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ABSTRACT

Transport in the atmosphere and in the ocean is the result of the complex action of time-dependent and often
highly turbulent flow. A useful diagnostic that summarizes the rate at which fluid elements are transported from
some region to a point (or the reverse) via a multiplicity of pathways and mechanisms is the probability density
function (pdf ) of transit times. The first moment of this pdf, often referred to as ‘‘mean age,’’ has become an
important transport diagnostic commonly used by the observational community.

This paper explores how to probe the flow with passive tracers to extract transit-time pdf’s. As a foundation,
the literal ‘‘tracer age’’ is defined as the elapsed time since tracer was injected into the flow, and the corresponding
tracer-age distribution, Z, as the fractional tracer mass in a given interval of tracer age. The distribution, Z, has
concrete physical interpretation for arbitrary sources, but is only equivalent to a tracer-independent transit-time
pdf of the flow in special cases. The transit-time pdf is a propagator, G9, of boundary conditions (the ‘‘age
spectrum’’ of T. M. Hall and R. A. Plumb) applied over a control surface, V. The propagator G9 is shown to
be the flux into V resulting from a unit mass injected into the time-reversed flow. Through explicit construction
of the transit-time pdf using the concept of tracer age, the special cases for which Z and G9 coincide are established.
This allows a direct physical demonstration of G9, and its adjoint G9†, as the pdf’s of transit times since fluid
at point r had last contact with V, and until fluid at r will have first contact with V, respectively. In the limit
as V is shrunk to a point, point-to-point transit-time pdf’s are well defined, but their mean transit time and
higher-order moments become infinite. Several concrete geophysical examples are considered to illustrate under
what conditions characteristics of tracer-age and transit-time pdf’s can be inferred from observations in the
atmosphere or the ocean.

1. Introduction

Trace gases are an important part of the atmosphere
not only because their radiative and chemical properties
affect climate but also because they directly probe at-
mospheric transport. Routine observations of winds do
not sample the atmosphere sufficiently to resolve many
mechanisms important for global transport, such as con-
vection, tropopause folds, breaking gravity waves, and
boundary-layer mixing. Measurements of tracers pro-
vide one of the best ways to quantify transport rates and
to assess the realism of transport in atmospheric models.
To this end, considerable effort continues to be ex-
pended on measurements of chemically long-lived trac-
ers from ground-based stations, aircraft, balloon, and
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satellite platforms (e.g., Bischof et al. 1985; Luo et al.
1994; Maiss et al. 1996; Boering et al. 1996; Geller et
al. 1997; Elkins et al. 1996; Mote et al. 1998). However,
direct and unambiguous determination of transport
properties from tracer data is often difficult or impos-
sible because the sources and sinks of tracers are im-
perfectly known. Even assuming perfect knowledge of
sources and sinks, transport information is intricately
entangled with their spatial and temporal variability.
Therefore, a diagnostic framework connecting tracer
distributions to tracer-independent transport properties
of the flow is a valuable tool for the interpretation of
observations.

One component of such a framework is what Hall
and Plumb (1994, hereafter HP94) called the ‘‘age spec-
trum.’’ The age spectrum, G9, is a diagnostic of the flow
independent of the distribution of any tracer and sum-
marizes the rate at which fluid is transported from a
region V to a point r. More precisely, G9, is the prob-
ability density function (pdf ) of V-to-r transit times. In
this paper, we therefore refer to the age spectrum as the
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transit-time pdf and reserve ‘‘tracer-age distribution’’
for a distinct quantity defined below. The pdf G9 is
typically broadly distributed, reflecting the multiplicity
of V-to-r pathways available to the fluid. Transit-time
pdf’s have been discussed and applied to stratospheric
transport analysis by Kida (1983) and by HP94. HP94
defined the age spectrum as the distribution of times
since the fluid elements constituting a given strato-
spheric air parcel had last contact with the troposphere.
The mean transit time, G, at a point in the stratosphere
(‘‘mean age’’ in the language of HP94) is the average
time since the air there was last in the troposphere. The
transit-time pdf has proved to be a useful conceptual
tool for interpreting tracer observations in the strato-
sphere. Although G9 itself is not directly observable, G
can be inferred from measurements of appropriate trac-
ers (e.g., Elkins et al. 1996; Boering et al. 1996), and
measurements of combinations of tracers can be used
to constrain the shape of G9 in the lower stratosphere
(Andrews et al. 1999).

HP94 formulated the transit-time pdf in terms of
boundary conditions on mixing ratio by analyzing the
stratospheric response to a short-lived impulse in mixing
ratio imposed near the earth’s surface. This is a natural
approach for the stratosphere, into which most air and
tracer enters through the tropical tropopause regardless
of its history or source–sink distribution in the tropo-
sphere. In many situations, however, it is more physical
to consider tracer distributions as arising from specified
sources and sinks rather than from imposed mixing ra-
tios at the surface. For example, the distribution of CO2

in the troposphere, including near the surface, is usually
considered to be determined by the combination of at-
mospheric transport and surface sources and sinks, rath-
er than transport and imposed surface mixing ratio.

In this paper we establish a novel conceptual and
analytical framework that connects the transit-time pdf
with a closely related, but generally distinct, distribution
of tracer age. The tracer-age distribution, Z, keeps track
of the time for which tracer particles have been in the
flow, and is defined here as the fraction of current tracer
mass binned according to the time (i.e., age) it has been
in the flow. As we shall show, consideration of explicit
sources and sinks rather than mixing ratio boundary
conditions leads naturally to the tracer-age distribution,
Z, and mean tracer age, A, which are complimentary to
G9 and G. Expressing Z and G9 in terms of Green func-
tions, we capitalize on powerful analytic relationships
and derive the special circumstances under which Z and
G9 coincide, thereby confirming HP94’s interpretation
of G9 as the pdf of times since an air parcel last had
contact with a specified region, V. Our approach, how-
ever, is general and also includes the pdf of times for
an air parcel to have first contact with V. We illustrate
these concepts with examples from both simple analytic
models and from numerical atmospheric transport mod-
els, and we demonstrate how characteristics of G9 and
Z can be inferred from real tracers. We also explore the

dependence of the transit-time pdf on the size of V and
find the general result for advecting-diffusing systems
that mean transit times become infinite as V is shrunk
to a point.

While the atmosphere provides the context and lan-
guage for this paper, the development has more general
applicability. Embedding the transit-time pdf in the gen-
eral framework of Green functions provides a guide for
synthesizing measurements of tracer into a coherent,
physical picture of transport, without regard to the par-
ticular geophysical setting. Oceanographers commonly
describe oceanic tracer transport in terms of ‘‘age,’’ gen-
erally construed as the mean time since a water parcel
last had contact with the ocean surface (e.g., Jenkins
1987; England 1995), and Beining and Roether (1996)
discuss age distributions for ocean parcels, a concept
related to the pdf’s developed here. Following examples
for the atmosphere, we briefly discuss application of our
approach to the ocean. Advecting-diffusing systems are
in fact so common in nature that the applicability of
these concepts extends to nongeophysical fields, such
as migrating biological populations (e.g., Zabel and An-
derson 1997), though we will address only geophysical
issues here.

2. Green functions and boundary propagator

We now introduce Green functions for passive tracer
transport and develop their connection to a propagator
of boundary conditions (BCs) on mixing ratio, which
has the interpretation of a transit-time pdf. Details of
the general solution for mixing ratio in terms of Green
functions are provided in appendix A. The development
in this section is general, but throughout we provide
illustrations from simple analytical models whose de-
tails are provided in appendixes B and C. In section 5
examples from more realistic general circulation models
(GCMs) are given. Additional examples of Green func-
tions in a GCM context may by found in Holzer (1999).

a. Green functions

The Green function is a natural analytical tool for the
study of transport because the continuity equation for a
passive tracer is linear in the mass mixing ratio, x. We
write the tracer continuity equation as

(] t 1 T )x 5 S, (1)

where the linear transport operator T represents advec-
tion and diffusion (and, in a model context, parameter-
ized subgrid-scale processes such as convection), and S
represents a specified source of tracer. Although for-
mally it does not matter whether the diffusive part of T
represents molecular diffusion or turbulent diffusion, for
physical interpretations of our results we will assume
throughout that any diffusion in T models the mixing
due to small-scale turbulent advection and that molec-
ular diffusion is negligible. The linearity of (1) allows
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FIG. 1. Analytical solutions of G(z, z9, j) for the stationary 1D
model atmosphere of appendix B, as a function of elapsed time, j.
The source point z9 is located at the ‘‘surface,’’ z9 5 0. The time
evolution of G is plotted at the three locations, z, indicated. Note that
with increasing time G → G` 5 1, uniformly for all z.

x to be synthesized as a linear superposition of the mix-
ing ratios from individual source pulses. We, therefore,
consider S to be a collection of pulses localized in space
and time, which in the limit become Dirac d functions.
Equation (1) with S being one such d function defines
the corresponding Green function, G, that is,

(] t 1 T )G(r, t | r9, t9) 5 r21d(t 2 t9)d3(r 2 r9), (2)

where r is the density of the fluid. Thus, G has dimen-
sions of inverse mass and corresponds to tracer injected
at the point (r9, t9) normalized by the mass injected.
Because there cannot be any tracer in the fluid before
it has been injected, G is said to satisfy the causality
condition that G 5 0 for t9 . t. The solutions of (1)
and (2) depend on a consistent set of BCs.

