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Abstract. With the aim of identifying the physical causes of variability of a
given dynamical system, the geophysical community has made an extensive use
of classical component extraction techniques such as principal component analysis
(PCA) or rotational techniques (RT). We introduce a recently developed algorithm
based on information theory: independent component analysis (ICA). This new
technique presents two major advantages over classical methods. First, it aims
at extracting statistically independent components where classical techniques
search for decorrelated components (i.e., a weaker constraint). Second, the linear
hypothesis for the mixture of components is not required. In this paper, after
having briefly summarized the essentials of classical techniques, we present the new
method in the context of geophysical time series analysis. We then illustrate the
ICA algorithm by applying it to the study of the variability of the tropical sea
surface temperature (SST), with a particular emphasis on the analysis of the links
between El Nino Southern Oscillation (ENSO) and Atlantic SST variability. The
new algorithm appears to be particularly efficient in describing the complexity of

the phenomena and their various sources of variability in space and time.

1. Introduction

A time series is a collection of observations of a dy-
namical system made sequentially in time. This work is
concerned with the identification of the physical causes
of the variability of a given dynamical system. In many
cases, observed time series are well represented as a mix-
ture, linear or nonlinear, of different statistically inde-
pendent components (or sources, or factors). An im-
portant goal of statistics is then to retrieve these com-
ponents from the observed data. Our approach is based
on statistics computed from a set of time series samples
generated by the dynamical system and is aimed at ex-
tracting the internal regularities of a given time series.
Such kind of a statistical method is called a component
extraction technique.

There are three main statistical component extrac-
tion methods: principal component analysis (PCA),
singular value decomposition (SVD), and factor analy-
sis (FA). Other related methods are the rotational tech-
niques (RT); they rotate, orthogonally or obliquely, the
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PCA, SVD, or FA projection axes to facilitate the phys-
ical interpretation of the extracted components. Each
method relies, implicitly or explicitly, on some assump-
tions about the structure of the observations. In partic-
ular, two major hypotheses are made in the PCA, SVD,
or FA techniques such as (1) the linearity assumption,
which assumed that the observed time series are lin-
ear mixtures of components; and (2) the second-order
statistics hypothesis, which assumed that the stochas-
tic variables of the problem have Gaussian probability
distribution functions. Moreover, the RT relies on em-
pirical optimization criteria.

The independent component analysis (ICA) method,
presented in this paper, is based on information the-
ory. It was recently developed in the context of signal
processing and neural coding modeling. We argue that
the ICA approach may overcome the main pitfalls of
the standard techniques of time series analysis. The
two major advances of the ICA approach are as follows:
(1) the hypothesis of linearity of the mixture model is
not required, and (2) the fact that it extracts statis-
tically independent components, even if these compo-
nents have non-Gaussian probability distribution func-
tions, making use of higher-order statistics, whereas the
PCA, SVD, or FA approaches make use of second-order
statistics only.

The ICA paradigm is directly related to the notion of
redundancy reduction proposed by the biologist Barlow

17,437



17,438

[1960] in the 1960s, as a criterion that might be at the
basis of neural coding. The relevance of sensory cod-
ing has been studied in several models during the last
10 years [Atick, 1992]. The terminology “ICA” comes
from the domain of signal processing, where this idea of
representing a signal in terms of its independent compo-
nents was rediscovered in the 1980s [Jutten and Herault,
1991]. Since then, ICA has been the subject of numer-
ous studies at the frontier between signal processing and
neural coding theory.

In the particular case where the signal has a linear
structure (i.e., a linear superposition of independent
components), ICA is also named blind source separa-
tion (BSS) and is of interest for many signal process-
ing applications [Bar-Ness, 1982; Jutten and Herault,
1991]. There exists a wide variety of algorithms that
can perform BSS [Jutten and Herault, 1991; Comon,
1994; Pham et al., 1992; Delfosse and Loubaton, 1995;
Cardoso, 1989; Amari et al., 1996; Bell and Sejnowski,
1995; Nadal and Parga, 1997] and some of them can
be adapted to ICA for nonlinear mixtures [Nadal and
Parga, 1994, 1997; Storck and Deco, 1997].

ICA searches for statistically independent compo-
nents in a data set by minimizing an objective cost func-
tion. Different equivalent cost functions, called “con-
trasts” [Comon, 1994], can be chosen, all based on a
model describing the statistical nature of the data. In
the case of a linear superposition of independent com-
ponents, ICA shares some common features with RT:
both rotate the PCA axes according to some criteria.
n KT tne criterion of rotation 18 an empirical additional
constraint still based on second-order statistics. The ro-
tation in ICA can also be seen as the consequence of an
additional constraint but based on higher-order statis-
tics [Comon, 1994; Nadal and Parga, 1997]. The ICA
paradigm is thus fundamentally different from the other
classical approaches.

To our knowledge, ICA has not yet been used for
component extraction in time series analysis, although
related studies in the context of time series prediction
exist [ Weigend and Gershenfeld, 1994; Storck and Deco,
1997].

As already mentioned, various kinds of models, learn-
ing algorithms, and quality criteria for statistical inde-
pendence can be used in ICA. For illustrative purposes
we will focus on the infomax approach to ICA [Nadal
and Parga, 1994], from which simple algorithms have
been derived [Bell and Sejnowski, 1995] and can be eas-
ily adapted to nonlinear data mixture structure [Storck
and Deco, 1997; Nadal and Parga, 1997]. However, we
will restrict the numerical application to the linear case
assuming that the data have a linear structure. The
nonlinear case will be the subject of a forthcoming pub-
lication.

The numerical application presented in this work is
concerned with the particular case of geophysical time
series analysis. This kind of application is character-
ized by the fact that data have temporal and spatial
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dimensions, which allow the problem to be processed in
various ways. As a consequence, the terminology must
be clarified: it is important to distinguish the statistical
techniques (PCA, SVD, FA, RT, and finally ICA) from
the various ways of dealing with the data (e.g., analysis
in the space, time, frequency domains).

The paper is organized as follows: we present, in sec-
tion 2, general decorrelation solutions with the two most
classical techniques of statistical component extraction:
PCA and RT. The ICA paradigm is introduced in sec-
tion 3 and in section 3.3, a particular algorithmic im-
plementation of ICA is presented for the linear case.
An application to geophysical data series is discussed
in section 4 using the time series of tropical sea surface
temperature variability.

2. Classical Component Extraction
Techniques

We present here an overview of the classical tech-
niques of component extraction. These methods rely
on the hypothesis that the observations x are linear
mixtures of uncorrelated components o (See Notation
section at the end of the article). Here after the vectors
and the matrices are indicated in bold face type. The
aim of the standard techniques is to infer uncorrelated
components h that are estimators of o.

2.1. Linear Hypothesis

Let D be a set of M observations (data) of dimension
N:D={zl e RN ; j=1, ..., M}. The multidi-
mensional data € € ' is a sample (or observation), iike
a time series or a geophysical field. We suppose here
that data are centered and normalized. So the observa-
tion x is replaced by

(x— <z >)
Og

; (1)

where o, is the standard deviation of x and the angle
brackets represent the statistical expectation. Let O be
the N x M matrix with the set of M samples € D in
columns.

