, the two approaches yield very sim-
ilar results.

7. Critical Ri

There is more than one definition of a critical Ri,
depending on the specific physical feature that one aims
to describe, and this has created some confusion as to
which one is applicable in practical cases. From the
theoretical viewpoint, Miles (1961) and Howard (1961)
used linear stability analysis and established that for
linear stability to exist the necessary, but not sufficient,
condition is

Ri . 1/4. (23)

This result has been interpreted to mean that turbulence
cannot exist for Ri . 1/4, even though this is hardly a
justifiable inference since by construction (23) says
nothing about nonlinearities and thus turbulence. And
yet, most models of either atmospheric and/or oceanic
turbulent mixing assume (23). Nonlinear interactions
were included by Abarbanel et al. (1984), who derived
the sufficient and necessary condition for stability to be

Ri . 1. (24)

The first approach leading to (23) can be called ‘‘bot-
tom-up’’ (from linear stability), while the second ap-
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FIG. 1. The timescale t, specifically the variable y vs the degree
of stability Ri. Since y is the inverse of the turbulent kinetic energy
K, the figure shows that at Ricr ; 1, K vanishes because the strati-
fication becomes too strong for turbulent mixing to survive. The MY-
type models predict a far smaller Ricr ; 0.20, which considerably
reduces the extent of turbulent mixing.

proach leading to (24) is ‘‘top-down,’’ since it starts
from the full nonlinear interactions and inquires when
such nonlinearities, and thus turbulence, cease to exist.
Since, in dealing with atmospheric and oceanic mixing
problems, one can hardly follow the setting in of the
linear instabilities that ultimately lead to turbulence, it
seems that from an operational viewpoint (24) is the
relevant condition since it tells us when turbulence can
no longer be sustained against the effect of stable strat-
ification. And yet, (23) has been widely used instead of
(24). However, a variety of data favor (24) not (23): (i)
The first empirical evidence was presented in the study
by Martin (1985), who showed that in order to obtain
the correct mixed layer depths at OWS Papa and No-
vember he had to let turbulent mixing occur up to Ri
; 1; (ii) Even before Martin’s study, evidence was avail-
able that turbulence existed at least up to Ri ; 1; early
laboratory data by Taylor (cited in Monin and Yaglom
1971) showed that turbulent exchange exists even when
Ri . 1, and in 1964 Webster’s laboratory measurements
of turbulence in stably stratified flows (see Fig. 3)
showed that mixing persists up to Ri ; 1; (iii) More
recently, LES (large eddy simulations: Wang et al. 1996;
see Fig. 7) and DNS (direct numerical simulations: Gerz
et al. 1989) also showed that turbulence exists up to Ri
; 1.

The question then arises: do turbulence models yield
(23) or (24)? The way to the answer is as follows. Using
Eqs. (14a), (15d), and (16a) we have

2 2P 5 2t S 5 K S , P 5 gawu 5 2K N , (25a)s ij ij m b h

and thus the equilibrium condition P 5 Ps 1 Pb 5 e
becomes

2K
2 2 2 2e 5 K S 2 K N 5 2 (S S 2 S N ). (25b)m h m he

Using t 5 2Ke21, the dimensionless variable y [ (t
S)2, and the Sm,h given by Eqs. (17a–c) a little algebra
transforms (25b) into a relation for y(Ri):

2A(Ri)y 1 B(Ri)y 1 C 5 0, (26a)

where the functions A and B are given by
2A(Ri) [ (s 1 2d )Ri 2 (s 2 s 2 2d )Ri5 3 1 6 4

2 s 1 2d (26b)2 5

B(Ri) 5 (s 1 2d )Ri 2 s 1 2d ,4 1 0 2

C 5 2d . (26c)0

Since we are using a turbulence model and not linear
stability analysis, the only approach is the top-down:
Ricr is defined as the value of Ri above which turbulent
mixing ceases to exist (due to the effect of stable strat-
ification). Since the mixing coefficient (diffusivity) is
proportional to the eddy velocity w ; K 1/2, in the limit
K → 0 we have y → `, and Eq. (26a) can be satisfied
only if A(Ricr) 5 0. Using (26b), this becomes the equa-
tion for Ricr:

21 2 1/2Ri 5 (2c ) [2c 1 (c 2 4c c ) ],c 1 2 2 1 3 (26d)

where the constants are

c [ s 1 2d , c [ 2s 1 s 1 2d ,1 5 3 2 1 6 4

c [ 2s 1 2d . (26e)3 2 5

Using the constants discussed in section 6, we obtain
two values:

Ri 5 0.85 and Ri 5 1.03,c c (27a)

which are indeed of the form (24). Thus, the inclusion
of the full pressure correlations has brought the turbu-
lence model to agree with the general result of Abar-
banel et al. (1984). To make the case complete, we notice
that, as discussed earlier, the MY-type models have s2

5 d5 5 0 in which case (26b) gives
21Ri (MY) 5 (s 2 s 2 2d )(s 1 2d ) 5 0.195,cr 1 6 4 5 3

(27b)

which is of the form (23).
The function y(Ri) is plotted in Fig. 1. As one reaches

a value of Ricr ; 1, the function y tends to infinity. The
two structure functions Sm,h versus Ri are plotted in Fig.
2 [the equivalent MY (1984) curves are plotted in their
Fig. 4]. The left-hand side of the figure is for unstable
stratification (Ri , 0), while the right-hand side is for
stable stratification (Ri . 0). As one can expect, the
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FIG. 2. Model predictions for the dimensionless structure functions
Sm and Sh defined in Eq. (22a) vs the degree of stability Ri. The P
5 e condition is used. FIG. 3. Laboratory and numerical simulation data for the turbulent

Prandtl number sT vs Ri (Webster 1964; Gerz et al. 1989); sT is
defined in Eq. (29a). The short dashed line corresponds to the MY-
type models that are valid only for Ricr # 0.2.

FIG. 4. The turbulent flux Richardson number Rf vs Ri, Eq. (29b). The symbols refer to the different authors cited in Maderich et al.
(1995) and correspond to either grid-generated turbulence and/or to freely decaying turbulence in a stably stratified medium.

relative position of the curves switches as one moves
from negative to positive Ri. In the unstable case, the
heat diffusivity is larger than the momentum diffusivity
since one expects that the temperature gradient affects
more the heat diffusivity than the momentum diffusivity.
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The reverse is true when stratification is stable. The
lower value of Sh versus Sm is in accord with the lab-
oratory data for the turbulent Prandtl number, which we
discuss below in section 8d. A comment may be useful
concerning Fig. 1 of Galperin et al. (1988), where Sm,h

are plotted not versus Ri but versus (tN)2. Even though
we could do the same with the present model, we find
such representation less transparent than the one versus
Ri because it still uses the turbulent variable t, which
has not been explicitly solved for and which is a function
of Ri. In fact, one has

2(tN) 5 y(Ri)Ri, (27c)

and since Eqs. (26a–c) give y(Ri), we have found it
more transparent to plot Sm,h versus the external fields
(N and S) rather than to use the mixed representation
(tN)2.

8. Tests of the model

a. Mixed layer studies

Burchard and Bolding (2001) have recently used the
above K–e model to study the ocean mixed layer (ML)
and compared the results with those of previous models.
In this paper, we shall therefore apply the new turbu-
lence model only to the global ocean, together with a
new model for the diffusivities below the mixed layer
discussed in section 9. We deem it important, however,
to first present a set of tests not directly related to ocean-
ography, but that are important to assess the reliability
of the model.

b. Unstable stratification, Ri → `

A relevant test concerns the case of thermal convec-
tion (no shear and unstable stratification, N 2 , 0) for
which an ample set of both numerical and laboratory
data are available (Canuto and Dubovikov 1997a). The
widely used mixing length theory yields

3/2
]T ]T

1/2 2wu 5 K ; (ga) L , (28a)h) ) ) )]z ]z

where L is the mixing length. The question is whether
the previous turbulence model can reproduce (28a). We
shall only sketch the steps necessary. With no shear, Eq.
(25b) becomes t2 | N 2 | Sh 5 2. Substituting the corre-
sponding expression for Sh from (17b,c),

2 2 21S 5 2[3l 2 (4l 1 3l )t | N | ] .h 5 4 8 (28b)

The results are
2 2t | N | 5 const, S 5 const.h (28c)

Since gaJ 5 e, with J [ , we have from Eqs. (16a,d)wu
21J ; (ga) KN. (28d)

Using the Kolmogorov law we eliminate21 2/3K 5 (ek ) ,0

K and obtain (k0 ; L21):

3/2
]T

21 2 3 1/2 2J ; (ga) L N ; (ga) L , (28e)) )]z

which coincides with (28a).