The solution of linear differential equations subject
to arbitrary BCs and interior sources is derived in terms
of the corresponding Green functions in great generality
by Morse and Feshbach (1953, hereafter MF53), while
Butkov (1968, chapter 12) provides a discussion more
oriented toward simple examples. For the convenience
of the reader, the general solution to (1) for general T,
and for the special case of generic advective-diffusive
transport, is also presented in appendix A. We consider
here only the familiar case of generic advection-diffu-
sion, namely,

T (x) 5 v · =x 2 r21= · (rk=x), (3)

with advecting velocity, v(r, t), and isotropic (eddy-)
diffusivity, k(r, t). (Generalization to anisotropic dif-
fusivity is straightforward, but not considered explicitly
here.) Denoting the Green function satisfying generic
BCs by Gx, the general solution of (1) with (3) is (see
appendix A)

3x(r, t) 5 d r9 r(r9, 0)G (r, t | r9, 0)x(r9, 0)E x

t

31 dt9 d r9r(r9, t9)G (r, t | r9, t9)S(r9, t9)E E x

0

t

21 dt9 d r n̂ · C,E E s

0 ]

(4)

where

C [ r(r , t9)k(r , t9)[G (r, t | r , t9)=x(r , t9)s s x s s

2 x(r , t9)=G (r, t | r , t9)]s x s

2 r(r , t9)v(r , t9)x(r , t9)G (r, t | r , t9), (5)s s s x s

and the gradients are evaluated for rs on the boundary,
], of the geophysical reservoir under consideration (e.g.,
the earth’s surface for the atmosphere). The first term
of (4) represents the time-evolved initial condition
x(r9, 0). The second term is the superposition of all the
tracer pulses emitted at points r9 and times t9 by the
source S(r9, t9). The last term is an integral over the
boundary (outward normal n̂) and represents any con-

tributions to x due to the BCs imposed on x and/or
n̂ · =x. In addition, there may be an independently spec-
ified BC on the normal flow, n̂ · v. We will consider
only two specific sets of BCs, discussed next.

1) ZERO-FLUX BOUNDARY CONDITIONS

The first case of BCs considered is zero flux on all
the boundaries of the geophysical reservoir, which also
implies zero normal velocity at the boundaries. From
here on we use a plain G to denote the Green function
subject to zero-flux BCs. With these BCs, the boundary
term of (4) vanishes entirely and the general solution
to (1) becomes

x(r, t) 5 dm9 G(r, t | r9, 0)x(r9, 0)E
t

1 dt9 dm9 G(r, t | r9, t9)S(r9, t9), (6)E E
0

where dm9 [ r(r9, t9) d3r9. Note that this case includes
specified surface fluxes as these can be considered as
interior sources or sinks placed arbitrarily close to the
boundary. [Alternatively, n̂ · =x could be specified as
a flux BC, which would lead to an additional boundary
contribution given by the first term of (5). However, for
our purposes it is more convenient to regard specified
surface fluxes as sources and use (6).]

Because zero-flux BCs are imposed on G, the tracer
‘‘mass,’’ # dm G 5 1, is conserved. Ultimately, the ini-
tial unit tracer mass injected is uniformly spread over
the entire reservoir so that G has the constant long-term,
spatially uniform limit of G`, where G` 5 # dm G/# dm
5 1/MA is the inverse mass of the fluid (assumed con-
stant).

Figure 1 shows G for the simple case of a one-di-
mensional (1D) diffusive atmosphere (exponentially de-
caying fluid density; for details see appendix B). Be-
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FIG. 2. Analytical solutions of G0(z, z9, j) for the stationary 1D
model atmosphere of appendix B, as a function of elapsed time, j.
The source point is located at z9 5 3.0. The zero-mixing-ratio BC is
applied at the surface, z 5 0. The time evolution of G0 is plotted at
the three locations, z, indicated.

cause this model’s transport is stationary, G depends on
time only through the elapsed time (or ‘‘lag time’’) t 2
t9 [ j. For the G shown, the source is located at the
bottom boundary (z9 5 0). Note that for long times, G
approaches a constant G` 5 1, and that G overshoots
G` at locations, z, close to the source. The overshoot is
a generic feature of G (Holzer 1999).

We emphasize that closed-form analytical solutions
for Green functions are rare exceptions and only pos-
sible for very simple cases. In the general case, G is
physically a ‘‘puff’’ of time-evolving mixing ratio that
typically becomes rapidly shredded and filamented by
the time-evolving velocity field. The complicated de-
pendence of G on the flow is manifest when expressing
G as a (Feynman-type) path integral (see, e.g., Shraiman
and Siggia 1994), though we will not make use of path
integrals in this paper.

2) BOUNDARY CONDITIONS ON MIXING RATIO

The second set of BCs considered imposes a specified
mixing ratio over a control surface V that is fixed in
space. The surface V can be part of the physical bound-
ary of the domain (e.g., a patch of the earth’s surface)
or an interior surface, depending on the application.
Everywhere else on the boundary of the domain we
impose zero-flux BCs. The appropriate homogeneous
BCs to be imposed on the Green function are zero mix-
ing ratio on V and zero flux elsewhere (see also MF53).
We denote the Green function with these BCs by G0,
so that from (4)

x(r, t) 5 dm9 G (r, t | r9, 0)x(r9, 0)E 0

t

1 dt9 dm9 G (r, t | r9, t9)S(r9, t9)E E 0

0

t

22 dt9 d r r(r , t9)k(r , t9)x(r , t9)E E s s s s

0 V

n̂ · = G (r, t | r , t9),r 0 ss
(7)

where the subscript on indicates that the gradient is=rs

evaluated at points rs on V. The purely diffusive nature
of the boundary term in (7) is general and simply due
to the BC G0 5 0 on V.

Because of the zero-mixing-ratio BCs on G0 over V
(denoted as x0BC), G0 leaks continuously out of V so
that G0 has the long-time limit of zero. Note that if the
source point, r9, lies on V, then G0(r, t | r9, t9) 5 0 at
all points r. This is a statement of the fact that as the
source point approaches V, mass is lost at an increasing
rate, until a source right on V looses all its mass in-
stantaneously.

Figure 2 shows G0 as a function of elapsed time, t 2
t9 [ j, for the 1D atmosphere of appendix B. Zero-
mixing-ratio BCs are imposed at the bottom boundary
(i.e., V corresponds to z 5 0). Note that G0 → 0 as j

→ ` and that the evolution of G0 depends on the prox-
imity of the field point, z, to both the source point, z9,
and to V. The largest response, G0, to the initial unit
mass injection is seen at the source location. Close to V,
the x0BCs exert a stronger influence resulting in a smaller
amplitude of G0. The most slowly decaying response can
be seen at the field point most remote from V.

b. Boundary propagator and transit-time pdf

We now define a boundary propagator, G9, that makes
use of the fact that a BC on mixing ratio specified on
the surface, V, can be represented as a sum of d func-
tions in time and surface location. By contrast G and
G0 were based on a d function decomposition of the
sources. Thus, G9 is directly defined through a d function
BC without any explicit sources, that is, G9 satisfies

(] t 1 T )G9(r, t | r0, t9) 5 0, (8)

subject to the BC

G9(rs, t | r0, t9) 5 d(t 2 t9)d2(rs 2 r0), (9)

where rs and r0 are points on V. The solution to (1)
resulting from the general BC, x(r0, t), in the absence
of explicit sources, is then given by

2x(r, t) 5 dt9 d r G9(r, t | r , t9)x(r , t9), (10)E E 0 0 0

V

as can be verified by direct substitution. Hence G9
‘‘propagates’’ the BC on x from V into the interior of
the domain. Note that causality demands here that
G9(r, t | r0, t9) 5 0 for t9 . t.

The normalization of G9 follows from (10). Consider
the case x(r0, t) 5 Q(t 2 t0), where the Heaviside func-
tion Q(t 2 t0) is unity for t . t0 and zero otherwise.
In that case, after waiting for an infinitely long time (t0

→ 2`), the boundary value of unity will have propa-
gated throughout the domain, and if the domain is finite
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FIG. 3. Analytical solutions for the boundary propagator G9(z, j)
for the stationary 1D model atmosphere of appendix B, as a function
of elapsed time, j. The zero-mixing-ratio BC is applied at the surface,
z 5 0. The time evolution of G9 is plotted at the three locations, z,
indicated.

(as is any reasonable geophysical reservoir) then x(r, t)
5 1, giving the normalization

t

2dt9 d r G9(r, t | r , t9) 5 1. (11)E E 0 0

2` V

[For infinite domains, the right-hand side of (11) can
vary spatially—see appendix Ca.] Based on (11), the
surface integral

2G9(r, t | V, t9) [ d r G9(r, t | r , t9), (12)E 0 0

V

is interpreted by HP94 as an ‘‘age spectrum,’’ that is,
a pdf of V-to-r transit times. (Note that HP94 use the
symbol G for the age spectrum.) As we will show below,
dt9 G9(r, t | V, t9) is the probability that a fluid element
at (r, t) had last contact with V at a time between j [
t 2 t9 and j 1 dj ago.

Note that a propagator, G9, for general BCs on mixing
ratio over an extended surface, V, such as the earth’s
surface, must be defined as in (8) and (9). Boundary
propagators with the d(t 2 t9) BC applied only to a
small subregion of V, and zero-flux BCs elsewhere on
V, cannot be used to synthesize the response to an
V-distributed BC on mixing ratio from a superposition
of such propagators. The G9 only combine appropriately
via (10) when the BC (9) applies over the entire control
surface, V.

Figure 3 illustrates the general character of G9 as a
function of elapsed time t 2 t9 [ j for the 1D atmo-
sphere of appendix B. Close to V (in this case, z 5 0),
most fluid elements have experienced a short transit time
since they were last at V, and G9 is sharply peaked.
With increasing distance, z, from V the most probable
time since last contact with V (where G9 is peaked),
moves to progressively longer times, and G9 becomes
increasingly broad, indicating an increasing multiplicity

of possible transit times since last contact with V (see
also HP94).

c. Probabilistic interpretations

For a physical and probabilistic interpretation of the
Green functions it is useful to have a concept of the
entity that is being transported. To this end, we envision
the fluid as consisting of the standard ‘‘material fluid
elements’’ of fluid mechanics. A subtlety arises when
we consider a tracer. Generally tracer molecules that
label a material fluid element do not remain confined
to that fluid element but rather diffuse to adjacent fluid
elements by molecular diffusion. However, we are in-
terested here in the limiting case where the molecular
diffusivity is negligible compared to the turbulent dif-
fusivity (large Péclet number). Therefore, we regard any
diffusion in the transport operator, T, as modeling the
effect of small-scale turbulent advection, so that dif-
fusion is a characteristic of the flow and not of the
material properties of the fluid-tracer combination. The
turbulent diffusion of T transports fluid elements, or
simply ‘‘particles,’’ and tracer is simply the substance
that labels (‘‘marks’’) these particles. The mixing ratio
at any point can be imagined as the marked mass fraction
of a large number of particles constituting a ‘‘fluid par-
cel.’’ A parcel is imagined to have finite but arbitrarily
small volume in the continuum limit.