It is assumed that the observation & (or response)
is the result of the mixture of @ different components
oc=(;; 1=1, ..., Q). In classical component
extraction techniques the number of components ), not
known in practice, has to be specified, and the observa-
tion x is assumed to be a linear mixture of the compo-
nents o:

r=A0+e¢, (2)

where A is the N x ) mixture matrix and the dot is
the scalar product.

Given a set of observations x, we want to determine
the components o. The inversion of the mixture model
(2) is generally an ill-posed problem. Two strategies are
possible: (1) estimating directly the generalized inverse
A" of the mixture matrix A by a Q@ x M matrix J,
this is the approach adopted in PCA, SVD, and ICA
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techniques; (2) estimating A by a matrix A and then

inverting the estimated model by J = AT, this is the
approach of FA.

Taking one or the other strategies, the noise term e
is neglected and we search for an estimator h of o with

3)

The @ rows of J are called filters because they filter
the observation x to obtain the estimator h = J - x of
o. The Q columns {g; € RY; j=1, ..., Q}ofthe
estimated matrix J! are called base functions because
the observations « can be decomposed as

h=J x.

(4)

If @ = N and if all base functions g; are orthogo-
nal, the latter equation is an equality. The components
{hj ; 7 =1, ..., @Q} are the projections of the
observation x on the base functions.

T~hi-gi+ha-gst--+hg gq

2.2. Decorrelation of the Components

The goal of classical component extraction techniques
is to infer uncorrelated components {h;; j =1, ...,Q}
from the observations . Extracting uncorrelated com-
ponents implies the diagonalization of the @ x @ co-
variance matrix < h - ht > (the superscript t repre-
sents the transpose operation). The scaling factor is
undetermined, but generally the data are normalized.
So the covariance matrix becomes the identity matrix:
< h-h! >= Igxq, where Igxq is the Q x Q identity
matrix.

(5)

(6)

where Cyp =< x - @ >= 40 - O is the N x N co-
variance matrix of @ € D. This means that J has the
form

@J'<(E'wt>~Jt=IQXQ

-1 -
eJt.J=<z x> =Cgu},

J=V . Cu 2, (7)

where V is any Q x N matrix with V*-V = Inyn.

Let X be the diagonal matrix of the decreasing eigen-
values of C,, and let F be the matrix with the associ-
ated normalized eigenvectors of C; in the columns. By
definition we have Cm'l/2 = E.X /2. Et, Expression
(7) can then be written

J=V.E.- X"V E (8)

In the no-noise condition (e = 0 in equation (2)), and
if @ < N, only @ eigenvalues are strictly positive in 3.
Let X be the ) x @ diagonal matrix with the strictly
positive eigenvalues of ¥ and let E be the N x Q matrix
of the associated eigenvectors. Expression (8) can be
replaced by

1/

J=V.E.£ E =0 J, 9)

where ® = V - E is an undetermined @ X @ matrix,
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such as ©" - @ = Igxg and Jo = 52 -E~'t, a@ xN
matrix.

The solution of the decorrelation problem is then re-
duced to the determination of a @ x @ matrix ® (with
©'-® = Igxq), provided the data from D are premul-
tiplied by Jo (this step is called prewhitening). With
the undetermination in @ an infinity of solutions exists
which solves the decorrelation of components: the cri-
terion of diagonalization of the covariance < h - h* >
(or the correlation) matrix leads to an infinite number
of alternative final solutions J.

Some solutions for J are presented in the next sec-
tions. However, all decorrelation solutions make the
Gaussian hypothesis for the components o in equation
(2). This hypothesis is not always valid in real world
applications (see the tropical sea surface temperature
application in section 4, for example): we will see that
ICA does not make this assumption.

2.3. Principal Component Analysis

Principal component analysis [Morrison, 1976], also
called Hotteling principal components or the Kharunen-
Loeve algorithm, leads to the determination of a partic-
ular solution of (9) and is very frequently used in many
areas.

In the PCA approach, the noise term ¢ is not explic-
itly taken into account in the model of equation (2). Tt
is assumed that the variance produced by noise is elim-
inated when deleting small eigenvalues of C,, in the
diagonal of X.

The PCA solution is obtained by expressing ©, in

(9), as Igxg. Therefore the solution matrix becomes
J =Jy = 2—1/2 - E'. This solution corresponds to

the decorrelation solution where the first component
describes the axis along which the variance is highest
(in the full data space). The second component de-
scribes the axis (in the data subspace) along which the
remaining variance is highest, etc. This technique is
often preferred in comparison to other component ex-
traction methods due to its mathematical simplicity.
This simplicity implies a number of very useful prop-
erties (such as space/time equivalence [ Von Storch and
Hannoschock, 1984] in geophysical applications).

There are many examples of geophysical applications
of the PCA. For example, Lorentz [1951] analyzed the
seasonal and irregular variations of the Northern Hemi-
sphere sea level pressure profile. However, as Richman
[1986] has shown, the orthogonality of base functions
has not always a physical significance. So this tech-
nique should only be applied if an a priori information
is given concerning the orthogonality of the physical
phenomena under study.

The consequences of this orthogonality constraint on
unsuitable problems are that the structure of the basis
function is global in the domain under study and often
appears to be the same, similar to a spectrum Fourier
analysis: the first base function possesses one node,
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the second possesses two opposite nodes, the third base
function possesses two opposite nodes with a different
orientation, the fourth possesses four opposite nodes,
etc. Another problem for PCA solutions is the con-
straint for the successive extracted components to ex-
plain the maximum remaining variance: this may lead
to the mixing problem of physical phenomena in the
extracted components [Kim et al., 1999]; that is, physi-
cal phenomena, without links between us, are gathered
into one extracted component. So if this approach is
useful as a tool for compressing information, it can lead
to misinterpretation for physical analysis.

2.4. Rotation Techniques

PCA, SVD, or FA techniques extract the uncorre-
lated components h by projecting the observations
on the rows of the matrix J. Therefore the rows of
J can be seen as a set of axes describing a subspace
of the space of observations. In the RT approach, the
axes of a previous decorrelation solution (such as PCA)
are rotated. For instance, rotating the axes of the PCA
matrix Jo leads to the equation

J=0-Jg, (10)
where © is a rotation matrix.

The goal of rotational techniques is to overcome the
undeterminacy of decorrelation solutions using addi-
tional information than that of second-order statistics.
This additional information takes the form of a local-
ization constraint: the criteria for rotation are derived
from the idea of the so-called “simple structure” [Mor-
rison, 1976]. Quantities are defined in order to deter-
mine the distribution of the variance of the data on each
axis with the aim of localizing the basis functions in its
domain (space, time, etc.) and then facilitating their
interpretation. This type of analysis yields physically
meaningful results and is not only a pure data reduc-
tion technique.

There are various criteria for rotation [Richman, 1986].

Richman cites many possible ways of orthogonal rota-
tion criteria (such as quartimax, varimax, transvari-
max) and of oblique rotation criteria (quartimin, bi-
quartimin, oblimax). The number of possible criteria is
a real drawback. Minimizing these quantities can lead
to the rotation of axes in an orthogonal way (the axes
stay orthogonal) or in an oblique way (the orthogonality
of axes is not preserved).
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Rotation techniques have been used in many works
[Horel, 1981; Barnston and Livezey, 1987; Eder et al.,
1999] in order to improve the interpretation of extracted
components: the result is that the extracted compo-
nents are more geographically localized where the PCA
technique searches for global components. However, the
user of this technique may expect meeting problems in
the case where the physical components are not loca-
lyzed.

