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Abstract. Several authors have recently carried out 2D simu-
lations of turbulent convection for both solar and massive stars.
Fitting the 2D results with the MLT, they obtain thatαMLT > 1
specifically,1.4 ≤ αMLT ≤ 1.8. The authors further suggest
that this methodology could be used to calibrate the MLT used in
stellar evolutionary codes. We suggest the opposite viewpoint:
the 2D results show that MLT is internally inconsistent because
the resultingαMLT > 1 violates the MLT basic assumption
that αMLT < 1. When the 2D results are fitted with the CM
model,αMLT < 1, in accord with the basic tenet of the model.

On the other hand, since both MLT and CM are local models,
they should be replaced by the next generation of non-local, time
dependent turbulence models which we discuss in some detail.
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1. 2D and 3D turbulence

It is known that turbulence is a 3D, not a 2D phenomenon. The
latter is an interesting conceptual model that has challenged our
understanding of the mechanism of non-linear interactions but
physically, 3D turbulence is fundamentally different from the
2D counterpart. In 3D turbulence, energy is conserved while in
2D both energy and enstrophy are conserved. In the 3D case, en-
ergy in the largest scales dribbles down to increasingly smaller
scales under the vortex stretching phenomenon. The “cascade
process” does not stop until it reaches scales where molecular
viscosity halts any further cascading, rather, it dissipates energy
into heat. In the 2D case, the opposite occurs: energy climbs
from the smallest to the largest scales piling up most of the tur-
bulent kinetic energy in just a few large scales (the so-called anti
Robin Hood effect, from the poor to the rich, while enstrophy
dribbles down toward smaller scales). In the 2D case, the bulk
of energy resides in a few very large scales, quite a different
situation from 3D.

On the basis of these general arguments, one infers that a
2D model would overestimate the extent of overshooting: in
fact, the piling of most of the energy into the largest scales,
which govern a diffusive process like overshooting, also over-
estimates the extent to which they travel. Recent work on two
different fronts lends support to these general ideas. On the as-

trophysical side, Schlattl & Weiss (1999), generalizing work of
Blocker et al. (1998), used the 2D prescription for the extent of
overshooting below the solar convective zone, but were unable
to simultaneously reproduce the solar sound speed profile pro-
vided by helio-seismology as well as to account for the observed
Li depletion.

From the numerical simulation point of view, Kupka &
Muthsam (2000) have recently studied the case of an optically
thick fluid with a prescribed radiative conductivity. The 2D sim-
ulations systematically overestimate the extent of overshooting
vis a’ vis the 3D result as well as the kinetic and potential en-
ergy, especially near the boundaries of the convective regions
and in the overshooting region.

Thus, if 2D turbulence is not the correct physical template
of 3D, why use it at all? The reason is practicality. We recall that
in a 3D case the number of relevant dynamical scales is quite
large: if L is the largest scale and` is where viscous dissipation
begins, one has the well known relation:

L

`
∼ Re3/4. (1)

In the sun, for example, where conservativelyRe ∼ 1012, one
obtains

L

`
∼ 109. (2)

The first dissipation scale is a billion times smaller than the
largest scale. The number N of grid points that a numerical
simulation must resolve is given by the cube of (1) and thus

N ∼ Re9/4 ∼ 1027, (3)

which is some 18 orders of magnitude larger than

N ∼ 109, (4)

which is the best computers can do today. Translated in more
physical terms, this means that large eddy simulations (LES) re-
solve numerically not even 1% of all the scales, leaving the bulk
of them to be accounted for by a subgrid scale model (SGS),
a misnomer borrowed from engineering turbulence where the
much lower Re allows to numerically resolve eddies well inside
the Kolmogorov region, something not easily achieved in stellar
LES. Thus, LES must model more than 90% of the unresolved
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scales and no present SGS model is physically complete. For
example, all present models assume that the SGS are purely dis-
sipative while it can be shown quite generally (Canuto 2000) that
they are dissipative, advective (stirring) and diffusive (mixing).
Particularly deficient are the so-called hyperviscosity models
which have been shown to have a “skill index” of barely 10%,
meaning that once the LES results are compared with an eddy
resolving model, the LES captures 10% of the real values (Gille
& Davis 1999). Thus, both the inability of 3D LES to catch
most of the scales and the difficulties associated with the SGS
have made the 2D case very attractive since one can resolve
many more scales thus alleviating considerably the burden of
the SGS model to capture the unresolved scales, not to mention
the concomitant saving of computer time.