The Green functions G and G0 have the probabilistic
interpretation of being pdf’s so that G dm is the prob-
ability of finding a tracer-marked particle in the fluid
mass element dm at time t, if that particle was located
at r9 at time t9, and similarly for G0. Correspondingly,
the domain-integrated masses, M [ # dm G 5 1 and
M0(t | r9, t9) [ # dm G0(r, t | r9, t9), have the interpreta-
tion of being the probabilities that a marked particle
released at (r9, t9) is still marked a time t 2 t9 later. In
the case of G (zero-flux BCs), once the particle has been
marked with tracer, it will remain marked forever and
is, therefore, to be found somewhere with unit proba-
bility. In the case of G0 (zero-mixing-ratio BCs), the
marked particle will eventually make contact with the
x0BC control surface, where it will loose its tracer
marker, so that M0 approaches zero for long t 2 t9. The
decaying probability M0 is shown in Fig. 4 for the 1D
atmosphere of appendix B with V being the ‘‘surface’’
z 5 0. Note that the closer the source point, z9, is to V,
the faster M0 leaks out of the atmosphere.

The ‘‘pseudo mass’’ M9(t | r0, t9) [ # dm G9(r, t | r0, t9)
is not dimensionless and hence not a probability. How-
ever, for total fluid mass MA 5 # dm, the ratio P(t | t9) [
#V d2r0 M9/MA 5 # dm G9/MA can be interpreted as a pdf.
[Note that dj P(t | t 2 j) 5 1.] We may think of P(t | t9)`#0

as the pdf of ‘‘population particle age,’’ j [ t 2 t9, for
surface-marked particles which are ‘‘born’’ on V and
‘‘die’’ when they make contact with V a second time.
To see this, rewrite P(t | t9) as # d3r m(r, t)G9(r, t | V, t9),
where m(r, t) [ r(r, t)/MA is the pdf of finding a particle
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FIG. 4. The probability M0(z9, j) in the analytical 1D atmosphere
of appendix B, that a marked fluid particle located at z9 at time j 5
0 will not have made contact with the surface, z 5 0, a time j later.
As expected, the farther z9 is from the surface, the longer it takes
until the particle has significant probability of surface contact.

FIG. 5. The particle-age pdf, P(j), of the 1D atmosphere of appendix
B. Note the j21/2 divergence as j → 0. (The dotted line indicates the
asymptotic j21/2 power law.) This divergence is a generic feature of
transport with a diffusive component and not a peculiarity of the 1D
model (see section 2d).

in the volume d3r. Given HP94’s interpretation of G9 as
the pdf of times since last V contact, the product
m(r, t)G9(r, t | V, t9) is the (joint) probability density for
finding a particle in the volume d3r that had last surface
contact in the interval (t9, t9 1 dt9), and hence has particle
age in the interval (j, j 1 dj). Integrating this joint prob-
ability density over r, gives the pdf, P(t | t9), for finding
in the entire population of particles a particle whose age
lies in the interval (j, j 1 dj). In the following subsec-
tion, we confirm HP94’s interpretation of G9 from a new
approach and show that P(t | t9) is singular at t 5 t9 for
advective-diffusive transport. Figure 5 shows the pdf, P,
as a function of particle age, t 2 t9 [ j, for the 1D
atmosphere of appendix B. The pdf P diverges like j21/2

as j → 0 for this model as indicated on the figure.

d. G9 as flux of G0 in the time-reversed flow

From the general solution (7) for arbitrary BC’s on
mixing ratio, we can obtain an expression relating G9
to G0, which provides important new insight into the
interpretation of G9. The boundary propagator G9 is the
special case of a d-function BC on V, zero initial con-
ditions, and no explicit sources. Substituting x(rs, t9) 5
d(t9 2 t0)d2(rs 2 r0) into (7) immediately gives

G9(r, t | r0, t0 )
†5 2r(r , t )k(r , t )[n̂ · = G (r9, t | r, t)] ,0 0 0 0 r9 0 0 r95r0

(13)

where we have expressed G0 in terms of its adjoint
, which is related to G0 via the reciprocity condition†G0

G0(r, t | r9, t9) 5 (see, e.g., MF53). Cau-†G (r9, t9 | r, t)0

sality for demands that t $ t9, as it does†G (r9, t9 | r, t)0

for G0(r, t | r9, t9). The reciprocity condition is the cru-
cial ingredient in obtaining a general physical interpre-
tation for G9. While G(r, t | r9, t9) takes tracer from
(r9, t9) to (r, t) in the flow evolving forward in time,
G†(r9, t9 | r, t) takes tracer from (r, t) to (r9, t9) in the
time-reversed flow, whose transport operator is T †.
Thus, G9(r, t | r0, t0) has the interpretation of the flux

through the control surface, V, at (r0, t0) resulting from
a unit-mass injection into the time-reversed flow at (r, t).

It is worth pointing out precisely what ‘‘time-re-
versed’’ means here. As described in appendix A, to
convert the advection–diffusion equation to its adjoint,
]t → 2]t and v · = → 2v · =, while = · (kr=) remains
unchanged. One might at first think that the physical
effects of diffusion are, therefore, different. However,

in (13) represents the mixing ratio re-†G (r9, t | r, t)0 0

sulting from a unit mass injected at (r, t) evolving under
( 1 T †) 5 d3(r 2 r9)d(t 2 t0)/r, with†2] G (r9, t | r, t)t 0 00

the causality condition that t0 # t, so that the time pa-
rameter t0 must actually run backward (continually de-
crease). Thus, the transport in the time-reversed flow
represented by evolves under reversed ve-†G (r9, t | r, t)0 0

locities (v → 2v), but diffusion disperses tracer from
a point source to a ‘‘cloud’’ just as it does in the time-
forward flow.

We are now in a position to give G9 a fresh interpre-
tation. Since (12) defines G9 as the V-integrated flux
G9, the transit-time pdf G9 is the net flux of

out of the domain. From tracer-mass con-†G (r9, t9 | r, t)0

tinuity it, therefore, also follows that

G9(r, t | V, t9) 5 ] t9 ,†M (t9 | r, t)0 (14)

where [ # dm9 is the proba-† †M (t9 | r, t) G (r9, t9 | r, t)0 0

bility that a tracer-marked particle released into the time-
reversed flow at (r, t) will still be marked at time t9,
with t . t9. Since the flux of probability leaving through
V at time t is the probability of arriving at V between
time t and t 1 dt, G9 has the natural interpretation of
being the pdf of times for a tracer particle released at
(r, t) into the time-reversed flow to ‘‘first’’ make contact
with V. For the time-forward flow, G9 is, therefore, the
pdf of times since a particle arriving at (r, t) had last
contact with V. We shall return to a more direct physical
demonstration of the fact that fluxes of G0 into V are
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FIG. 6. Schematic illustration of two equivalent ways in which one
can obtain the pdf, G9, of times, j, since fluid at (r, t) was last in
contact with some arbitrary fixed surface, V, indicated by the shaded
region. (top) The time-forward flow. If a tracer mixing ratio on V is
specified to be an impulse at t9 proportional to d(t 2 t9), then the
time evolution of the resulting mixing ratio at r as a function of
elapsed time, j 5 t 2 t9, is proportional to G9(r, t9 1 j | V, t9). (bot-
tom) The equivalent situation in the time-reversed flow where zero-
mixing-ratio BCs are imposed on V. A unit mass injected at (r, t)
results in a net flux into V at a time j 5 t 2 t9 earlier (since time
runs backward). This net flux is proportional to G9(r, t | V, t 2 j) 5
G9(r, t9 1 j | V, t9).

transit-time distributions when we consider tracer age
below.

The relationships (13) and (14) represent one of the
main results of this work, and their physical content is
summarized schematically in Fig. 6. The pdf of times
since fluid at r had last contact with V can be obtained
either as the response at r to a d-function BC over V
in the time-forward flow, or in the time-reversed flow
as the flux into V resulting from a unit mass injection
at r when x0BCs are imposed on V. As will be derived
from a more fundamental point of view in section 4,
the ‘‘adjoint’’ of this statement is similarly true. The
pdf of transit times for fluid at r to make first contact
with V can be obtained as either the flux into V resulting
from a unit-mass injection at r under x0BCs in the time-

forward flow, or as the response at r to a d-function BC
over V in the time-reversed flow.

The relationship (13) between G9 and G0 can be ex-
pressed in another useful form when one writes the gra-
dient as a limit and uses the reciprocity condition and
the fact that when r0 is on V, G0(r, t | r0, t9) 5 0:

G9(r, t | r , t )0 0

5 r(r , t )k(r , t ) lim G (r, t | r 2 n̂e, t )/e. (15)0 0 0 0 0 0 0
e→0

Thus, G0 is essentially proportional to G9 in the limit
as the source point is close to V. The closer r0 gets, the
more tracer of the initial unit injection of G0 is lost, but
this is compensated by scaling G0 with 1/e so that G9
remains normalized as in (11). For the simple 1D at-
mosphere of appendix B, (15) takes the form G9(z, j)
5 limz9→0 G0(z, z9, j)/z9 and a plot of G0/z9 with z9 5
0.001 is indistinguishable from G9 in Fig. 3.

A relationship between the probability M0 and the pdf
M9 follows by integrating (13) with respect to dm, giving

M9(t | r0, t0)

5 2r(r , t )k(r , t )n̂ · = M (t | r9, t )| .0 0 0 0 r9 0 0 r95r0
(16)

The spatial structure of M0 with respect to the source
location r9 has consequences for M9. Note that as j 5
t 2 t9 → 0, the probability, M0, of finding a marked
particle in the atmosphere is unity (for short enough j
there is no chance of having lost the tracer to the bound-
ary; see also Fig. 4), except for the case where r9 is
right on V, that is, as j → 0, the probability
M0(t | r9, t 2 j) abruptly goes from unity to zero when
r9 reaches V. Thus, (16) implies that as j → 0,
M9(t0 1 j | r0, t0) → ` since the gradient of M0 sees a
sharp discontinuity at V. The boundary propagator G9
has, therefore, an infinite initial pseudo mass, M9, and
the population particle-age pdf P(t | t9) 5 #V d2 r0M9/MA

is also singular at t 5 t9. This is an expression of the
fact that a fluid particle ‘‘released’’ from V has over-
whelming probability for immediately crashing into V
again.