c. Pure shear case, Ri → 0

Since this is a case of interest to engineering flows,
it has been widely studied (Rodi 1976). To first order
in the shear, we have from Eqs. (17a,c) that

s 40S 5 , S 5 . (28f)m md 750

Thus, the first of (16d) becomes
2K

K 5 C , C 5 0.11, (28g)m m me

which is a well-known formula employed in shear flows
studies (Rodi 1976).

d. Turbulent Prandtl number versus Ri relation

Data on the relationship,

Kms (Ri) [ versus Ri, (29a)t Kh

have been available for a long time (Webster 1964).
More recently, Gerz et al. (1989) have carried out a
direct numerical simulation of stratified turbulent shear
flow and added new data. In Fig. 3 we have collected
these data and superimposed on them the model results
corresponding to the equilibrium case. The model re-
sults reproduce the data quite well.

e. Flux Richardson number versus Ri relation

A set of data is available (Maderich et al. 1995) that
provides the flux Richardson number versus Ri rela-
tionship, where

21R [ Ris (Ri).f t (29b)

Using the equilibrium solution, the model results are
exhibited in Fig. 4.

f. The representation Kh 5 GeN22

Several authors (Thorpe 1977; Osborne 1980; Oakey
1982; Moum 1989; Davis 1994; Toole et al. 1994; Wuest
et al. 1996) have represented Kh as

e
21K 5 G , G 5 R (1 2 R ) .h f f2N

(29c)

The ‘‘measured’’ values of G are

0.12 # G # 0.48. (29d)

The function G(Ri) versus Ri is exhibited in Fig. 5: a
value G 5 1/4 at Ri 5 1/4 (e.g., Oakey 1982; Toole et
al. 1994) is reproduced by the model. A word of caution



1422 VOLUME 31J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 5. Efficiency parameter G(Ri), Eq. (29c) vs Ri. The predicted
value G ; 1/4, at Ri ; 1/4 is well within the measured estimates
[see references after Eq. (29d)].

is required, however. Care must be exercised since in
general the heat diffusivity Kh is not the same as the
‘‘mass diffusivity’’ Kr defined via the relation

]r
r9w0 5 2K . (29e)r ]z

In fact, it is easy to derive the relation

Ks 21K 5 K 1 2 R (1 2 R ) ,r h r r1 2Kh

a ]S /]zsR 5 , (29f)r a ]T /]z

where Ks is the salt diffusivity and Rr is the Turner
number (as is the haline contraction coefficient). As in
the present case, Ks 5 Kh; it follows that Kh 5 Kr.

9. New model for mixing below the mixed layer

All global ocean models require that one prescribe
the mixing below the mixed layer. Since we do not have
a detailed model for the internal wave breaking phe-
nomena that are thought to generate the mixing, the
diffusivities for momentum, heat, and salinity below the
ML have been traditionally assumed to be adjustable
parameters (background diffusivities). For example, the
National Center for Atmospheric Research model, to be
discussed below, uses the following values:

2 21 2 21K 5 16.7 cm s , K 5 K 5 0.5 cm s .m h s

(30a)

It would be preferable not to use (30a) and to try to
model Km,h. In this paper, we avoid (30a), suggest an
alternative procedure, and use it in the global ocean
model. Our main assumption is that the turbulence mod-
el described in the previous sections has given us the
correct functional dependence of the Km,h on Ri and, if
so, the diffusivities ought to be formally valid below
the ML as well. The key problem is to define and com-
pute Ri below the mixed layer. We suggest using the
measured data of the vertical shear generated by the
wave breaking phenomenon (Gargett et al. 1981). By
integrating over all wavenumbers, one can compute the
shear due to internal waves, which we denote Swb (for
wave breaking) to distinguish it from S, which was used
above to denote the wind shear. One can then form a
corresponding Riwb as follows:

2 2Ri 5 N /S . (30b)wb wb

Early arguments by Munk (1966) suggesting that Riwb

; 1 were confirmed by Gargett et al. (1981, sec. 5). To
those arguments, we add the following consideration.
As the value of Ricr above, for which there is no longer
turbulent mixing as computed from our model, is O(1);
if Riwb were k1, there would be no turbulence generated
by the internal waves at all. On the other hand, if Riwb

were K1, there would be very strong turbulence pro-
ducing a viscosity sufficient to damp out the waves
themselves. The wave-generated turbulence is thus self-
limiting. Since the turbulence model gives a precise
value for Ricr while the above argument only tells us
that Riwb ; O(1), we write:

Ri 5 cRi ,wb cr (30c)

where c is a constant reasonably close to unity. We have
found that c 5 0.88 gives a diffusivity close to that
measured by Ledwell et al. (1993).

