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Turbulent convection: is 2D a good proxy of 3D?
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Abstract. Several authors have recently carried out 2D simtrophysical side, Schlattl & Weiss (1999), generalizing work of
lations of turbulent convection for both solar and massive staBlocker et al. (1998), used the 2D prescription for the extent of
Fitting the 2D results with the MLT, they obtain thai;,~ > 1 overshooting below the solar convective zone, but were unable
specifically,1.4 < ap;r < 1.8. The authors further suggesto simultaneously reproduce the solar sound speed profile pro-
that this methodology could be used to calibrate the MLT usedvided by helio-seismology as well as to account for the observed
stellar evolutionary codes. We suggest the opposite viewpoibtdepletion.
the 2D results show that MLT is internally inconsistent because From the numerical simulation point of view, Kupka &
the resultinga > 1 violates the MLT basic assumptionMuthsam (2000) have recently studied the case of an optically
that apr < 1. When the 2D results are fitted with the CMthick fluid with a prescribed radiative conductivity. The 2D sim-
model,ap;r < 1, in accord with the basic tenet of the modelulations systematically overestimate the extent of overshooting

Onthe other hand, since both MLT and CM are local modelgs a’ vis the 3D result as well as the kinetic and potential en-
they should be replaced by the next generation of non-local, tiemgy, especially near the boundaries of the convective regions
dependent turbulence models which we discuss in some detild in the overshooting region.

Thus, if 2D turbulence is not the correct physical template

Key words: convection — stars: interiors of 3D, why use it at all? The reason is practicality. We recall that
in a 3D case the number of relevant dynamical scales is quite
large: if L is the largest scale arfds where viscous dissipation
begins, one has the well known relation:

1. 2D and 3D turbulence

It is known that turbulence is a 3D, not a 2D phenomenon. T T~ REV 1)
latter is an interesting conceptual model that has challenged our

understanding of the mechanism of non-linear interactions titthe sun, for example, where conservativélly ~ 10'2, one
physically, 3D turbulence is fundamentally different from thebtains

2D counterpart. In 3D turbulence, energy is conserved while in 9

2D both energy and enstrophy are conserved. Inthe 3D case, gn- 10°. (2)

ergy in the largest scales dribbles down to increasingly smaller .. o . - .
) u e first dissipation scale is a billion times smaller than the
scales under the vortex stretching phenomenon. The cascpde

N o rgest scale. The number N of grid points that a numerical
process” does not stop until it reaches scales where molecUlap. . S
. . ; e Simulation must resolve is given by the cube of (1) and thus

viscosity halts any further cascading, rather, it dissipates energy

into heat. In the 2D case, the opposite occurs: energy climiis~ Re%/* ~ 10?7, (3)

from the smallest to the largest scales piling up most of the tur- )

bulent kinetic energy in just a few large scales (the so-called afytich is some 18 orders of magnitude larger than

Robin Hood effect, from the poor to the rich, while enstroph}(] ~10° (4)

dribbles down toward smaller scales). In the 2D case, the bulk ’

of energy resides in a few very large scales, quite a differamhich is the best computers can do today. Translated in more

situation from 3D. physical terms, this means that large eddy simulations (LES) re-
On the basis of these general arguments, one infers thaoéve numerically not even 1% of all the scales, leaving the bulk

2D model would overestimate the extent of overshooting: of them to be accounted for by a subgrid scale model (SGS),

fact, the piling of most of the energy into the largest scales,misnomer borrowed from engineering turbulence where the

which govern a diffusive process like overshooting, also ovanuch lower Re allows to numerically resolve eddies well inside

estimates the extent to which they travel. Recent work on twle Kolmogorov region, something not easily achieved in stellar

different fronts lends support to these general ideas. On the lBES. Thus, LES must model more than 90% of the unresolved
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scales and no present SGS model is physically complete. BoDifferent interpretation of the 2D results
example, all present models assume that the SGS are purely dis- . .
sipative while it can be shown quite generally (Canuto 2000) th\% tt?gvxvg:flf roﬁu[l:rg\?vzprziagf rz f ;gz;e) izdregfu I,Z\Ss'igzeé%lg(\)/??;e
they are dissipative, advective (stirring) and diffusive (mixing? 9 :

. - . . at they show for the first time that in order to reproduce the
Particularly deficient are the so-called hyperviscosity mod f) simulation data with the MLT. one has to chos
which have been shown to have a “skill index” of barely 109 ' LT

meaning that once the LES results are compared with an e I‘aat violates the premises of the MLT itself. We view this as

resolving model, the LES captures 10% of the real values (Giﬁlﬁ) ther_ proof that the MLT IS mternally |nconS|s_tent and thu;
not a viable model while the previous authors interpret their

& Davis 1999). Thus, both the inability of 3D LES to catch < 1 as a way to calibrate the MLT for stellar codes
most of the scales and the difficulties associated with the SG& L7 y i
. . INcea s > 1 had already been used before, one could be
have made the 2D case very attractive since one can resqlve : . o
- . empted to interpret the numerical 2D results as an a posteriori
many more scales thus alleviating considerably the burden. Ostification BUL in oUr obinion. two wronas do not make one
the SGS model to capture the unresolved scales, not to men{rtlf)ﬂt Acce .tin ' S pl is ta,ntamount ?O sweeping under
the concomitant saving of computer time. gnt. pungaarLr pIng

The bad news is that 2D is at best a doubtful substitute fthre rug an |ncon_5|sten<_:y under the claim that the model "fits
the data. Inconsistencies should be resolved, not overlooked

a3D case. or much less accepted. By contrast, the CM model faces the
3D problem quite directly and accounts for all the eddies. It is
2. The 2D solution internally consistent and does not violate (5).