We were able to relate G0 and G9 through a simple
differential operator because G0 and G9 have compatible
BCs. However, G and G0 (and hence G and G9) obey
different BCs and we know of no direct way of obtaining
one from the other by applying a differential operator.
Nevertheless, G and G9 can be related by considering
either that (a) the evolution of G over the control sur-
face, V, can be propagated throughout the domain using
G9 ; or that (b) G9 can be regarded as a ‘‘pseudo mixing
ratio’’ whose fluxes through V can be used to obtain
G9 everywhere using G. The integral equations con-
necting G and G9 follow from the general solution (4)
and may be used to derive approximate relationships,
but this is not pursued further here.
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3. Tracers as clocks and tracer-age distributions

We now develop the concept of a distribution of literal
tracer age, which has concrete interpretation for arbi-
trary sources, and which forms the foundation for a
direct physical construction of tracer-independent tran-
sit-time pdf’s. Fluid marked by tracer naturally contains
transit-time information. Consider a parcel at (r, t) with
some tracer mixing ratio. If the source of that tracer was
only ‘‘on’’ for a short burst at (r9, t9), we know that any
tracer we find has age t 2 t9. This is the basic idea of
‘‘tracer age.’’ Note that this tracer age does not generally
date the parcel under consideration as having been at
r9 at time t9 because tracer-marked fluid will generally
have been mixed via (turbulent) diffusion with un-
marked (‘‘clean’’) fluid on the way from r9 to r. Tracer
age is only the transit time of marked particles. Since
our interest here lies in using tracers to extract flow
characteristics, in section 4 we will explore under what
circumstances tracer-age and transit-time distributions
coincide.

Given a tracer source extending over space and time,
and either zero-flux or x0BCs, tracer age is naturally
defined as follows. The tracer mixing ratio at the current
time, t, is the mixture of tracer mass released at different
times, t9, in the past from various locations r9. Imagine
giving each fluid particle a clock that is started at the
time it is marked with tracer at the source so that the
particles marked between time t9 and t9 1 dt9 will have
‘‘clock time,’’ or age, t 2 t9. (For example, one could
imagine fluid elements labeled by a radioactive decaying
isotope, which acts as a clock.) The mixing ratio of the
collection of particles released between time t9 and t9
1 dt9 is simply dt9 # dm9 Gx(r, t | r9, t9)S(r9, t9), where
Gx is either G (zero-flux BC) or G0 (x0BC). Therefore,
the fraction of tracer mass residing in a volume V that
has been in the flow for time t 2 t9 is given by dt9
Z(r, t | S, t9), where

dm dm9 G (r, t | r9, t9)S(r9, t9)E E x

V
Z(V, t | S, t9) [ .

dm x(r, t)E
V

(17)

Hence, the average clock time (the mean tracer age) of
the particles residing in V is given by

t

A(V, t, t ) 5 dt9 (t 2 t9)Z(V, t | S, t9), (18)0 E
t0

where we assumed that S(r9, t9) 5 0 for t9 , t0. Note
that, by construction, the weighting function, Z, inte-
grates to unity, dt9 Z(V, t | S, t9) 5 1, so that we mayt# t0

think of Z as the distribution of clock times, t 2 t9,
present in the volume V. We, therefore, refer to Z as a
tracer-age distribution, which reduces to a transit-time
pdf only under special conditions.

It is useful to have a completely local definition of
the tracer-age distribution, which is obtained by taking
the limit as the volume V shrinks to a point at r, giving

1
Z(r, t | S, t9) [ dm9 G (r, t | r9, t9)S(r9, t9).E xx(r, t)

(19)

As defined by (19), dt9Z is the mass fraction of tracer
of age t 2 t9 that comprises the mixing ratio of the
parcel at r. Correspondingly,

t

A(r, t, t ) 5 dt9 (t 2 t9)Z(r, t | S, t9), (20)0 E
t0

defines the mean tracer age at r.
The formulation of (17) and (19) relied on x being

determined through an interior source, S, and not
through the imposition of any nonzero BCs on mixing
ratio. This is not a loss of generality since we can always
determine a source–sink field arbitrarily close to the
surface that results in the desired surface mixing ratios.
(For specified mixing ratios, this requires solving an
inverse problem, but for complete surface information,
the corresponding implied surface sources are in prin-
ciple determined.)

As can be seen from (17) and (19), Z depends on the
space and time dependence of the sources. The character
of Z also depends strongly on whether zero-flux or zero-
mixing-ratio BCs are imposed. Making an analogy with
population dynamics, clocks are born at a certain rate
at the sources and form a ‘‘population’’ showing various
times/ages. Without a ‘‘death’’ process, the population
just keeps on aging and mean tracer age increases with-
out bound. This is the case when we impose zero-flux
BC (Gx 5 G); once a clock is born it will tick forever.
(As we shall see, the spatial structure of the ever in-
creasing mean tracer age, A, carries useful transport in-
formation, but Z will not approach a stationary state as
t 2 t9 → `.) If Gx 5 G0, clocks making contact with
the x0BC control surface effectively die and the pop-
ulation of clocks reaches a statistically stationary age
distribution as t 2 t9 → `.

4. Explicit construction of transit-time pdf’s

To make the connection between the tracer-age dis-
tribution, and the pdf of transit times from a point rA

to some control surface, V (which could be shrunk to
a point), we consider some idealized experiments. We
can straightforwardly obtain the pdf of transit times if
we release clocks at a steady rate at rA, measure their
times as they reach V, and then, after measurement,
remove the clocks from the system. A normalized his-
togram of the times recorded is then the pdf of rA-to-
V transit times, denoted here by ZT . Removal of clocks
is important since otherwise one will eventually mea-
sure the time of clocks that had previously visited V.
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FIG. 7. Schematic of the construct to demonstrate the equivalence
between the tracer-age distribution, Z, computed for the volume, V,
and the flux into the control surface, V. As discussed in section 4,
we take the limit as the thickness of V (chosen to be proportional to
the diffusivity, k) goes to zero, followed by a collapse of the resulting
thin shell onto V as e → 0.

Note that the transit times discussed here are not merely
the Lagrangian transit times of the flow, but transit times
determined by the subtle combination of advection and
(turbulent) diffusion. Even without explicit advection,
tracer-marked particles can still diffuse from rA to any
other point.

An idealized tracer experiment to accomplish the de-
sired time keeping feat is constructed as follows: Place
a constant source of tracer at rA and impose x0BC over
V to remove clocks after measurement. We must now
deal with the subtlety of the fact that right on the surface
there is no tracer and hence no clocks. Fortunately, how-
ever, we can measure clock times at points r close to
points r0 on V and take the limit as r → r0. It is useful
to construct our histogram of clock times in terms of
the mass fraction residing in a specified volume V as
discussed in the previous section. We take V to be a
shell surrounding V and then take the limit as the shell
has zero thickness followed by the limit of moving this
shell onto the surface V. The precise result we obtain
depends on the details of how we take the limit of the
shell collapsing to zero thickness. In order to connect
with the results of section 2 relating boundary propa-
gators to fluxes, it is useful to define the shell, V, such
that its thickness is proportional to the local diffusivity
k. In the limit as V becomes a thin shell, the integral,
#V dm, then becomes the surface integral, (dz/k0) #]V d2r
r(r, t)k(r, t), where z is the coordinate normal to the
shell surface, k0 is an arbitrary constant, and ]V can be
taken as the inner surface of V. This setup is schemat-
ically illustrated in Fig. 7.

Thus, with r(r, t)S(r, t) 5 const. 3 d3(r 2 rA)
Q(t 2 t0) the distribution of clock times for the thin
shell, V, is obtained from (17) as ZT(V, t | rA, t9) [
limV→V Z(V, t | S, t9), that is,

Z (V, t | r , t9)T A

2d r r(r, t)k(r, t)G (r, t | r , t9)E 0 A

]V
5 lim ,

t2t0
V→V

2dj d r r(r, t)k(r, t)G (r, t | r , t 2 j)E E 0 A

0 ]V

(21)

for t $ t9 $ t0. Equation (21) encapsulates a very direct
and physical construct for the pdf of rA-to-V transit
times. Clocks are born at rA, the flow takes them to their
deaths at V, and we make a histogram of their ages just
before death. We can now express ZT in terms of tracer
fluxes, because for r0 on V we have G0(r0, t | rA, t9) 5
0, so that with r 5 r0 2 en̂ we have lime→0 G0(r0 2
en̂, t | rA, t9)/e 5 n̂ · =rG0(r, t | rA, t9) | . Dividingr5r0

both numerator and denominator of (21) by e and taking
the limit e → 0, so that r → r0, and V → V, we obtain

†G9 (V, t | r , t9)AZ (V, t | r , t9) 5 ;T A t2t0

†dj G9 (V, t | r , t 2 j)E A

0

t $ t9 $ t , (22)0

where we define G9†(V, t | rA, t9) [ #V d2r0 G9†(r0, t |
rA, t9), with

G9†(r0, t | rA, t9)

[ 2r(r , t)k(r , t)n̂ · = G (r, t | r , t9)| ,0 0 r 0 A r5r0
(23)

which is the flux of G0 into V at r0.
Through (22) our original explicit construct of ZT as

a histogram of clock times for tracer-marked particles
from a constant source leads to a complementary in-
terpretation. Expression (22) establishes the distribu-
tion, ZT , of times to first contact with V as the nor-
malized net flux into V from a unit-mass injection at
rA. Since this flux integrated over all time just gives
unity, we can take the limit t0 → 2` in (22) to obtain
the asymptotic rA-to-V transit-time pdf as

ZT(V, t | rA, t9) 5 G9†(V, t | rA, t9); t $ t9 . 2`.

(24)

From conservation of mass it follows that

G9†(V, t | r9, t9) 5 2] tM0(t | r9, t9). (25)

Note that here x0BC’s are imposed on the destination
surface, V, and the limit is taken as the field point, r,
approaches V. This contrasts to what is involved in the
limit (15) relating G0 to G9 (and hence to G9), where
the source point approaches V. Also, the interpretation
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of G9 given in section 2c, was the distribution of transit
times since last contact with V.