So concerning the localization or the nonlocalization
of physical components, it appears that neither the
PCA nor the rotational techniques are adapted for any
kind of application. The use of PCA or rotational tech-
niques is then difficult if no a priori information is avail-
able on the physical phenomena at the origin of the
variability of observed data. These assumptions, even
without physical meaning, are partly reponsible for the
sensitivity of extracted components to the geographical
range under study. We give, in Table 1, the different hy-
pothesis made by the classical and the ICA techniques.

3. Independent Component Analysis

We suppose now that the observations x are a mix-
ture, linear or not, of statistically independent compo-
nents o:

z = Ao). (11)

The goal of the ICA paradigm is to find an inverse map-
ping ® : © — h, where h is an estimator of o, specifying
that the {h;; i =1, ..., Q} are statistically indepen-
dent. So the estimator h is defined as a deterministic
(linear or nonlinear) function of the observation

Q,

where {W, ; 4 =1, ..., @} denotes the set of
functional parameters. The number @ of independent
components, not known in advance in most cases, has
to be specified. A first initial guess is to take Q) equal
to the number N of inputs (dimension of x); we will
return to that point later on.

The mapping ® will be searched among a given fam-
ily of mappings, the simplest example being the linear
mappings. In fact, any given family of mappings rep-
resents some prior hypotheses on the data structure (it
is an implicit mixture model for the data): the case of
a linear mixture of components is detailed below. The
mapping is parameterized by the functional parameters

hi:q)i(Wivm) ;=1 .., (12)

Table 1. Theoretical Hypothesis Made by PCA, RT, and ICA Techniques

PCA RT ICA
Mixture model linear linear linear or nonlinear
Component distributions Gaussian Gaussian no assumption
Domain of basis functions global local no assumption
Mutual constraint of basis functions orthogonality orthogonality or nonorthogonality no assumption
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{W;; i=1, ..., Q}in such a way that some gra-
dient descent algorithm onto a chosen cost function is
possible.

3.1. An Objective Cost Function for Statistical
Independence

3.1.1. Minimizing the redundancy. The statis-
tical independence of @ variables {h;; 1 =1, ..., @}
is realized when the probability distribution function P
of h is factorized as

Py(h) = Pi(h1) - P2(h2) ... Po(hg), (13)
where P; denotes the marginal probability distribution
functions of h;. Statistical independence is stronger a
constraint than decorrelation, which is based on second-
order statistics only. It is only for Gaussian distribu-
tions that decorrelation is equivalent to factorization,
but data may show also non-Gaussian statistics. An
interesting example concerning the non-Gaussian char-
acter of the El-Nino phenomenon is given by Burgers
and Stephenson [1999]. The goal of ICA is to search
for h, a linear or nonlinear mixture of the data x, so
that the probability distribution function of h satisfies
as much as possible the above factorization (13). One
has thus to define objective cost functions that quantify
the quality of the solution A in terms of factorization.
Several choices are possible [Comon, 1994]: here we fo-
cus on criteria derived from information theory [Comon,
1994; Nadal and Parga, 1994].

Information theory [Blahut, 1988] gives us tools for
quantifying the statistical dependency between random
variables. The fundamental quantity is the mutual in-
formation between variables. Given two random vari-
ables h; and hg, the mutual information I(h,hs) is
defined as the Kullback divergence between the joint
distribution Pys(h;,hs) and the factorized distribution
P1 (hl) . P2(h2):

I(hy h) = H(h) - H(ha/h),  (14)
“+00
-/ dhldthlg(hl,hz)log(%)y (15)

where H (-) is the entropy of one variable and H (hy /hs)
is the entropy of h; given hs. The mutual informa-
tion I(hy,hs) is a positive quantity and is null if and
only if h; and hy are statistically independent; that is,
Pia(h1,ha) = Pi(h1) - Pa(hs) (except possibly on a zero
measure set). The mutual information depends on all
higher-order statistics of the variables. This definition
extends naturally to an arbitrary number @ of variables.
The redundancy R(h) between the Q components of h
is precisely defined as the mutual information between
these @) variables:

o @
R(h) = / " I dh: Pu(h) log —QB‘&.
=1

16
o2, rey O
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The goal of ICA is thus to find a linear or nonlinear
mapping ® : £ — h which minimizes redundancy (16).
However, computing redundancy (16) directly is not
generally possible in practice, particularly for h in high-
dimension spaces. Fortunately, one can build alterna-
tive cost functions leading to redundancy reduction and
which can be used in a gradient descent scheme. The
following general result allows one to build an efficient
cost function that can be used with many different mod-
els @ (linear or not).

3.1.2. Infomax approach. As stated above, the
reduction of redundancy is based on higher-order statis-
tics. So to obtain statistical independence, the manip-
ulation of higher moments (like < R > < bt > <
h® >, ...)is required. Applying nonlinearities f; on
the h;’s allows one to pick up these higher-order mo-
ments because the Taylor expansion uses powers of the
h; values. So we consider a nonlinear transformation
(postfiltering step) on the estimator h = ®(x):

yi:fi(hi); Z=1> BRI} Q;

where the f;(-) values are nonlinear, bounded, invert-
ible functions of a single variable. The redundancy of
equation (16) is zero if and only if the redundancy is
zero for the variables y = (y; ; i=1, ..., Q). So
the minimization of redundancy R(h) of equation (16)
is equivalent to the minimization of R(y).

Redundancy (16) characterizes the statistical depen-
dence of the h; values or the y; values but is not a pri-
ori related to the dependency between these variables
and the observation x. Let us now consider the mutual
information between the observation and the filtered
components y.

Technically, to define I(xz,y) = H(y) — H(y|z) one
has to introduce some additive noise in the definition
of the output y (equation (17)). The variable y is a
deterministic (linear or nonlinear) function of the data;
see equations (12) and (17). The equivocation H(y|z)
is a constant (it depends on the noise distribution only).
Leaving out this constant, one can then take the limit of
vanishing noise. So in our case, the mutual information
I(z,y) is equal, up to a constant, to the output entropy
H(y) given by

(17)

+o0o
dy-Py(y)-In[Py(y)]

(18)

Nadal and Parga [1994] have proven that the maxi-
mization of the mutual information I(x,y) (hence of the
output entropy H(y)) with respect to the adaptation of
both the functional parameters {W;; i=1, ..., Q}
and the functions {f;(-); i=1, ..., Q} leads to the
minimization of redundancies R(y) and R(h). Finally,
the entropy H(y) = H(fz(él(Whm)% i = 1, cey Q)
of equation (18) can be maximized by gradient ascent
with respect to the W; values and the functions f;. Full
redundancy reduction is, however, possible only if the
mapping family (the ®; values) is well chosen; that is, if

Hy) = - <P, )] >= - |

—00
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it is properly related to the data structure. In the other
case, a consequence could be that the solution of the
minimization of statistical dependence does not imply
decorrelation. This is now illustrated in the case of a
linear mixture.