The bad news is that 2D is at best a doubtful substitute for
a 3D case.

2. The 2D solution

Ludwig et al. (1999; LFS) and Asida (2000) have carried out 2D
simulations of turbulent convection and calibrated the mixing
length for the sun and red giant envelopes. As one observes from
Fig. 5 of LFS, the values ofαMLT derived from the 2D code
are all larger than unity, the maximum being around 1.8. Asida
(2000) also finds thatα > 1, specifically, 1.4 for a red giant
of 1.2 solar masses. These results imply that the condition of
validity of the Boussinesq approximation upon which the MLT
model is based (Spiegel & Veronis 1960)

α ≡ `

HP
< 1 (5)

is violated. Stated differently, in order to reproduce the 2D
data, the MLT must violate the basic condition for its exis-
tence, Eq. (5). It may be of interest to recall that in the case
of the very convective earth’s boundary layer where` = 1km,
HP = 10km, condition (5) is satisfied, thus justifying the use
of the Boussinesq approximation.

Next, consider the CM model. It was constructed with the
specific purpose of restoring at the very least some semblance
with the real 3D convection. Because of the arguments pre-
sented earlier, this meant that one had to account for the large
family of eddies that span the range given by (2). The specific
turbulence model employed is immaterial since the same result
was obtained using three different turbulence models. Since the
CM is still a largely local model while by definition convec-
tion is non-local, a further attempt was made to introduce some
non-locality via the relation

` = z + αCMT HP , (6)

which is non-local in the sense that what happens at a given z in a
star depends on what is between that point and the “wall” where
convection dies. Thus, far away points can influence local points.
The left-over non-locality is parameterized with the second term
in (6) which should satisfy (5). This is indeed the case, as Fig. 6
of LFS shows.

3. Different interpretation of the 2D results

We now offer our interpretation of the 2D results. The relevance
of the work of Ludwig et al. (1999) and of Asida (2000) is
that they show for the first time that in order to reproduce the
2D simulation data with the MLT, one has to chose anαMLT

that violates the premises of the MLT itself. We view this as
another proof that the MLT is internally inconsistent and thus
not a viable model while the previous authors interpret their
αMLT > 1 as a way to calibrate the MLT for stellar codes.
SinceαMLT > 1 had already been used before, one could be
tempted to interpret the numerical 2D results as an a posteriori
justification. But, in our opinion, two wrongs do not make one
right. AcceptingαMLT > 1 is tantamount to sweeping under
the rug an inconsistency under the claim that the model “fits”
the data. Inconsistencies should be resolved, not overlooked
or much less accepted. By contrast, the CM model faces the
3D problem quite directly and accounts for all the eddies. It is
internally consistent and does not violate (5).

4. Life after local models

Since a value ofαMLT > 1 had already been arrived at by
empirically fitting the MLT to stellar data, one could have con-
cluded long ago that such anα violates the basic tenet of MLT,
αMLT < 1. The case was never made because it was repeat-
edly alleged that such an empirical “α” covered uncertainties
other than those of convection. The 2D calculations of Ludwig
et al. (1999) and of Asida (2000) make that excuse no longer
tenable. They provide for the first time a one-to-one correspon-
dence between models of convection and the 2D results, other
astrophysical uncertainties being subtracted out. It is also im-
portant to stress that both the sun and red giants yield the same
result,αMLT > 1. Thus, the MLT fits the data only with anα
that is internally inconsistent while the CM model is internally
consistent.