To establish the relation between G9 and an explicit
construct of the pdf of transit times we proceed as fol-
lows. Instead of using tracers to probe the flow, which
is evolving forward in time, we can equally well imagine
using tracers to probe the time-reversed flow (repre-
sented by the adjoint operator T †). We can keep track
of transit times in the time-reversed flow through the
same construct as in the forward flow. Release clocks
with a constant source r(r, t)S(r, t) 5 constant 3 d3(r
2 rA) into the time-reversed flow at rA, and impose
x0BC over V. We construct the distribution of (nega-
tive) clock times, , in exactly the sameZ (r , t | V, t9)†T A

way as in the case of the forward flow except that we
use instead of G0 and time runs backward. Paralleling†G0

the steps that led to (22) using (15) and the reciprocity
relation for , we find that†G0

Z (r , t | V, t9)†T A

G9(r , t | V, t9)A5 ; t $ t9 $ t , (26)0t2t0

dj G9(r , t | V, t 2 j)E A

0

where G9 is the net flux in the time-reversed flow into
V resulting from a unit-mass injection at rA. The time
integral of this flux is again normalized [cf. (11) and
(12)] so that in the limit t0 → 2`, we have

5 G9(rA, t | V, t9); t $ t9 . 2`.Z (r , t | V, t9)†T A

(27)

Since is the distribution of times to first contact withZ †T

V in the time-reversed flow, in the forward-evolving
flow, is the distribution of times since last contactZ †T

with V.
Generally the pdf’s G9 and G9† are not equivalent. A

sufficient condition for their equivalence is that
G0(r, t | r9, t 2 j) 5 , which is true†G (r, 2t | r9,j 2 t)0

only in special cases such as pure diffusion without
advection (see, e.g., MF53). The general nonequiva-
lence of G9 and G9† can be seen from the following
example. Take the case where V is a small bubble. Sup-
pose this V is connected via a closed stream line to
point rA, with flow from V to rA via a short segment
of stream line and from rA back to V via a much longer
circuitous segment, and with flow speed roughly con-
stant along the stream line. In this case, the mean time
since particles at rA had last had contact with V is shorter
than the mean time for particles leaving rA to make first
contact with V, so that G9 ± G9†.

Consider the limit as V is shrunk to a point, say rB.
In this limit, G9 and G9† are perfectly well defined as
the pdf’s of A-to-B transit times, but their first and high-
er moments turn out to be infinite. As we have shown,
G9 and G9† are the time-dependent fluxes into V resulting
from a unit mass injected at rA into the time-reversed
and time-forward flows, respectively. As the surface

area of V is decreased, it takes increasingly long for
the unit mass to escape through V. Because the total
mass exiting through V is equal to the unit mass initially
injected, regardless of the size of V, G9 and G9† remain
normalized in the point limit. However, in appendix C
section b we show that for 2D and 3D purely diffusive
transport, the mass flux out of V decays so slowly in
the point limit that the first and higher moments of the
transit-time pdf’s diverge as V vanishes, even for a finite
domain. This result generalizes to any advective-dif-
fusive transport because diffusion dominates at small
enough spatial scales. Although in the literature one
finds point-to-point mean transit times discussed as
though they were finite (see, e.g., Plumb and Mc-
Conalogue 1988; HP94), from the results of appendix
C section b, as well as from arguments made in the
following section, we conclude that point-to-point mean
transit times are infinite.

It is important to note that the divergence of the point
A-to-B mean transit time does not imply that it will take
an infinite time for a unit-mass injection at rA to produce
a finite mixing ratio (i.e., any finite fraction of G`) at
rB or any other point, r. The characteristic ‘‘mixing
time,’’ t , for x(r) ; G` is finite for a finite reservoir,
and represents the time when the majority of marked
fluid particles have had a chance to visit r. This contrasts
with the mean transit time, which is computed as the
mean over all particles binned according to their transit
time. Because the majority of particles arrive at r in a
time on the order of t , the transit-time pdf has its peak
around t and the divergent moments are, therefore, at-
tributable to slowly decaying tails for large j 5 t 2 t9
representing ‘‘stragglers’’ taking arbitrarily long to find
their point target of V (in either the forward or time-
reversed flow).

5. Transit time information from geophysical
tracers

We now discuss how, and under what conditions, trac-
er-independent transit-time information can be extracted
from geophysical tracers. For any flow and any source
of tracer, we can always define the tracer-age distribu-
tion, Z, and mean tracer age, A, for every point in the
domain. Unless Z is computed at special locations under
the particular conditions examined in the previous sec-
tion, Z will not coincide with either G9† or G9. However,
Z can still contain information on the mean transit time
G(r, t) [ dt9 (t 2 t9)G9(r, t | V, t9) since last contactt#2`

with the control surface, V. One way to see this, is to
compare the equations of motion for G9 and G with those
for Z and A. The equation for G9 has the same form as
that for G9 ; that is,

(] t 1 T )G9 5 0, (28)

with the BC G9(r, t | V, t9) 5 d(t 2 t9) for r on V. The
equation for G follows as

(] t 1 T )G 5 1, (29)
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with the BC G(r, t) 5 0 for r on V, as noted by Boering
et al. (1996). Equation (29) has in fact been used to
define age (e.g., England 1995).

The equation for the locally defined tracer-age dis-
tribution, Z, may be written from its definition (19) as

S D (Z, x)
(] 1 T )Z 5 [d(t 2 t9) 2 Z ] 2 , (30)t x x

where for any two scalar fields, X and Y, we defined
D(X, Y) [ T(XY) 2 XT(Y) 2 YT(X). The BC for Z
follows from the BC for the corresponding Gx. The
operator D represents diffusive coupling, which van-
ishes when T is a pure advection operator. The first
moment of (30) gives the equation of motion for A:

A D (A, x)
(] 1 T )A 5 1 2 S 2 . (31)t x x

Thus, A and G differ through their equations of motion
and, generally, also through their BCs. For the case of
surface sources, S 5 0 in the interior of the domain and
(29) and (31) differ through the extra diffusive coupling
D/x and the BCs.

We now consider several concrete geophysical ex-
amples and illustrate some of the concepts developed
using numerical atmospheric transport models. Two
models are used: the second-generation GCM of the
Canadian Climate Centre (CCC) (McFarlane et al. 1992)
and an offline chemical transport model (CTM) devel-
oped at the Goddard Institute for Space Studies (GISS)
(Prather 1986; Prather et al. 1987). The CCC GCM is
a spectral model of the troposphere with T32 horizontal
resolution and 10 vertical levels to 10 mb. The tracer
transport properties of this model have recently been
studied in some detail (Holzer 1999). (For the case of
surface BCs with spatial discontinuities, spectral trans-
port produces Gibbs oscillations. For plotting only, low-
est-level mixing ratios are, therefore, slightly filtered
spatially.) The GISS CTM has a grid resolution of 7.88
lat, 108 long, and 21 vertical layers to 0.002 mb (;90
km) and is driven by a repeated single year of wind and
convection data from a version of the GISS GCM with
a full stratosphere (Rind et al. 1988). The GISS CTM
has been used extensively to study stratospheric tracers
(e.g., Hall and Prather 1995). Our purpose here is not
to compare results between the two models but rather
to illustrate the concepts developed using the model
most appropriate for each particular case: CCC GCM
for the troposphere and GISS CTM for the stratosphere.

a. Inferring mean transit times from tracer
distributions: Constant surface sources,
zero-flux BC

Suppose a tracer with no sinks is injected into the
atmosphere with a constant source, that is, with
r(r, t)S(r, t) 5 s(r)Q(t 2 t0), where s(r) is constant over
a patch, V, close to the earth’s surface. The relevant

Green function for this problem is G (zero-flux BC).
Using this source in (20) with Gx 5 G and taking the
long-time limit G ; G`, we obtain that the mean tracer
age A ; t/2. This is intuitive; clocks initialized to zero
are injected at a constant rate so that after a long time,
t, their average clock time reads (1/t) t9 dt9 5 t/2.t#0

Since we are pumping tracer into the atmosphere with-
out any losses, the mixing ratio, x, increases continu-
ously. However, after a long time, x can be decomposed
into a linearly growing uniform background, x0, onto
which is superposed a statistically stationary, spatially
varying, state, x1, that is, x 5 x0 1 x1, where x0 [
s0G`t with s0 [ # s(r) d3r being the total mass injected
per unit time.

The deviation A1(r, t) [ A(r, t) 2 t/2 contains non-
trivial transit-time information. In the limit of large t,
A1 obeys from (31)

1 1 1S A S D (A , x )
1(] 1 T )2A 5 1 2 2 2 2 2 , (32)t s G x x0 `

where A1 has zero-flux BCs. The coupling D(A1, x1)
and A1S are bounded, while x grows like t, so that D/x
and A1S/x vanish like 1/t. Note that in the interior of
the atmosphere, where S 5 0, 2A1 and G obey the same
equation once A1S/x and D/x are negligible. Recall that
for G zero-mixing-ratio BCs are applied over V, with
zero-flux BCs elsewhere. Thus, to the extent that
A1(r, t) ; 0 for r on V, we can consider 2A1 to obey
the same BCs as G. It follows that

2DA(r, t) ù 2A1(r, t) ù G(r, t), (33)

with DA(r, t) [ A(r, t) 2 A(V, t), where A(V, t) is the
(area-weighted) average of A over V.

To calculate DA directly from the definition (20) of
A, one needs to know G. Fortunately, however, it is
straightforward to show that, in the limit t 2 t0 → `,
the mixing ratio x, resulting from the constant source,
obeys the exact identity

Dx
2DA 5 2 , (34)

s G0 `

with Dx(r, t) [ x(r, t) 2 x(V, t), where x(V, t) is the
average of x over V. One can see this from (20) by
taking t 2 t0 large enough so that the integration range
(t0, t) can be split into two parts, (t0, t1) and (t1, t),
where the intermediate time, t1, is chosen so that G is
indistinguishable from G` (to within some tolerance)
over the interval (t0, t1). The spatial structure of x thus
comes from the interval (t1, t), where G has temporal
and spatial structure. Taking the limit of A(r) 2 A(rs)
as t0 → 2` and averaging rs over V gives (34). From
(34) and (33) we have the useful relation

Dx
2 . G, (35)

s G0 `

which states that the mean transit time, G, is approxi-
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mately equal to the time lag for x(r, t) to catch up to
x(V, t).

How good is the approximation relating DA and Dx
to G as in (33) and (35)? We could also have arrived at
(35) by using the general boundary propagator, G9. If
we assume that x over V is known, we can take it as
a time-dependent BC on V (with zero flux elsewhere)
and use (10)–(12) to obtain in the limit t0 → 2`

`

1 2x (r, t) 5 2s G G 1 dj d r G9(r, t | r , t 2 j)0 ` E E s s

0 V

13 x (r , t 2 j).s (36)

We recover (35) to the extent that dj # d2rs G9x1 ù`#0

x1(V, t), which is exact only if x1 is uniform over V
and time independent corresponding to a strictly uni-
form, linearly increasing BC over V, in which case (35)
is obtained as an identity (HP94).