3.2. Linear Case

3.2.1. Linear mixtures and perceptron archi-
tectures. Let us now make the hypothesis that the
observations x are a linear mixture of independent com-
ponents {o; ; 1=1, ..., @}, with unknown proba-
bility distribution function {p;(c;); i=1, ..., Q}:

r=A- o, (19)
where A is the unknown mixture matrix, assumed to
be invertible. The goal of ICA is thus to compute an
estimate J of the inverse of A, so h = J - x is an
estimator of o, with an underterminacy on scale and
permutation (e.g., remark of section 2.1). The proper
model associated with (19) is thus a linear one and the
functional parameters W, of equation (12) constitute
the rows of the matrix J,

N
hi:(I),'(W,;,III):J,"iE:ZJi]’IIj, (20)

Jj=1
where W; = J; is the vector whose components are

given by the ith row of the matrix J. To make use
of the result briefly presented above, we consider the
processing obtained by applying a transfer function to
each h;, leading to the global model

F(W,):w—y=fh)=f(Ja). (21)
By analogy with neural network modeling, the parame-
ters J are called the “couplings” or “synaptic weights,”
and the f; values “transfer functions.” This model (21)
is called a perceptron in neural network modeling [Hertz
et al., 1992], with synaptic couplings J and transfer
functions f; (Figure 1). For a nonlinear model for the
mixture of components, we will use a multi layer per-
ceptron.

The general result given by Nadal and Parga [1994]
gives, in that particular case, that maximizing the mu-
tual information I(x,y) with respect to the coupling
matrix J and the transfer functions leads to redundancy
reduction: at the optimum, one has J = A~! and in
addition,

dfi(hi)
dh;

This means that in the optimal case, the transfer func-
tions would be related to the probability distribution of
the components. At the optimum, each output unit y;
has a uniform distribution, corresponding to the maxi-
mization of entropy (Figure 2) [Nadal and Parga, 1994].
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3.2.2. Infomax principle in the linear case.
We now write the entropy of equation (18) in a conve-
nient form for algorithmic purposes. As in the work of
Bell and Sejnowski [1995], we make in the integral in
equation (18) the change of variable y — h which is
well defined since we consider invertible transfer func-
tions and the invertible matrix J. One has

Py (h)
Py(y) = : 23
where G is the @ x () Jacobian matrix equal to
_ v _ i, (24)

ik = £ = dh, ik-

The entropy then reads H(y) = — < In(Py(h)) > + <
In(|G]) >; that is,
j{; |) > +1n|detJ]|.
(25)
It is now easy to perform some gradient ascent on
H(y) (or a gradient descent on —H (y)). The first term
in equation (25) is the entropy of the input data, hence
a constant. The other terms depend on the couplings
and the transfer functions. To maximize H(y), one
may restrict the transfer functions to a parametrized
family of functions. A particular scheme is presented
by Pham et al. [1992]. Another strategy, followed in
the work of Bell and Sejnowski [1995], is to expect that
full optimization of the transfer functions is not nec-
essary for performing ICA. The transfer functions in
(25) are necessary in order to generate terms depend-
ing on higher-order statistics. Choosing an adequate
fixed transfer function might then be enough for obtain-
ing redundancy reduction. For example, if one expects
the component distribution to have a unique maximum,

H(y) = — < In(Py(h)) > + < In(|

f,
X1 - hl yl
X, —
X —
N-1
f
—~ Q
XN hQ—’> Y~

Figure 1. Component extraction model, the percep-
tron architecture: x is the observation and h is the
extracted component vector.
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—
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TRANSFER FUNCTION
/\

OVER-GAUSSIAN

Figure 2. Probability density functions in the output layer of the component extraction model,
before (component h) and after (variable y) the transfer function f.

one can try transfer functions which are monotonic (so
that their derivatives have the required shape). In do-
ing so, there is no longer any guaranty that the source
separation will be obtained. However, promising results
have been obtained [Bell and Sejnowski, 1995], and this
strategy can be easily improved by introducing some
partial adaptation of the transfer functions.

3.3. Algorithmic Implementation of ICA in the
Linear Case

The algorithm (See web page http://www.cnl.salk.edu
/~tewon/ica_cnl.html] from the Computational Neuro-
science Laborabory of Terry Sejnowski at The Salk In-
stitute for links to recent literature, softwares and de-
mos concerning the ICA paradigm) we have chosen to
implement in the linear case relies on the work of Bell
and Sejnowski [1995]. They have developed an algo-
rithm that has the advantage of being extremely simple;
we present the natural gradient version [Amari, 1998] of
it in section 3.3.1. We have modified this algorithm in
section 3.3.2: a preprocessing step is added in order to
limit the number of extracted components [Nadal et al.,
2000].

3.3.1. A simple learning algorithm. Letx and
y be, respectively, the input and the output of the neu-
ral network described in section 3.2.1. Every transfer
function is taken as the logistic function:

-1

filh) = (1+e™) (26)

The quality criterion used to estimate the weights J of
the neural model is, as explained in section 3.1.2, the

output entropy H (y). We have seen in the later section
that the minimization of —H(y) is equivalent to the -
minimization of

df

- <In(|G)) >=—-< ln(]dh'

) > —1Inl|detJ|. (27)

To avoid local minima during the minimization of the
criterion, stochastic steepest descent is used. The learn-
ing step is made for only one sample chosen iteratively
and stochastically in D

Jin(IG))

AT x ———.

37 (28)

If the transfer function is the logistic function (26), the
later equation becomes [Bell and Sejnowski, 1995]:

AT« [T +5-at, (29)
where
0 0y; 0 Oyi,
Yi = B_yZBm = 8hzln(8h,) =1-2y;. (30)

This learning step requires the inversion of the matrix
Jt: it is expensive in time computation and may be
unstable. Amari [1998] shows that one should use the
“natural gradient” (instead of the absolute gradient).
This is a more robust learning step that consists in mul-
tiplying the absolute gradient by J* - J:

-1

AT ([J +g-at)-(J-J)=J+g-h*-J. (31)
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For the weights of the bias term,

AJyox g - (J-T). (32)

In terms of individual weight, this corresponds to

{ Adig o< Jig +Fi Dy Jik - hy (33)
AJio < Gi - D 2o Juk - Jui

3.3.2. Preprocessing of the data and initial-
ization of the weights. The ICA solution could be
initialized randomly [Bell and Sejnowski, 1995], but it
is a good strategy to begin the learning process with a
“reasonable” initial solution: learning is faster and the
risk for the learning algorithm to be trapped in a local
minimum of the cost function is reduced.