10. Global Ocean GCM

To test the new vertical diffusivities, we used the
NCAR Climate System Model Ocean Model (NCAR
Oceanography section 1996). We employed the stand-
alone 38 3 38 configuration of the model detailed in
their technical note with the default parameter values.
It has 3.68 spacing in longitude and a variable spacing
in latitude increasing from 1.88 at the equator to 3.48 at
178N, S and then decreasing back to 1.88 for 608N, S
and poleward. There are 25 levels of increasing thick-
ness in the vertical, with the surface level 6 m thick.
The option for the Gent–McWilliams (1990) mesoscale
eddy parameterization was enabled. Bulk forcing with
a seasonal cycle plus a 2-yr timescale restoring condi-
tion on the salinity is used, except under sea ice where
there is strong (6-day timescale) restoring of both tem-
perature and salinity to climatology. The configuration
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and forcing are the same as in Large et al. (1997) for
their case B-K. It should be noted, however, that for
determination of the length scale in our turbulence mod-
el we used the program’s definition for mixed layer
depth (a buoyancy difference from the surface of 3 3
1024 ms22), which is different from that graphed as a
diagnostic in Fig. 5 of Large et al. (1997). We initialized
our runs with annually averaged Levitus et al. data (Lev-
itus and Boyer 1994; Levitus et al. 1994) and ran for
126 momentum years. As in Large et al. (1994), a 3504-
s time step for momentum is used, while for the first
96 momentum years the tracers are accelerated by a
factor increasing from 10 at the surface to 100 for the
deep ocean. We then set all times steps equal for the
remaining 30 years as they did.

11. Results with a local model

In general, the full model is given by Eqs. (5a,d) plus
Eqs. (14)–(19). When one deals with a 1D model [e.g.,
in mixed layer studies, Burchard and Bolding (2001)],
one can treat K and e as solutions of the two dynamic
equations (5a,d). On the other hand, when dealing with
a global ocean model, one must further simplify the
problem by reducing the K and e equations to algebraic
relations. For K, one uses the local limit of Eq. (5a),
which implies that production equals dissipation. Equa-
tion (5a) becomes Eq. (25b).

As for the equation for e, the situation is more com-
plex. First, in the local limit 21D (e) → L ew 5f 0

. If one further uses a diffusion–dissipation21 1/2L eK0

model, one equates the left-hand side of (5d) to the
dissipation term c2e2K21. The result is the familar Kol-
mogorov law which requires that we de-3/2 21e 5 K L ,0

scribe L0 somehow. If one keeps the effect of stratifi-
cation, the same procedure leads to

3/2 21 21/2 21e 5 K L , L 5 L (1 1 L |N |K ) , (31a)0 0

which shows that stable stratification suppresses the dis-
sipation length scale. In the ‘‘strong stratification’’ case
we further have

21 1/2L 5 | N | K , (31b)

which is Deardorff’s (1980) original expression. Equa-
tion (31a) then becomes

e 5 K | N | , (31c)

a well-known relation in oceanography (Gargett and Os-
born 1981; Gargett 1989). These empirical relations
were recently obtained as a particular case of a turbu-
lence model (Cheng and Canuto 1994; Canuto and
Cheng 1997), which succeeded in explaining the be-
havior of L found in LES by Schumann (1991). The
result was expressed as

L 5 L f (N, S),0 (31d)

and the function f (N, S) was given in analytical form.
Here we shall use a compromise expression for L that

encompasses empirically the effect of stratification and
which is easy to use. It is the Deardorff–Blackadar for-
mula:

23/2L 5 2 B l, B 5 16.6 (32a)1 1

1 q
l 5 min , l (32b)11 22 N

21l 5 kzl (l 1 kz) , l 5 0.17H, (32c)1 0 0 0

where q2 5 K is the turbulent kinetic energy, N is the1
2

Brunt–Väisälä frequency, k 5 0.4 is the von Kármán
constant, and H is the mixed layer depth. When used
within the NCAR CSM Ocean Model, H is determined
as the depth where the buoyancy difference

21 24 22g[r(H ) 2 r(surface)]r(H ) 5 3 3 10 m s . (32d)