The next step is to abandon all local models in favor of
non-local models which avoid altogether the introduction of
parameters likeα. What are the available choices? A 3D simu-
lation is simply too time consuming to be routinely used in stel-
lar structure calculations, notwithstanding the still unresolved
problem of how well the subgrid scales have been represented
thus far (Canuto 2000); a 2D simulation is not a reliable template
of a 3D case, as the previous theoretical, numerical and astro-
physical arguments have indicated. A key feature of any model
that attempts to describe turbulent convection (astrophysical or
otherwise) is non-locality. Since positive buoyancy overpowers
gravity, large eddies can and do exist and are diffusive and ad-
vective, in contrast to small eddies that are mostly dissipative.
As a counter example, we can cite the case of shear driven tur-
bulence in the absence of convection: on average, the eddies are
smaller and thus non-locality is less important (Kaimal & Finni-
gan 1994). A typical example of non-locality is the equation for
the turbulent kinetic energy K:

∂K

∂t
+

∂

∂z
Fκe = P − ε, (7)
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where

Fκe =
1
2
q2w, K =

1
2
q2. (8)

Here, the second term on the left is the non-locality represented
by the divergence of the flux of turbulent kinetic energy Fκe, a
third-order moment (TOM). Thelocal limit corresponds to tak-
ing P = ε, that is, production (P) equals dissipation (ε): turbu-
lence is dissipated where it is produced.Both MLT and the CM
model are based on theP = ε assumption. The non-local term,
which may act as a source and/or as a sink of turbulent kinetic
energy, represents a new dynamical feature. Once a non-local
model is constructed, it is expected to reproduce key features of
turbulent convection. Specifically:

1) the up/downdrafts (first discussed in geophysical not as-
trophysical flows, Haugen 1973),

2) Petrovay (1990) first pointed out that even quite gen-
eral formulations of convection can reproduce the most general
topological features of the up/down drafts,

3) geophysical studies that predate astrophysical studies
have provided general rules to study the filling factors of the
up/down drafts. The relevance of these studies is to exhibit the
key role of the “skewness” of the velocity field:

Sw = w3/(w2)
3
2 (9)

a third-order moment that governs the topological filling factor,
namely the areaσ occupied by the updrafts (or 1-σ for the
downdrafts)

σ =
1
2

[
1 − Sw(4 + S2

w)− 1
2

]
. (10)

Thus, a key challenge of any model is to compute Sw. However,
since there are several TOM’s

w2θ, wθ2, θ3, q2w, (11)

which are related to Sw, one must model all of them. The prob-
lem of constructing a reliable model for the TOMs has a long
history in geophysical flows dealing with strong convection.
Suffices to say that at present, there is only one analytical model
capable of reproducing the LES data (Canuto et al. 1994; Zil-
itinkevich et al. 1999).

4) numerical simulations of turbulent convection ex-
hibit several interesting features (for a clear presentation,
see Cattaneo et al. 1991, especially Fig. 14c,d): the strong
downflows transport heat upward at nearly the same rate
that they transport kinetic energy downward, without ac-
tually contributing to the net energy transport. We must
note, however, that Rieutord & Zahn (1995) have pointed
that this may be due to the relatively low Re used in the
numerical simulations. If confirmed by large eddy simula-
tions, the main transport process to carry heat is the updrafts

which is precisely the mechanism studied by all turbulent mod-
els for many decades. Turbulence thus provides well tested mod-
els to quantify the heat transfer by the updrafts.

A new non-local, time dependent model which underwent
extensive testing on several types of turbulent flows (Canuto &
Dubovikov 1998; CD98) has recently also been used to study
astrophysical convection (Kupka 1999a,b). The CD98 model
was shown to reproduce well the major features of convection
(e.g., fluxes and filling factors) in a fraction of the time required
by the numerical simulations thus opening the possibility of a
hook-up with stellar codes. A full non-local, as well as com-
pressible, model also exists (Canuto 1997) and it will next be
solved and compared with numerical simulations results. More
recently, Kupka & Muthsam (2000) have shown that depending
on the specific problem studied, the results of the 2D simula-
tions are worse or comparable to that of the CD98 model with
the added advantage that the time required is a small fraction of
the 3D/2D calculations.
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