A natural approach is to use as initial condition a
linear projection that decorrelates observations. This
allows for the extraction of second-order statistics. This
preprocessing step is called “data whitening” and is ob-
tained by performing PCA or the SVD (theoretically,
in this context, equivalent to the PCA but more sta-
ble numerically). In addition, it is possible to use PCA
or SVD for reducing the dimension of the input space.
Nadal et al. [2000] demonstrated that the ICA solution
is not perturbed by this preprocessing step. We have
seen in section 2.2 that a decorrelation solution has the
following form (equation (9)): J = © - Jo, where J0 is
the @ x N matrix of the PCA (or the SVD) solution.
So it is possible to preprocess the data in D as

T+ Jo(z—<zx>). (34)
The new database is constituted by samples £ with un-
correlated coordinates and dimension ). Then, the
ICA learning technique computes a @ x @ particu-
lar matrix solution for @: J; The global solu-

ica:
tion, taking into account the prewhitening step, is the

Q@ x N matrix J = Jj., - Jo- The @ ICA base func-
tions are the columns of the inverse N x @ matrix
J~!. This matrix is computed using the decomposition
J P =T07 Ty, where Jo 7t = Jo! and J;, 7t is
estimated by the SVD technique instead of the Jacobi
algorithm for stability considerations.

The two major advantages of this preprocessing step
are (1) the ICA learning process estimates a @ x @
matrix © instead of a N x N matrix and (2) the initial
solution ® = Igyg corresponds to the PCA or the SVD
solution.

It is important to note that the initial PCA solution is
changed by the ICA learning step only if the statistical
independence criterion considers that the modification
is necessary. For the matrix Jo the SVD solution is pre-
ferred to the PCA solution for stability considerations.
The estimation of ® by the ICA algorithm (® = J in
previous notations) may be seen as a rotation of the
SVD initial solution Jo.
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4. Application of ICA for Analysis of
Tropical SST

We present in this study, for evaluating ICA appli-
cability in geophysical data, an application concerning
a real and complex problem. Between the large vari-
ety of geophysical variables, the sea surface temperature
(SST) offers a good opportunity: it is the result of many
climatological processes involving the ocean, the atmo-
sphere, and their coupling [Chen et al., 1997]. So SST
appears to be a complex mixture reflecting variabilities
in a large variety of timescales acting in different geo-
graphical areas [Barnett, 1991]. Moreover, long global
time series of SST observations are available.

The study of tropical ocean SST variability is of par-
ticular interest because it is governed by several im-
portant and complex nonperiodic phenomena like the
El Nino Southern Oscillation (ENSQO), which represents
about 30% of the total tropical variance and is the ma-
jor source of SST variability in the tropics. The variance
in the Indian and the Atlantic Oceans is about half as
large [Bottomley et al., 1990].

While the Pacific ENSO was intensively studied [Ras-
musson and Carpenter, 1982], the tropical Atlantic has
received less attention. Strong links have been pointed
out between climatic phenomena in the tropical At-
lantic and various climate-related disasters occurring
around the tropical Atlantic Basin. The droughts of
Northeast Brazil, for example, are closely related to
warm SST anomalies in the tropical Atlantic Ocean [En-
field and Mayer, 1997]. These problems are presently
of increasing interest for climatologists.

Many studies suggest that important relationships
exist between northern and southern equatorial Atlantic
SSTs [Chu, 1984], between Pacific and Atlantic SSTs
[Enfield and Mayer, 1997], and between Indian and Pa-
cific SSTs [Klein et al., 1999]. We will focus our analysis
on these teleconnections.

4.1. Data Sources

4.1.1. GISST2.2 Database. The GISST2.2 (glo-
bal sea-ice and sea surface temperature) database of
the UKMO (United Kingdom Meteorological Office)
[Parker et al., 1995] contains a global gridded monthly
climatology of sea surface temperature. This SST data-
base was created by mixing satellite observations and
in situ measurements. The spatial resolution is 1° x 1°.
We have selected in this database the better consistant
period that ranges from 1961 to 1994. GISST2.2 is a
robust and well-known SST database and has already
been used in many studies [e.g., Torrence and Webster,
1998).

We have chosen to study tropical SST variability
(20°S-20°N in latitude; 0°-360° in longitude) during
the period 1961-1994 = 34 years. We use gridded
monthly means, so the temporal dimension is T' =
34 years X 12 months = 408. With 1° x 1° surface
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resolution and for the region under study, there exist
11,275 over sea pixels. This resolution could be artificial
in several regions since most of this resolution merely
derives from interpolation. However, the results of our
analysis are independent of this point, the pixels being
processed independently. So the spatial dimension is
M =11,275.

4.1.2. Preprocessing of data. The database is
supposed to be centered and normalized as explained
in section 2.1. In general, geophysical data are primar-
ily affected by seasonal variability. The study of other
(interannual or intraseasonal) variabilities is rendered
easier by the removal of seasonal variability. For that
reason the database is also deseasonalized by removing
from each of the 11,275 pixels under study its corre-
sponding season. Making this, we made the classical
assumption that the forcing of the seasonal cycle has ad-
ditive consequences on SST. The season-removing pro-
cess transforms the rough data into anomalies. This is
the only filtering procedure used in this study. So the
following spectral analysis of the extracted component
(see sections 4.2.2 and 4.3) is not conditioned to find
a predetermined kind of periodicities; in other words,
no assumptions are made about the periodicities we are
interested in.

4.1.3. Non-Gaussianity of the SST. A random
variable is characterized by all its statistical moments:
the first moment is the mean, the second moment is the
variance, the third moment is the skewness, the fourth
moment is the kurtosis [Press et al., 1992]. For Gaus-
sian variables, moments higher than 2 are zero. When
data have zero-mean, the “skewness” skew(X) = %;?—

and the “kurtosis” kurt(X) = ngﬁ — 3. These “nor-
malized” moments are often used to test a departure
from the Gaussian behavior (Figure 3). The skewness
measures the symmetry of the probability distribution
function: when the skewness is positive, rare events
have more probabilities to be high than low, and the
reverse is true when the skewness is negative. The kur-

SKEWNESS

null

/ (Gaussian)

positive
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tosis is a measure of the sharpness of the distribution:
a negative kurtosis indicates that the distribution have
no sharp central peak and have large tails, when a posi-
tive kurtosis indicates that the distribution has a sharp
central peak.

We have analyzed the first four moments of the GISST
database to analyze the Gaussianity of the SST. In
Plate 1, we have represented the mean, the standard
deviation, the skewness, and the kurtosis of the SST
using all months. In Plate 2, this analysis is made
only for the months of May to test the time variabil-
ity of these statistics. For skewness we have repre-
sented only the absolute values higher than 0.2: the
standard deviation of the skewness estimate for a Gaus-
sian distribution is equal to 1/15/N = 0.19 [Press et
al., 1992]. For kurtosis we have represented only the
absolute values higher than 0.5: the standard devi-
ation of the kurtosis estimate for a Gaussian distri-
bution is equal to 1/96/N = 0.48. The coherence
on local regions gives also a confidence of the robust-
ness of these statistical moment estimates. Plate 1
clearly shows the non-Gaussian behavior of the SST
(i.e., nonzero skewness and kurtosis) over large areas
of the ocean. In particular, as previously commented
by Burgers et al. [1999], the upwelling region of the
eastern Pacific, which is strongly affected by ENSO,
has a positive skewness (warmer SSTs more probable
than colder) and a positive kurtosis (distribution more
peaked than the Gaussian distribution). Recently, Tim-
mermann [1999] uses the skewness to caracterize the
statistical changes of ENSO in a CO; doubling experi-
ment. Burgers shows also that the kurtosis is negative
in the warm-pool region; probably because of nonlinear
radiative/convective greenhouse feedbacks causing SST
saturation at 30°C. These local effects demonstrate the
non-Gaussian character of the ENSO phenomenon.