As for the stratification N, one must use the total density
gradient including both salinity and temperature con-
tributions,

]r ]T ]S
2 21N 5 2gr 5 g a 2 a , (32e)S1 2]z ]z ]z

where aS is the haline contraction coefficient. In this
paper, we have taken Ks 5 Kh. For the background, we
use the same formalism but we replaced l0 in Eq. (32c)
with

21 3/2 21l (wb) 5 ak , a 5 (3Ko) B .0 0 1 (33)

Here, Ko 5 1.6–1.8 is the Kolmogorov constant. The
wavenumber k0 is the value for the break in slope of
the observed spectrum of internal waves (Gargett et al.
1981):

1
21k 5 2p rad m . (34)0 10

Finally, we take the total diffusivities to be

K 5 K (Ri) 1 K (Ri ).m,h m,h m,h wb (35)

In the statically unstable case (Ri , 0), we set Km,h(Riwb)
5 0. The very large mixing due to convective instability
makes the background irrelevant in this situation in any
case. In adding the diffusivities, we ensured continuity
in the transition between regions where external shear
dominates and those where the internal wave shear does.

First, we ran the NCAR program as is, with the KPP
model (Large et al. 1994), producing the KPP data pre-
sented in the figures below. Then, in place of the KPP
module, we inserted a module that uses our new model
for the diffusivities for momentum and heat, with the
salt diffusivity set equal to that of heat. The results are
presented in Figs. 6–9 where we exhibit the model re-
sults (squares), Levitus data (dashes), and the results
using the KPP model (diamonds). We present both the
global T and S, as well as for the Atlantic. In Fig. 10
we present the diffusivity profiles at the Canary Islands
and in Fig. 11 the northward heat transport.
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FIG. 6. The resulting global ocean temperature using the OGCM
discussed in section 10, with the new model for the background
diffusivities discussed in section 9. The Levitus et al. (1994) data are
the solid line. We have also run the OGCM code with the KPP model
(Ks 5 Kh), and the results are indicated by diamonds. Our model
results are shown by squares.

FIG. 8. Same as Fig. 6, but for the Atlantic Ocean.

FIG. 9. Same as Fig. 7, but for the Atlantic Ocean.FIG. 7. Same as Fig. 6, but for the global salinity.

12. Future work and conclusions

The goal of this paper was to construct a model for
the vertical diffusivities that contained physical im-
provements with respect to previous models. The main
features of the model can be summarized as follows.

1) The model was not tailored to ocean turbulence, as
were previous models (e.g., KPP).

2) The model incorporates advances in turbulent clo-
sure modeling. As a by-product, it naturally yields
a critical Richardson number of order unity in agree-
ment with mixed layer studies (Martin 1985), lab-
oratory data (Webster 1964; Monin and Yaglom
1971), DNS (Gerz et al. 1989), LES (Wang et al.
1996), and stability analysis that include the nonlin-
ear interactions (Abarbanel et al. 1984).
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FIG. 10. The diffusivities Km,h (cm2 s21) for North Atlantic Tracer
Release Experiment (NATRE). Ledwell et al. (1993) have measured
a value of 0.11 6 0.02 cm2 s21 at z 5 300 m (indicated by an asterisk).

FIG. 11. Polar heat transport vs latitude for the KPP and present
model (squares).

3) Before using it in an OGCM, the model was shown
to reproduce well-documented laboratory, atmo-
spheric, and LES data on stratified turbulence.

4) The model reproduces the Kh 5 geN22 representa-
tion of the heat diffusivity that has been widely used
in the past and predicts a value for g that varies with
Ri, as indeed expected.

5) After these tests have been passed, the model is used
in an OGCM without altering any of the ingredients
that have been used to reproduce the above data.

6) One of the strengths of the model is its ability to
encompass other cases within the same methodology.
Here, we have exploited only the local model, P 5
e, while it would be very interesting to exploit the
new TOM given by Eq. (9a) with a K–e model, es-
pecially in mixed layer studies. Since the new TOM
contains considerably more information and is con-
siderably more physical than any previous expres-
sion, the effects on ocean mixing should be equally
manifest.

7) The case of rotation should also be studied more in
detail and its effect on the ML and on deep ocean
convection investigated. The problem will be taken
up in a subsequent paper.

8) In the next paper, the model will be extended to
include the salinity field, thus allowing Ks to be dif-
ferent than Kh, as dictated by laboratory and ocean
data.
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