Ludwig etal. (1999; LFS) and Asida (2000) have carried out 2D

simulations of turbulent convection and calibrated the mixing Life after local models
length for the sun and red giant envelopes. As one observes frgm .
Fig.5 of LFS, the values afi,; . derived from the 2D code Sifice a value obzr > 1 had already been arrived at by

are all larger than unity, the maximum being around 1.8. Asid: pirically fitting the MLT to stellar data, one could have con-
(2000) also finds thatr > 1, specifically, 1.4 for a red giantC uded Ionlg $?]o that such anviolates (tjhebbasm ten_ft Of MLT, ‘
of 1.2 solar masses. These results imply that the conditionaég“T < 1. 1he case was never made because It was repeat-

validity of the Boussinesq approximation upon which the ML ly alleged that such an gmplrlcai"‘ covered ulncertalntles .
model is based (Spiegel & Veronis 1960) other than those of convection. The 2D calculations of Ludwig

et al. (1999) and of Asida (2000) make that excuse no longer
¢ tenable. They provide for the first time a one-to-one correspon-
o= Hp <1 () dence between models of convection and the 2D results, other
astrophysical uncertainties being subtracted out. It is also im-
is violated. Stated differently, in order to reproduce the 2Bortant to stress that both the sun and red giants yield the same
data, the MLT must violate the basic condition for its eXiSresuIt,aMLT > 1. Thus, the MLT fits the data only with an
tence, Eq.(5). It may be of interest to recall that in the cageat is internally inconsistent while the CM model is internally
of the very convective earth’s boundary layer whéee 1km, consistent.
Hp = 10km, condition (5) is satisfied, thus justifying the use  The next step is to abandon all local models in favor of
of the Boussinesq approximation. non-local models which avoid altogether the introduction of
Next, consider the CM model. It was constructed with tharameters liker. What are the available choices? A 3D simu-
specific purpose of restoring at the very least some semblapggn is simply too time consuming to be routinely used in stel-
with the real 3D convection. Because of the arguments pygr structure calculations, notwithstanding the still unresolved
sented earlier, this meant that one had to account for the lagggblem of how well the subgrid scales have been represented
family of eddies that span the range given by (2). The specififys far (Canuto 2000); a 2D simulation is not a reliable template
turbulence model employed is immaterial since the same resyfl 3p case, as the previous theoretical, numerical and astro-
was Obtained Using three diﬁ:erent turbulence m0de|S. Since H’g/sica| arguments have indicated_ A key feature Of any mode|
CM is still a largely local model while by definition convec-that attempts to describe turbulent convection (astrophysical or
tion is non-local, a further attempt was made to introduce soBgherwise) is non-locality. Since positive buoyancy overpowers
non-locality via the relation gravity, large eddies can and do exist and are diffusive and ad-
vective, in contrast to small eddies that are mostly dissipative.
As a counter example, we can cite the case of shear driven tur-

whichis non-local in the sense that what happens at a given z Mence in the absence of (_:or_1vectio_n: on average, the edqies_’ are
star depends on what is between that point and the “wall” Wha@aller and thus_non-locallty isless |mpor_tan_t (Kaimal &_Flnnl-
convection dies. Thus, far away points caninfluence local poind" 1994). A typical example 9f non-locality is the equation for
The left-over non-locality is parameterized with the second tef¢ turbulent kinetic energy K:

in (6) which should satisfy (5). This isindeed the case, as Figfr g

4 F =pP— 7
of LFS shows. 5 T 5y ke €, (7)

{=2z+acurHp, (6)
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where which is precisely the mechanism studied by all turbulent mod-
1 1— els formany decades. Turbulence thus provides well tested mod-
Fre = §q2w, K= §q2~ (8) els to quantify the heat transfer by the updrafts.

A new non-local, time dependent model which underwent
Here, the second term on the left is the non-locality representgdensive testing on several types of turbulent flows (Canuto &
by the divergence of the flux of turbulent kinetic energy,Fa  pubovikov 1998; CD98) has recently also been used to study
third-order moment (TOM). Thiecal limit corresponds to tak- astrophysical convection (Kupka 1999a,b). The CD98 model
ing P = ¢, that is, production (P) equals dissipatiejt furbu- \yas shown to reproduce well the major features of convection
lence is dissipated where itis produc@th MLT and the CM (g g_, fluxes and filling factors) in a fraction of the time required
model are based on tfe = « assumption. The non-local term py the numerical simulations thus opening the possibility of a
which may act as a source and/or as a sink of turbulent kinetigok-up with stellar codes. A full non-local, as well as com-
energy, represents a new dynamical feature. Once a non-lggalssible, model also exists (Canuto 1997) and it will next be
modelis constructed, itis expected to reproduce key featureggfyed and compared with numerical simulations results. More

turbulent convection. Specifically: _ _ recently, Kupka & Muthsam (2000) have shown that depending
1) the up/downdratfts (first discussed in geophysical not &s the specific problem studied, the results of the 2D simula-
trophysical flows, Haugen 1973), tions are worse or comparable to that of the CD98 model with

2) Petrovay (1990) first pointed out that even quite gefhe added advantage that the time required is a small fraction of
eral formulations of convection can reproduce the most gengiigd 3p/2D calculations.

topological features of the up/down drafts,

3) geophysical studies that predate astrophysical studeknowledgementsThe author thanks Dr. H.G.Ludwig and
have provided general rules to study the filling factors of tHer.F.Kupka for stimulating discussions of 2D vs.3D simulations.
up/down drafts. The relevance of these studies is to exhibit the
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