We also see in Plate 2 that the tropical Atlantic vari-
ability of the SST is governed, in particular in May, by
non-Gaussian processes in a dipole (north/south) spa-

KURTOSIS

null

/ (Gaussian)

positive
(leptokurtic)

negative
(platykurtic)

Figure 3. Measure of non-Gaussian behavior of distributions by (a) their third moment (i.e.,

skewness) and (b) fourth moment (i.e., kurtosis).
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(b)

Plate 1. First four moments of the tropical sea swrface temperature (S5T) anomalies for all
manths: {a) average, (b) standard deviation, {c) skewnesz, and (d) kurtosis

Plate 2. First four moments of the tropical SST anomalies for May months: ™ (a) average, (b)
standard deviation, (c) skewness, and (d) kurtosis.
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tial structure suggesting that the well-known Atlantic

dipole phenomenon [Chu, 1984] could also be related to -

a non-Gaussian behavior.

Therefore we may conclude that the physical pro-
cesses at the origin of climatological variability of trop-
ical SST are governed, at least partly, by non-Gaussian
variables. The use of the ICA approach is then required
because it does not make the Gaussian hypothesis and
is well adapted for the analysis of higher-order distribu-
tions, contrary to classical techniques.

4.2. Methodology

We consider here that the database D is composed of
a geophysical time series ¥ = {X,%; s =1, ..., S;t=
1, ..., T}, where s is the spatial index (in a regular
grid or in an irregularly spaced network of measurement
stations), and ¢ is the time index. We want to deter-
mine the estimator h of the components o causing the
variability in the Y time series.

We have seen, in sections 2 and 3, different kinds
of techniques to extract components from an observed
signal (PCA, RT, ICA). However, there are many ap-
proaches to apply these techniques in Y. Each approach
emphasizes one particular aspect of the data: temporal,
spatial, or frequency. The best strategy to adopt also
depends on the available data set because statistical
techniques require a sufficient number of samples.

4.2.1. Geophysical model adopted: analysis
in time. Observations  have to be extracted from
the T database to compose the inference set D = {z’ €
RY; j=1, ..., M}. Analysisin time is particularly
well adapted here, the temporal dimension (408) of the
database D being much smaller than its spatial dimen-
sion (11,275). So this analysis concerns the study of the
temporal correlations in Y. In that case the samples
z(j) € D are chosen as z(j) = (X;*; t=1, ..., T),
describing the temporal evolution of one variable in a
given geographical location j. The number M of sam-
ples is the spatial dimension S of the time series Y. The
dimension N of the samples is the temporal dimension
T in Y. So using the database D can be written as

D={z(j) eR®; j=1, ..., 11,275}. (35)

The ICA technique is applied to analyze the database
D: it computes a @ x T filter-matrix J. Each row of J
is a filter: the scalar product of a time series by the ith
filter estimates the component h; (equation (3)). The
temporal base functions {g,;(¢t) ; i=1, ..., Q} are
the columns of the inverse T x Q matrix J~*. This
analysis results in the decomposition of one time series
x(j) in the pixel j:

z(j) = h1(5) - g1 + h2(5) - g2 + - + hq(4) - 9q, (36)

where each of the @) base functions g; describes a canon-
ical dynamical behavior (or behavior “prototype,” or
“cluster” [Richman, 1981]) of the variable. Determi-
nation of these prototypes uses the statistical indepen-
dence criterion between estimated components h;.
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It is important to know that a complex physical phe-
nomenon has generally different dynamical behaviors
acting in different geographical locations. So to be prop-
erly described, such phenomena must be decomposed
into various prototypes describing all the variabilities
in time. This is called the splitting of a given climato-
logical phenomenon into several extracted components.
The temporal base function of one component can be
more intense, for example, before or after the maximum
phase of the phenomenon, and this component will be
used differently in each pixel locations.

On the other hand, some physical phenomena could
be mutually linked, so one component could gather
these several physical phenomena. The set of Q proto-
types extracted by the analysis technique aims at sum-
marizing, as well as possible, all kinds of temporal vari-
ations present in the data set. Extracting these proto-
types is the key to a better physical understanding of
the dynamical behavior of the phenomenon, and impor-
tant conclusions could be drawn from this meaningful
representation.

The term h;(j) is the component score of the ith
base function g, in the observation x(j). The h; val-
ues are supposed to be mutually statistically indepen-
dent. These components are better “state variables”
for prediction (their physical meaning helps at defin-
ing a prediction model, and their statistical use for
prediction is easier through their independence. The
projection of each pixel time series onto the ith base
function g; gives us the ith component “score map”
{hi(4); 7=1, ..., S} A component “score map”
indicates the geographical location of the pixels follow-
ing the dynamical behavior of the corresponding base
function g;. They have no direct links with anomalies.

4.2.2. Interpretation of the extracted com-
ponents. Interpretation of the extracted components
goes through the analysis of the temporal base func-
tions g, and of their geographical localization brought
by the component score maps.

Two important tools are also available. The first one
is the spectral analysis of the base functions {g;(t); i =
1, ..., Q}: based on the spectral density estimate,
a smoothing version of the periodogram given by a
Fourier analysis [Eder et al., 1999]. This analysis al-
lows characterizing its different time periodicities via
the spectral peaks observed. Here periodicities higher
than 7 years have been removed on figures because, for
statistical significance considerations, these periodici-
ties cannot be retrieved from the spectral analysis of
time series of only 34 years.

The second tool for the interpretation of the compo-
nents is the level of correlation between each base func-
tion and well-known climatological indices. We give, in
Table 2, a list of indices (see the NOAA Climate Predic-
tion Center web site: http://www.cpc.noaa.gov/data)
characterizing the three climatological phenomena that
are of interest for our application: the ENSO (El Nifio
/ Southern Oscillation), the NA index (North Atlantic
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Plate 3. Geographical amplitude h; of extracted components: ICA component score maps.
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Table 2. Climatological Indices Used in This Study

17,449

Acronym Name Region
SOI/SLP Southern Oscillation Index / sea level pressure Tahiti-Darwin
NINO 3 El Nifio (5°N-5°S;150° W-90° W)
HFSST = Ship6 Hawai-Fiji / SST Pacific
NA North Atlantic index (5°-20°N;60°-30°W)
SA South Atlantic index (0°-20°S;30°W-10°E)

index), and the SA index (South Atlantic index), as de-
fined by the NOAA. See, for example, Ropelewski and
Jones [1987] for a detailed study of the Southern Oscil-
lation Index (SOI). The correlation between two time
series can be lagged: a positive or a negative lag is intro-
duced in one of the two time series before the computa-
tion of the correlation. This technique allows analysing
delayed effects between physical phenomena.

4.3. ICA Results

Prewhitening of data is performed, as explained in
section 3.3.2, by projecting the data on the 10 first PCA
components to reduce the dimensionality [Nadal et al.,
2000]. Reducing the dimension of data to 10 seems to be
a good compromise between the number of ICA com-
ponents extracted and the variance explanation: this
prewhitening step keeps a sizeable part, 55.9%, of the
total variance in data (Figure 4).