Equation (36) shows that the accuracy of approxi-
mation (35) hinges on how uniform x1 is over V, and
how close x1 is to being time independent. For constant
sources, near-surface mixing ratios can be expected to
have a pronounced seasonal cycle, especially in the vi-
cinity of the sources. Thus, it is only in a time average
(e.g., over an annual cycle) that the mixing ratio’s
growth will be close to linear. However, for the time
average (indicated by an overbar) of (36) to reduce to
the time average of (35), we also need G9x1 ù G9 x1 ,
or more precisely that G9 x1 2 G9 x1 is small compared
to s0G`G, that is, that there is small covariance between
the transport operator (represented in integral form by
G9) and the surface BC. Uniformity over V can be en-
sured by making V small enough, but in the limit as V
is shrunk to a point, G and 2DA will diverge as discussed
in section 4.

The general case of a time-dependent, spatially dis-
tributed surface source is quite complicated and a full
exploration of this case is beyond the scope of this paper.
The difficulties associated with spatially distributed
sources lie in the fact that there is no unique reference
value to define easily interpreted lag times. We note that
a spatially uniform source with time variation can be
used to extract higher-order moments of the transit-time
pdf.

We now illustrate the correspondence between G and
2DA in the troposphere. The CCC GCM was used to
simulate the mixing ratio resulting from (a) a constant
source applied over a surface patch, V, and from (b) a
BC on mixing ratio enforced over the same patch that
increases linearly in time with rate g (a ‘‘ramp’’ BC).
To test our expectation of reasonable agreement between
G and 2DA for a small source patch and approximate
agreement for extended sources, we performed simu-
lations with two choices of patch size. For the small
patch, we chose the 11 grid boxes of the model’s 96 3
48 Gaussian grid within a radius of 790 km of the sur-
face point (50.18N, 11.38W) in Europe. This patch has

only 0.28% of the global surface area to demonstrate
the divergence expected as sources become pointlike.
The large patch is defined as the land surface of the
Northern Hemisphere, excepting that of Africa and
South America. In each case the model is run into quas-
istationary state, so that mixing ratio increases with the
same average rate everywhere in the troposphere. For
the constant sources this occurs after a time on the order
of the tropospheric mixing time (;1 yr), but for the
ramp-BC case one has to wait for several typical upper
tropospheric G before the BC is propagated throughout
the troposphere, which for the small patch necessitated
runs of several decades. For the ramp-BC case, the mean
transit time since last contact with the patch is given by
G 5 2Dx/g, and for the constant-source case 2DA 5
2Dx/(s0G`). The differential tracer age, 2DA, has a
large seasonal amplitude (not shown) primarily due to
the strong seasonality of A over the source region. We,
therefore, present only annual averages here.

The results for the small patch are shown in Fig. 8.
Note that 2DA is on the order of 15 yr, much larger than
the tropospheric mixing time. The shapes of the contours
of 2DA and G are virtually identical and their amplitudes
agree to within 12%–15%. Given the small patch size,
we attribute the differences between 2DA and G to co-
variance between transport and surface mixing ratio [cf.
(36)]. The fields on the lowest model level show the
character of the divergence of G: steep gradients sur-
round the source region, corresponding to high mixing
ratios in that region. Away from the source region, the
pattern of G is that of the characteristic stationary-state
distribution of mixing ratio. We expect that in the limit
of vanishing patch size, the ‘‘hole,’’ where G drops to
zero at the source (corresponding to the peak in mixing
ratio), becomes more sharply peaked, driving the char-
acteristic values of G to ever higher values, but that the
basic pattern of G away from the source region remains
the same. Because the divergence is localized, it affects
the zonal means to a lesser degree and the differences
between the Southern Hemisphere values of G and those
in the vicinity of the source latitude, represent charac-
teristic tropospheric mixing times (Holzer 1999).

In the limit as V is shrunk to a point, the correspon-
dence (35) between G and 2DA affords new insight into
the nature of the divergence (see appendix Cb). Phys-
ically, the cause of the divergence is clear in the point
limit: a constant source continually deposits mass into
an infinitesimal volume, resulting in infinite mixing ratio
at the source, and hence infinite Dx and DA.

The relatively good agreement between 2DA and G
for the small patch is to be contrasted with the results
for the large patch shown in Fig. 9. In the constant
source case the flow redistributes near-surface mixing
ratio over V, so that there are regions where DA [ A
2 A(V) , 0. The variations of 2DA over V are on the
same order as the characteristic tropospheric values of
2DA. Consequently, 2DA and G have large differences
close to V and, even in the remote Southern Hemisphere
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FIG. 8. Annual averages of the differential tracer age, 2DA, and the mean transit time, G, as simulated by the CCC GCM for the case of
the control surface, V, being a small patch in Europe centered on (50.18N, 11.38W) with 0.28% of the global surface area. The tracer age
was computed as 2DA(r, t) 5 [x(V, t) 2 x(r, t)]/(s0G`) from the stationary-state mixing ratio, x, resulting from a constant source over V.
[The reference value, x(V, t), is the average of x over V.] The transit time, G, was computed as [x(V, t) 2 x(r, t)]/g from the stationary-
state mixing ratio resulting from the ramp BC, x(rs, t) 5 gt for rs on V. The contour interval is 0.25 yr.

troposphere, the magnitudes of 2DA and G differ by a
factor of ;1.5, although the contour shapes are similar.
For this choice of V, both 2DA and G are on the order
of the tropospheric mixing time as expected, since this
time should be on the same order as the time since last
contact with the Northern Hemisphere surface.

b. Transit-time pdf’s to first and since last surface
contact: Interior source, zero-mixing ratio BC

Given a constant source in the interior of the geo-
physical reservoir, with x0BC over some control sur-
face, V, tracer age can be defined at any point r, but
does not everywhere reduce to a source-to-r transit time.
Fluid particles are labeled with clocks at the source and
these clocks are removed at V. A fluid particle is not
assigned a new clock until it recirculates to the source.
Thus, unlabeled fluid always mixes with labeled fluid

and x does not continually grow in time, so that D/x
in Eq. (31) for A never vanishes. In terms of the flux
picture of transit-time distributions, the flux from an
interior pulse is only a transit-time pdf (the pdf to first
contact) when it is the total flux into V. With this con-
figuration it is, therefore, only possible to deduce the
source-to-surface transit-time pdf.

Geophysical realizations of interior sources with ap-
proximate zero-mixing ratio BCs are provided by strato-
spheric emissions that rapidly rain out of the atmosphere
upon reaching the lower troposphere. For example, the
flux of radiocarbon out of the atmosphere in response
to the stratospheric nuclear bomb tests of the 1950s
contains information on the source-to-surface transit-
time pdf. Aerosols from volcanic eruptions and long-
lived emissions from high-flying aircraft may also pro-
vide such information, if their signals can be sufficiently
separated from the background. For the oceans, one



3552 VOLUME 57J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 9. As for Fig. 8 with V consisting of the Northern Hemisphere landmass except that of Africa and South America. (Note that the
grayscale is different from that of Fig. 8.)

could imagine a man-made artificial release of some
suitable tracer, with the atmosphere providing a uniform
BC on the oceanic mixed layer concentration. The nor-
malized net flux into the atmosphere as a function of
time would be equivalent to the release-point-to-ocean-
surface transit-time pdf.

Interior sources can easily be incorporated into nu-
merical models of geophysical flows to extract transit
times of interest. We demonstrate this by using the GISS
CTM to explicitly generate G0 for the source point r 5
(3.98N, 1758W, 34 mb) in the lower tropical stratosphere
with a x0BC over the earth’s surface (lowest model
level). Spatially the source occupies a single CTM grid
box (in the vertical from 46 to 22 mb), and in time the
source is ‘‘on’’ for an entire month. Thus, the response
to this source is a smoothed G0 resulting from a con-
volution with a 1-month square pulse in time. We gen-
erate 12 such smoothed G0, one for the source being
on for each month of the year. The net flux into the
earth’s surface was computed from the tracer mass loss

rate as 2]tM0(t | r9, t9) [cf. (25)], which gives us the
pdf, G9† of transit times to first contact with the surface.
To contrast this against the pdf of transit times since
last contact with the surface, we computed a smoothed
G9 by holding the mixing ratio in the lowest model level
at unity for a 1-month period and thereafter enforcing
x0BC over the lowest model level. This was again done
for 12 such month-long pulses in the surface BC, one
for each month of the year. Monthly means of the re-
sulting pdf’s, G9(rA, t | V, t9) and G9†(V, t | rA, t9), are
shown in Fig. 10 as a function of elapsed time j 5 t
2 t9, averaged over the 12 source times.

The pdf’s G9 and G9† are quite different, as may be
expected. Air travels from the surface to the lower trop-
ical stratosphere via efficient convective mixing in the
tropical troposphere and vertical advection through the
tropical lower stratosphere. The dominant paths from
the surface to r through the tropical tropopause are,
therefore, expected to have relatively short transit times
compared to the paths leading from r to the surface,
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FIG. 10. The pdf of transit times, G9† (solid line), to first contact
with the earth’s surface from the point r 5 (3.98N, 1758W, 34 mb)
in the tropical lower stratosphere, and the pdf of transit times, G9
(dashed line), at r since last contact with the earth surface, as sim-
ulated by the GISS CTM. The pdf G9 was computed as the response
to a 1-month, full-surface pulse BC. Twelve G9 and G9† pdf’s were
computed with source and BC pulses for each month of the year.
Shown is the dependence on elapsed time j 5 t 2 t9 averaged over
the 12 source times. Arrows indicate a mean transit time of 0.74 yr
for G9, and of 2.66 yr for G9†. The inset shows a schematic of zonally
averaged atmospheric transport. The gray shading indicates the tro-
popause. The dashed arrows represent paths that contribute to G9 and
involve rapid tropical convection. The solid lines represent return
paths from r back to the surface via the stratospheric circulation and
stratosphere–troposphere exchange. The return paths contribute to
G9†.

which involve slow stratospheric circulation to the mid-
latitude tropopause where tracer then mixes with the
troposphere again. Correspondingly, the pdf, G9, of
times since last surface contact has a relatively narrow
peak at about 0.25 yr and a mean-transit time of 0.74
yr, while the pdf, G9†, of times to first surface contact
is much broader (indicating a greater multiplicity of
pathways) with a peak at 1.3 yr and a mean-transit time
of 2.7 yr.

c. Nonstationary tracer age: An oceanic example

In many geophysical examples mean transit times
cannot be readily inferred from tracers because the tracer
distribution is in a transient state. In such cases, not all
fluid particles carry a tracer clock, so that observations
in general represent averages over labeled and unlabeled
fluid. Consider anthropogenic tracers, such as the CFCs,
in the ocean. The atmospheric evolution of CFCs acts
as a time-dependent BC at the ocean surface, which then
propagates into the deep ocean. Most ocean water, how-
ever, has not made contact with the surface during the

time CFCs have been present in the atmosphere, ap-
proximately the past 40 yr. Thus, there is ‘‘clean’’ ocean
water available to mix with CFC-labeled water, pre-
venting the interpretation of a CFC lag time as a mean
transit time since last surface contact.