We present in Figure 5 the resulting ICA base func-
tions, and the associated component score maps (sec-
tion 4.2.1) are presented in Plate 3. Among the 10
components extracted by the ICA, eight may be quite
easily interpreted on the basis of our present knowledge
of tropical SST variability.

4.3.1. Component ICA 1. The link of this com-
ponent with the tropical North Atlantic variability is

60 . .
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g 30t
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S}
®
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Component index :
Figure 4. Cumulative percentage of variance of the 10
first singulat value decomposition (SVD) components
of the tropical SST anomalies.

well illustrated with an important node in the score
map (Plate 3 a) in this region. Furthermore, the corre-
lation of the temporal base function with the NA index
is -0.59. The spectral peaks (Figure 5 b) of the temporal
base function of this component are 5.3, 2.3 years, and
1 year. The percent variance explained by this compo-
nent is 8.1%.

The interesting thing is that an opposite node also
exists in the tropical Southeast Pacific (i.e., upwelling
region, over Equator and Peru), that is a region strongly
affected by ENSO (with anomalous wet conditions).
This teleconnection is confirmed by the work of Delecluse
et al. [1994], suggesting that the Pacific ENSO provides
one possible source of external forcing for the interan-
nual SST variability in the eastern equatorial Atlantic.

4.3.2. Component ICA 2. The corresponding
score map (Plate 3 b) shows the classical ENSO pat-
tern in the equatorial Pacific [ Wallace et al., 1998]. The
variance explained by this component represents 4.7%.
Spectral peaks of the base function associated to this
component are 4.2 and 1.8 years (Figure 5 d). The 4.2
year spectral peak results from the quasi-quadrennial
cycle of the ENSO. The 1.8 year spectral peak illus-
trates the tendency for a quasi-biennial rhythm [Ras-
musson et al., 1990]. The correlation of the temporal
base function with the Ship6 index is 0.50.

4.3.3. Component ICA 3. The component score
map (Plate 3 ¢) clearly shows the link of this component
with the ENSO phenomenon. The variance explained
represents 3.6% of the total variance. Spectral peaks
of the temporal base function of this component are 4,
2 years, and 1 year (Figure 5 f). The periodicity of 1
year corresponds to the tendency of ENSO for the phase
locking with the annual cycle. The link with the equa-
torial Atlantic variability is real, and the correlation of
the temporal base function with the NA index is -0.44.
This component, as ICA component 1, indicates the
correlation between the equatorial Atlantic variability
and the ENSO phenomenon [Delecluse et al., 1994].

4.3.4. Component ICA 4. The structure of the
component score map (Plate 3 d) shows an interhemi-
spheric “dipole” structure in the tropical Atlantic. This
“dipole” pattern is a well known mode of variability in
equatorial Atlantic SST [Servain et al., 1999]. The per-
cent of the explained variance is 6%. Spectral peaks
of the associated temporal base function are 2.1 years
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Figure 5a. Independent component analysis (ICA) components: N°1 to N%4: temporal base
functions g; (left) and corresponding frequency spectra (right)

and 1 year (Figure 5 h). Also observed in the associ-
ated temporal base function (Figure 5 g), a periodicity
greater than 10 years, the spectral analysis does not
allow identifying such a low frequency due to the short-
ness of the time series. The correlation of the temporal

base function with the NA index is -0.60 and the corre-
lation with the SA index is 0.41.

This interhemispheric SST gradient is well known
as the principal source of variability in the tropical
Atlantic Ocean. Its preferred periodicities are quasi-
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Figure 5b. Independent component analysis (ICA) components: N5 to N°8: temporal base
functions g; (left) and corresponding frequency spectra (right).

biennial and around 13 years [Chu, 1984]. The physical
origin of the “dipole” is not yet understood. It has, how-
ever, been shown that it has links with the extra tropical
Atlantic and particularly with the NAO [Namias, 1972].
Another link was found with the ENSO phenomenon

[Enfield and Mayer, 1997; Delecluse et al., 1994]. The
structure of the component score map exhibits a pat-
tern in the Pacific Ocean close to the classical ENSO
pattern (given, for example, by the score map of com-
ponent ICA 2).
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This component is very important because it seems
to be linked with various climatic disasters around the
tropical Atlantic basin. In particular, the Northeast
Brazil precipitation has shown a high correlation with
this “dipole” SST anomaly [Harzallah et al., 1996].

4.3.5. Component ICA 5. The link of this com-
ponent with the ENSO is shown by the component score
map (Plate 3 e). Furthermore, spectral peaks (Figure
5 j) of the temporal base function of this component
are 4.2, 2.13, and 1.3 years with also some lower peri-
odicities. We recognize the periodicities of the ENSO
phenomenon. The explained variance reprensents 5.8%.

4.3.6. Component ICA 6. The component score
map (Plate 3 f) of this component is clearly linked with
the ENSO phenomenon. This hypothesis is confirmed
by the 4.2 years spectral peak (Figure 5 1) of the tempo-
ral base function. This component represents another
temporal variability associated to the dynamical pro-
cess of ENSO. For example, the correlation is high (-
0.48) between its temporal base function (Plate 3 a) and
the Ship6 index when we introduce a lag of -8 months.
The component score map also brings into evidence a
link with the Indian Ocean. This component represents
4.3% of the total variance.

4.3.7. Component ICA 7. The component score
map (Plate 3 g) shows that it affects essentially the In-
dian Ocean. A dipole structure is present in the Indian
Ocean with a southeast/northwest gradient. This pat-
tern is close to the September SST anomaly found in
the work of Terray [1995, Figure 7]. Correlations of the
temporal base function with those of other components
ICA 5 (0.57), ICA 2 (0.51), and ICA 3 (-0.47), each
being linked with ENSO, indicate that this component
is related to the same ENSO phenomenon. This anal-
ysis is confirmed by the observation of SST anomalies
(not shown). Spectral peaks of the temporal base func-
tion of this component are 4.2 and 1.3 years and 10
and 7 months (Figure 5 n). This component is a very
important one because it represents 8.8% of the total
variance.

4.3.8. Component ICA 8. The component score
map (Plate 3 h) appears to be close to the score map
of the component ICA 1. The variance explained as-
sociated to this component represents 7.2%. Spectral
peaks of the temporal base function are 4.2, 2 years,
and 1 year and also 7 months (Figure 5 p). These spec-
tral peaks are also close to those of the component ICA
1. So this component is probably related to the same
phenomenon but with a different temporal variability.

4.4. Discussion

Contrary to PCA results (not shown), where at best
two or three components may be interpreted, ICA ex-
tracts eight quite easily interpretable components. We
think that the PCA constraint of maximization of ex-
plained variance in the fisrt PCA components has a neg-
ative effect on solution: the linear /Gaussian/orthogonal
PCA technique artificially mix variabilities that are not
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physically connected. This is the well-known mixing
problem [Kim et al., 1999]. On the other hand, sta-
tistical independence criterion used in ICA appears to
extract individual components characterizing the dy-
namical complexity of each physical phenomena. Each
basis function is being more a kind of physically plau-
sible prototype that would be extracted, in a totally
different approach, by a unsupervised classification ap-
proach, like clustering or Kohonen map techniques.