A technique to counter the dilution of tracer-labeled
fluid makes use of the ratio of tracers, such as CFC-11/
CFC-12, both of which have been present in the at-
mosphere for similar times (e.g., Haine and Richards
1995). The idea is to exploit the fact that the ratio of
tracer concentrations in a water parcel is not affected
by the presence of unlabeled water, which dilutes each
tracer by an equal fraction. If the ratio of the effective
sources of the two tracers at the ocean surface increases
linearly in time, a simple interpretation of the tracer
ratio follows. Taking S2(r, t) 5 gtS1(r, t), where g is a
constant rate, and using the definition (20) of mean trac-
er age, it is straightforward to derive that the tracer ratio,
R [ x2/x1, is related to the tracer age, A1, of x1 through

R 5 g(t 2 A1), (37)

assuming no internal tracer sources and that both surface
sources ‘‘switched on’’ at t 5 0. Thus, R contains in-
formation on the mean transit time of x1-labeled fluid
elements, but R will not be related to the flow’s mean
transit time since last surface contact until a statistical
stationary response to the sources is achieved and the
diffusive coupling term, D, vanishes in Eq. (31) for A1.
This may take millennia in the deep ocean. How the
stationary-sate mean tracer age, A1, is related to the
moments of the transit-time pdf depends on the structure
of S1. (The case of constant S1 is discussed in section
5a.)

6. Summary and conclusions

To make the best use of the transport information
provided by geophysical tracer observations and to in-
terpret transport properties of numerical models, one
needs a conceptual and analytical framework allowing
clear physical interpretation. In this paper we have pre-
sented such a framework by defining the tracer-age dis-
tribution and exploring its relationship with transit-time
pdf’s using the passive-tracer Green function. The pdf
of transit times G9, since the fluid elements comprising
a fluid parcel had last contact with a specified surface
V (the age spectrum of HP94) was shown to be the
V-integrated propagator, G9, of arbitrary mixing-ratio
BCs on V. By expressing G9 in terms of the appropriate
Green function, we found that G9(r, t | V, t9) is the time
series of flux into V resulting from a unit-mass injection
at (r, t) into the time-reversed flow.

The Green function of the tracer transport equation
allows one to decompose tracer mixing ratio into con-
tributions injected into the flow at each time interval in
the past. Tracer particles can thus be thought of as clocks
that are started when they are injected into the flow.
This simple idea led us to a natural and literal definition
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of a tracer-age distribution, Z, and its mean, the mean
tracer age, A, which are generally distinct from a transit-
time pdf and a mean transit time for the flow. The tracer-
age distribution, Z, bins the mass of clocks according
to the time they read. We used Z to explicitly construct
a pdf of transit times from some point r to a surface,
V. With a constant source at r and a carefully chosen
volume (surrounding V), for which mass fractions of a
given clock time interval are computed, Z can be re-
duced to G9. This construction gives a precise physical
interpretation of G9(r, t | V, t9) as the pdf of times since
fluid at r had last contact with V and also establishes
its adjoint, G9†(V, t9 | r, t), as the pdf of times for fluid
at r to have first contact with V. Except for purely
diffusive flow, G9 and G9† are generally not equivalent.

Using a the GISS CTM, we gave explicit examples
of the pdf G9 of transit times since air at a point r in
the lower tropical stratosphere had last surface contact
and the pdf G9† for air at r to have first surface contact.
The two pdf’s are markedly different. Transport to r
from the surface is dominated by rapid tropical con-
vection to the tropopause, followed by direct upward
advection in the lower tropical stratosphere, while sub-
sequent transport back to the troposphere involves the
slower stratospheric circulation to reach the midlatitude
tropopause. In this example G9† was obtained as the flux
of tracer into the earth’s surface resulting from a unit-
mass injection at (r, t9) with zero-mixing-ratio BCs over
the earth’s surface. If G9† were of interest for all r in
the stratosphere (e.g., to obtain stratospheric residence
times for tracer emitted at different locations), it would
be impractical to simulate unit-mass injections from ev-
ery point. However, because of the equivalence of G9†

and a boundary propagator in the time-reversed flow,
G9† could be computed at every point as a response to
a pulse BC for the adjoint numerical model.

It is natural to consider point-to-point transit times.
However, while the point-to-point transit-time pdf is
well defined, its moments, including the mean transit
time, are infinite in two and three dimensions. For a
finite-sized reservoir such as the atmosphere, this infi-
nite mean transit time does not imply that a unit mass
released at r9 will produce a finite mixing ratio at r only
after an infinite time. The majority of tracer particles
arrive at r after a finite time, but there are a sufficient
number of particles taking arbitrarily long to find their
point target of V to make the mean time for particles
to have visited r via all possible paths infinite. This
highlights the fact that any transit-time pdf not only
depends on the flow but also on the geometry of the
control surface, V, and the dimensionality of the prob-
lem. We note, however, that when V is a large, extended
region, the transit times since last, and to first, V contact
are not very sensitive to the geometry of V. For ex-
ample, whether V is the entire earth’s surface or just
the Northern Hemisphere has only a minor impact on
the mean transit time since last contact for stratospheric
air parcels. Even though the magnitude of mean transit

times sharply increases when V is shrunk to a small
surface patch, we find that the gradients of the mean
transit time are only affected in the vicinity of V. For
example, stratospheric transit-time differences with re-
spect to the tropical tropopause are insensitive to the
size of a surface V.

To illustrate how transit-time information can be ex-
tracted from geophysical tracers, we compared the equa-
tions of motion for mean tracer age and mean transit
time. In source-free regions, the equation for mean trac-
er age has an extra diffusive coupling, D, between mix-
ing ratio and mean tracer age. This coupling vanishes
only when tracer is sampling all possible paths from the
source to the point of interest. For a steady source and
zero-flux BCs, the stationary-state mixing ratio refer-
enced to the source region is directly proportional to
mean tracer age similarly referenced to the source re-
gion. However, this differential mean tracer age is only
approximately equal to the mean time since last contact
with the source region. The approximation holds only
for time averages long enough so that tracer from the
constant source is increasing at an approximately steady
rate at the source, to the degree that tracer is uniform
over the source region, and to the degree that seasonal
covariances between transport and mixing ratio at the
source can be neglected. Using the CCC GCM, we dem-
onstrated that this approximation holds to within ; 10%
when V is a small surface patch, but when V consists
of the Northern Hemisphere landmass, the two measures
of mean transit time differ by a factor of ;2 in the
troposphere. The large discrepancy for extended source
regions highlights the basic difficulty with extended
sources that there is no unique reference value for de-
fining easily interpretable lag times.

The distribution of anthropogenic tracers in the ocean
is in a transient state, which prevents ‘‘snapshots’’ of
tracer lag times from being interpreted as mean transit
times. Consequently, ratios of tracers, such as CFC-11/
CFC-12, are often resorted to for the extraction of trans-
port timescales. Using the framework developed here,
we have shown that for the special case, where the ratio
of the sources increases linearly in time, the ratio of
mixing ratios at a point r in the ocean has a concrete
interpretation in terms of the mean tracer age since last
surface contact. This tracer age has no simple relation
to the moments of the transit-time pdf, because not all
paths available to water from the surface to r have been
sampled by tracer. Nonetheless, mean tracer age may
be useful to help interpret constraints on ocean models.

We have given precise definitions and interpretations
of transit-time and tracer-age distributions, and hope that
the framework developed will be helpful in future in-
vestigations of geophysical transport. We have pre-
sented a few examples, but many issues remain to be
explored. These include how best to deal with spatially
extended sources, the detailed dependence of mean tran-
sit times on the size of the source region, the physics
that sets the length scale over which a point source
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sustains high gradients in the presence of turbulent flow,
and generally an investigation of how different paths
corresponding to different dynamical mechanisms con-
tribute to the transit-time pdf. In addition to being useful
in the context of the atmosphere, the framework of this
paper may also help to interpret oceanic transport time-
scales inferred from tracers and tracer ratios having
sources with various time variations. For example, nat-
ural radiocarbon, which has known atmospheric abun-
dance due to cosmogenic generation and decays in the
ocean with its isotopic half-life of 5568 yr, has been
used to establish oceanic timescales (e.g., Broeker et al.
1988) that likely approximate mean transit times closely.

Acknowledgments. We thank Greg Flato and Ron
Miller for enjoyable discussions on subtle aspects of
diffusive transport. Tim Hall acknowledges support
from the NASA Atmospheric Effects of Aviation Pro-
gram.