As shown in section 4.1.3, the ENSO phenomenon is
highly non-Gaussian. So the PCA or related techniques
are not well adapted for the analysis of this physical
process, and the use of the ICA in this context appears
interesting. ICA describes the variability of the ENSO
phenomenon with several ENSO-related ICA compo-
nents describing particular temporal behavior acting in
different geophysical locations and exhibing teleconnec-
tions between oceans. This is the well-known splitting
of one complex climatological phenomenon, with links
on various oceans, into several statistically independent
components that are prototypes of a dynamical behav-
ior. Extracted ICA temporal base functions are proto-
types that are used by the analysis to describe all the
temporal variabilities of the ENSO phenomenon in all
geographical regions.

If the component ICA 2 is the component with the
geographical aspect, the closest to classical ENSO pat-
tern, components 3, 5, and 6 (for the Pacific variabil-
ities), components 1 and 8 (for relationships with the
Atlantic variabilities), and component 7 (for the Indian
Ocean variabilities) also display an ENSO information
concerning a different dynamical behavior in other geo-
graphical locations. Spectral peaks associated to these
extracted temporal base functions (quasi-quadrennal,
quasi-biennial, and annual periodicities) are those asso-
ciated to ENSO phenomenon [Zhang et al., 1997]. We

see that our analysis is then particularly robust since

no filtering of data was used before the analysis.

The fact that a schematic sequence of component was
not found by the analysis shows the aperiodicity of the
ENSO phenomenon. Then ICA confirms that the quasi-
periodic conception of the ENSO cycle is too simple and
that, as commented by Wallace et al. [1998], the canon-
ical conception of the ENSO scheme is nothing more
than an ideal case. The ICA technique shows that the
ENSO phenomenon cannot be reduced to a simple dy-
namical behavior (like an index), in all regions over the
tropical Pacific [ Wallace et al., 1998]: there exist many
ENSO components describing its space-time variabili-
ties and the teleconnections between the oceans.

More generally, we could say that the ICA technique,
which has no constraint either for globalization or for lo-
calization of base functions, allows the determination of
interesting teleconnections. Previous studies on tropical
SST using the rotational technique [Kawamura, 1994]
or MSSA approach [Moron et al., 1998] does not found
these teleconnections. Our global ICA analysis gath-
ers relationships between the ENSO and the Indian
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and Atlantic Ocean variabilities confirming the find-
ings of many previous specific approaches. In partic-
ular, we observe that teleconnections exist between the
ENSO/Pacific and the tropical Atlantic (components
ICA 1, 3, and 4) and between the ENSO/Pacific and
the Indian Ocean variability (component 7).

5. Conclusion

We have introduced a new component extraction
technique, based on information theory, for geophysical
time series analysis. This technique aims at extract-
ing statistically independent components, a constraint
stronger and more pertinent than the decorrelation at
the basis of classical techniques (PCA, SVD, FA). It can
also be extended to a nonlinear mixture model.

This new technique has not the limitations of classi-
cal techniques: orthogonality of components extracted,
globalization or localization inadequacy of PCA or RT,
mixing of modes due to the constraint of maximum vari-
ance explained by extracted components, inadequacy or
subjectivity of standard statistical quality criteria, etc.
Assumptions at the basis of ICA and classical tech-
niques (PCA, RT) have been summarized in Table 1,
which shows that only ICA does not make artificial as-
sumptions introducing misunderstanding on the analy-
sis.

To illustrate ICA capability to analyze complex cli-
matological phenomena, this technique has been ap-
plied to the tropical SST. Results obtained with ICA
gathered results of many other specific studies using a
large variety of techniques (time, space, frequency em-
phasis) and experimental conditions. So ICA appears
to be a new tool particularly well adapted for the analy-
sis of geophysical variabilities, with important telecon-
nections. The ICA technique clearly shows that im-
portant relationships exist between the northern and
the southern equatorial Atlantic SSTs via the “dipole”
pattern, between the Pacific and the Atlantic SSTs via
the ENSO phenomenon, and the Pacific and Indian
Oceans. These teleconnections were not found by ro-
tational techniques or MSSA approaches. More work
remains to be done to analyze in detail the results of
ICA. However, our study has already shown that the
potentialities of the ICA technique are very high com-
pared to those of the classical techniques (like PCA or
RT). It allows the geographical and temporal analysis of
the physical components that constitute the geophysical
time series.

Depending on the availability of a priori information
about the basis functions at the origin of the variabil-
ity in observations, the ICA technique can be used in
other ways that analysis in time. An observation x
can be a field describing the geographical variability
of one parameter for a given date ¢. This is often re-
ferred to as EOF analysis [von Storch and Frankignoul,
1998]. The EOF analysis could be sophisticated in var-
ious ways: complex EOF if patterns evolve, extended
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EOF if many variables are linked, periodically extended
EOF or cyclostationary EOF if periodicity assumptions
could be made, etc [Kim et al., 1999]. It is also possible
to privilege the frequency aspect with the SSA (singu-
lar spectrum analysis) approach [Broomhead and King,
1986; Vautard and Ghil, 1989; Vautard et al., 1992;
Plaut et al., 1995] or to analyze the space/time struc-
ture with the MSSA (multi-channel singular spectrum
qnalysis) approach [Plaut and Vautard, 1994; Vautard
et al., 1996; Zhang et al., 1997]. The interested reader is
referred to Richman [1986] for more details concerning
the different approaches.

This work opens numerous future projects: (1) de-
velop a nonlinear mixture model with its associated
learning algorithm [Burel, 1992]; (2) study the adap-
tation of the transfer functions (section 3.2.1); (3) an-
alyze the behavior of a set of more variables to under-
stand the physical processes inducing the variability on
observations, for example, by adding the atmospheric
water vapor for the study of the ENSO and its tele-
connections; (4) use other spatiotemporal approaches
(complex EOF, extended EOF, periodically extended
EOF, cyclostationary EOF, etc [Kim et al., 1999]) with
the ICA technique; and (5) apply the results of ICA
analysis to test ENSO predictions.

Appendix A: Notation

Matrices and vectors

mixing matrix.

noise.

components to extract.

estimator of components o.

a sample of the database, input of the neural
network.

a prewhitened data.

output of the neural network.

N x M data matrix.

covariance matrix of data (=< - ¢ >).
couplings, synaptic weights, estimate of A},
preprocessing matrix.

matrix of eigenvectors of C,.

eigenvalues of C ;.

an arbitrary diagonal matrix with nonzero ele-
ment (arbitrary scales and signs).

an arbitrary permutation matrix.

a rotation matrix.

@ x @ Jacobian matrix G;; = g% =Y,

Q
QOH >M<STI Ocwy &9 0k

a

h;
Scalars

dimension of the geographical field.
number of components.

dimension of inputs .

number of samples in D.

dimension of the time index.

time delay.

e N ZOu

Sets
D  general data set.

T geophysical data set.
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Functions
g; base function.
fi, f transfer function.
pi probability distribution function of components
g;.
Py, probability distribution functions (P; = Py,).
R redundancy.
I information.
H entropy.
C correlation.
F  neural network mapping.
®; output coordinates of neural mapping.

u  correlation function.
Symbols
used for estimated variables.

A'  transpose of matrix A.
A" generalized inverse of matrix A.
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