APPENDIX A

General Solution and Advective-Diffusive Case

To derive the general solution of (1) in terms of G,
we also need the equation of motion for the adjoint
Green function, G†(r, t | r0, t0), which takes tracer from
(r0, t0) to (r, t) in the time-reversed flow. The equation
for G† is obtained by replacing T with its adjoint T †

and reversing time, t → 2t [see, e.g., Morse and Fesh-
bach (1953), hereafter MF53)], which gives

† †(2] 1 T )G (r, t | r , t )t 0 0

1
35 d (r 2 r )d(t 2 t ). (A1)0 0r(r, t)

Following MF53, the general solution of (1) is now
derived as follows. Multiply (1) with r(r, t)
G†(r, t | r9, t9) and (A1) by r(r, t)x(r, t) and subtract the
two resulting equations to obtain

†] [r(r, t)x(r, t)G (r, t | r , t )]t 0 0

†2 = · C[G (r, t | r , t), x(r, t)]0

†5 r(r, t)G (r, t | r , t )S(r, t)0 0

32 x(r, t)d (r 2 r )d(t 2 t ), (A2)0 0

where we have defined
† †= · C 5 r(r, t)[x(r, t)T G (r, t | r , t )0 0

†2 G (r, t | r , t )T x(r, t)]0 0

†1 x(r, t)G (r, t | r , t )] r(r, t), (A3)0 0 t

and =, T, and T † all act on r. Equation (A3) may be
considered a generalization of Green’s theorem. Now
integrate (A2) with respect to r over the entire domain
and with respect to t from t 5 0 to t 5 , where is1 1t t0 0

just slightly larger than t0. Under this dt d3r integral,

the last term of (A2) becomes x(r0, t0), which is then
equal to

3 †x(r , t ) 5 d r r(r, 0)x(r, 0)G (r, 0 | r , t )0 0 0 0E
1t0

†1 dt r (r, t)G (r, t | r , t )S(r, t)0 0E
0

1t0

2 †1 dt d r n̂ · C[G (r, t | r , t ), x(r, t)],0 0E E
0 ]

(A4)

where we used the (adjoint) causality relation that
5 0, and replaced the volume integral† 1G (r, t | r , t )0 0 0

of = · C with the surface integral of n̂ · C over the
boundary of the tracer domain (denoted by ]). Now
relabel variables (r0, t0) → (r, t) and (r, t) → (r9, t9)
and express G† in terms of G by using the reciprocity
relation G†(r1, t1 | r2, t2) 5 G(r2, t2 | r1, t1) to obtain (4)
with C defined through (A3). (A reciprocity relation of
this form generally holds for Green functions—for a
derivation see, e.g., MF53.)

For the advective-diffusive transport operator (3) the
adjoint is obtained by replacing v with 2v, while the
diffusive operator remains unchanged. Substituting (3)
and its adjoint into (A3), we obtain

= · C(c, f ) 5 = · [kr(c=f 2 f=c) 2 rvcf ],
(A5)

where we made use of the fluid-mass continuity equa-
tion, ] tr 1 =(vr) 5 0. Using the form (A5) for = · C
in (A3) gives the general advection-diffusion boundary
term (5).

APPENDIX B

Analytical Solutions for a Simple 1D Model

It is useful to demonstrate the relationships derived
in section 2 in terms of explicit analytical solutions for
a simple 1D diffusion model. Because of its simplicity,
appropriateness to the atmosphere, and to make direct
contact with the work of Hall and Plumb (1994, herafter
HP94) we consider the model

]tx 2 r21k]zr]zx 5 S, (B1)

where the height z $ 0; the air density, r, has the form
r(z) 5 r0 exp(2z/H); and the diffusivity k, scale height
H, and density scale r0 are constants. We nondimen-
sionalize (B1) via z/H → z, t(k/H 2) → t, r/r0 → r.
Since the transport operator here is constant in time, G,
G0, and G9 are simple functions that can depend on time
only through j 5 t 2 t9. The Green functions of (B1)
are defined by replacing the source S with d(j)d3(r 2
r9)/r(r9) which in 1D reduces to d(j)d(z 2 z9)/r(z9).
Using standard methods, we calculate G as
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Q(j) z 1 z9 2 j
G(z, z9, j) 5 erfc1 22 Ï4j

2Q(j) (z 1 z9 2 j)
1 exp 25 [ ]4jÏ4pj

2(z 2 z9 2 j)
z91 e exp 2 ,6[ ]4j

(B2)

and G0, with control ‘‘surface’’ at z 5 0, as

2Q(j) (z 2 z9 2 j)
z9G (z, z9, j) 5 e exp 20 5 [ ]4jÏ4pj

2(z 1 z9 2 j)
2 exp 2 . (B3)6[ ]4j

(Both G and G0 are nondimensionalized by multipli-
cation with Hr0.) Note that the long-time limits G` 5
1 and limj→` G0 5 0.

The general relationship (13) between the boundary
propagator G9 and G0 becomes

G9(z, j) 5 ]z9G0(z, z9, j) | z950. (B4)

From (B3) and (B4) G9, which in 1D is also the transit
time pdf G9, follows as

G9(z, j) 5 G9(z, j)

2z (z 2 j)
5 Q(j) exp 2 , (B5)[ ]4jjÏ4pj

which is the nondimensional form of G9 as given by
HP94 [G9 is nondimensionalized through (H 2/k)G9 →
G9]. We may rewrite (B4) as G9(z, j) 5 limz9→0 G0(z,
z9, j)/z9, which is the 1D-model version of (15).

The probability, M 5 dz e2zG(z, z9, j) 5 1, while`#0

M0 5 dz e2zG0(z, z9, j) is given by`#0

†M (z9, j) 5 M (z9, 2j)0 0

Q(j) j 2 z9 j 1 z9
z95 erfc 2 e erfc ,1 2 1 2[ ]2 Ï4j Ï4j

(B6)

from which (14), G9(z, j) 5 2]j , is readilyM†(z, 2j)0

verified. The population particle-age pdf, P(j), is given by

2j /4 Ïje 1
P(j) 5 M9(j)/M 5 Q(j) 2 erfc , (B7)A 1 2[ ]2 2Ïpj

where MA 5 1, here. Note the singularity P(j) →
1/ pj as j → 01, but that dj P(j) 5 1 and ^j& [`#Ï 0

dj jP(j) 5 1. Thus, the most probable ‘‘particle age’’`#0

of a surface-marked particle is j 5 0, while its expected
particle age is ^j& 5 1.

APPENDIX C

Transit-Time Pdf and Mean Transit Times in
Two and Three Dimensions

a. Unbounded domain with radial symmetry in
three dimensions

Consider isotropic diffusion without advection in an
infinite, unbounded domain of constant density. We im-
pose zero-mixing-ratio BCs over a small spherical bub-
ble of radius r 5 a centered at the origin of a spherical
coordinate system. For simplicity we assume spherical
symmetry, so that G0 is the response to a unit-mass
injection distributed over a shell of radius r 5 r9. The
nondimensionalized diffusion equation for G0 can then
be written as

2] 1
] 2 [rG (r, r9, t 2 t9)] 5 d(r 2 r9)d(t 2 t9),t 021 2]r 4pr

(C1)

with the BC G0(a, r9, t 2 t9) 5 0, which has solution

2Q(j) (r 2 r9)
G (r, r9, j) 5 exp 20 5 [ ]4j4prr9Ï4pj

2(r 1 r9 2 2a)
2 exp 2 .6[ ]4j

(C2)

The bubble-surface-integrated boundary propagator fol-
lows from (13) as

2G9(r, j) 5 4pa ] G (r, r9, j)|r9 0 r95a

2a (r 2 a) (r 2 a)
5 Q(j) exp 2 . (C3)[ ]r 4jjÏ4pj

Equation (C3) also follows from (14) as G9(r, j) 5 2]j

dr9 4pr92G0(r, r9, j). This quantity has the interpre-`#a

tation of the flux from a unit injection over a shell at r
into the bubble at r 5 a. The total amount of mass
entering the bubble is

` a
dj G9(r, j) 5 , (C4)E r0

which is never unity here because the unboundedness
of the domain allows mass to escape to r 5 `. Since
the time-normalized flux into the bubble still has the
natural interpretation of an arrival-time pdf (for pure
diffusion, the adjoint problem with time running back-
ward is the same as the direct problem with time running
forward), the appropriate transit-time pdf for this prob-
lem is not G9 (r, t) but (r /a) G9 (r, t). The limit
lima→0 (r/a)G9(r, t) is well defined, even though the frac-
tion of tracer mass reaching the infinitesimal bubble
goes to zero. Note, however, that independently of the
value of a, the mean transit time, G [ dj jG9(r, j),`#0

is infinite in this setting, due to the fact that particles
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can take arbitrarily long paths away from the boundary
to give G9 divergent tails.

b. Mean transit times for a bounded domain with
radial symmetry in two and three dimensions

Here we consider diffusion with constant diffusivity,
k, and constant density in a domain of radial symmetry
bounded by inner and outer radii, so that a # r # b.
Over the surface, r 5 a, a d-function BC is applied on
the mixing ratio to obtain G9, and at r 5 b a zero-flux
BC is enforced. In both two and three dimensions (2D
and 3D), it is straightforward to obtain the Laplace
transform of G9, but we did not obtain a closed-form
expression for the inverse transform. Moments (in time)
of G9(r, t) are easily obtained from its Laplace transform,
G̃9(r, s), since for integer n, we have dj jnG9(r, j) 5`#0

(21)n lims→0 ]nG̃9(r, s)/]sn. For the bounded domain the
normalization dj G9(r, j) 5 1 is confirmed and the`#0

mean transit time, G, is given in 3D by

2 2 2b b b a 2 r
G 5 2 1 , (C5)3D 21 2[ ]3k a r 2b

and in 2D by

2 2 2b r a 2 r
G 5 log 1 . (C6)2D 21 2[ ]2k a 2b

Note that for finite b, G is finite for finite a, but diverges
like 1/a in 3D and like log(a) in 2D. Similarly, the nth
moments dj jnG9(r, j) and dj (j 2 G)nG9(r, j) di-` `# #0 0

verge like 1/an in 3D and like [log(a)]n in 2D.
Further insight into the nature of the divergence of

G as a → 0 is afforded by the correspondence (35)
discussed in section 5 between the differential tracer
age resulting from a constant source, DA } x1, and G.
Consider, for simplicity, the case of advection in the
presence of isotropic diffusion (k), when the time-av-
eraged equation for x1 5 x 2 x0 may be written as

1 1 2 1T (x ) 5 = · (vx ) 2 k¹ x 5 S 2 ] x , (C7)t 0

where ] tx0 is the spatially uniform growth rate of the
background mixing ratio, and the overbar denotes time
average. On sufficiently small spatial scales the diffu-
sion term (highest-order derivative) dominates over ad-
vection, so that in the immediate vicinity of a constant
point source, S 5 s0d(r 2 r0), mixing ratio is deter-
mined by ¹2x1 } 2d(r 2 r0). This means that as the
patch radius, a → 0, x1, and hence DA, diverge in three
dimensions like 1/a, and in two dimensions like log(a).
These are precisely the limiting dependencies of G cal-
culated above for the specific purely diffusive models.
(An example of a more general two-dimensional case
is a zonally averaged model with a point source, cor-
responding to a line source along a circle of constant
latitude.)
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