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Abstract

An evolutionary system was developed for generation of complete tracks of northern midlatitude synoptic-scale

storm systems based on optical ¯ow and cloud motion analyses of global satellite-based datasets produced by the

International Satellite Cloud Climatology Project (ISCCP). The tracking results were compared with low sea level

pressure anomaly (SLPA) tracks obtained from the NASA Goddard Institute for Space Studies (GISS). The SLPA

tracks were produced at GISS by analysis of meteorological, ground-based National Center for Environmental Pre-

diction (NCEP) datasets. Results from the evolutionary system were also compared with results from using (a) the

k-nearest neighbor rule (k-NN) and (b) self-organizing maps (SOM) to determine correspondences between consecutive

locations within a track. The consistency of our evolutionary storm tracking results with the behavior of the low sea

level pressure anomaly tracks, the ability of our evolutionary system to generate and evaluate complete tracks, and the

close comparison between the results obtained by the evolutionary, k-NN, and SOM analyses of the ISCCP-derived

datasets at tracking steps in which proximity or optical ¯ow information su�ced to determine movement, demonstrate

the applicability and the potential of evolutionary systems for tracking midlatitude storm systems through low-reso-

lution ISCCP cloud product datasets. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Clouds are a major source of uncertainty in our
attempts to use models to predict future climate
change. In the middle latitudes, clouds are pri-
marily organized along storm systems that travel
down the path of the jet stream and constitute the
main weather makers in the region. The cloud
properties of individual storms have been exam-

ined in several meteorological studies; the struc-
ture and movement of the overall midlatitude
cloud ®eld, however, have not been investigated in
detail, partly due to the lack of data with su�cient
time and space resolution. Knowledge of the
properties of the midlatitude cloud ®eld is very
important in the study of climate change, since in a
warmer climate, changes in clouds can produce
strong feedbacks that must be correctly resolved
by climate models. The advent of a global satellite
cloud climatology (Rossow and Schi�er, 1991)
gives us the opportunity to examine in long time
and space scales the structure and movements of
the midlatitude cloud ®eld.
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This study uses satellite-derived cloud property
data to track midlatitude storm systems. The
presence of high-top, optically thick clouds is used
here as an initial indicator of a storm system,
based on the results of the paper by Tselioudis
et al. (1999). The objective of the study is to derive
methods that provide a comprehensive description
of the large-scale structure and movement of the
midlatitude cloud ®eld, so that in the future we will
be able to investigate the seasonal and interannual
variation of those large-scale cloud ®eld proper-
ties. The results of this investigation will provide
climate modelers with a valuable tool to evaluate
their model simulations and will give important
information on potential changes in midlatitude
cloud properties with climate change.

Previous work in tracking objects has included
a variety of analytical approaches. Arnaud et al.
(1992) developed an automatic system for tracking
African convective systems which resulted in
generating climatological statistics to describe the
time evolution of the convective systems. Their
method was primarily based on cloud labeling and
the identi®cation of intersections between succes-
sive images. Endlich and Wolf (1981) investigated
feature tracking by using pattern recognition
algorithms. Silver and Wang (1997) used spatial
overlaps to determine the evolutionary history of
objects extracted from computational ¯uid
dynamics datasets. The distance between the
centers of regions and di�erences in region areas
were the basis for a cost function used to deter-
mine the correspondence of regions from one
frame to another in a method developed by Bolla
et al. (1997). Lane et al. (1998) used optical ¯ow
calculations and tracking trees to track moving
objects in sequences of sector-scan sonar images.
A genetic algorithm approach based on tem-
plate matching and discriminant strength was
used by Carbonaro and Singaretti (1997) to track
video-recorded image sequences. Parikh et al.
(1997, 1998) outlined a methodology for using
evolutionary techniques that involve neural
networks and genetic algorithms to achieve
temporal classi®cation of cloud systems as well
as automatic techniques for identifying and
tracking synoptic-scale storm systems (Parikh
et al., 1999).

An excellent review of techniques and di�cul-
ties associated with determination of non-rigid or
evolving pattern movement in environmental sat-
ellite imagery can be found in (Wu, 1995). Wu
developed a correlation and relaxation-labeling
framework for computation of optical ¯ow, ap-
plied his technique to determination of cloud
motion in infrared images, and contrasted his
technique to classical techniques such as template
matching and gradient-based optical ¯ow tech-
niques. Several general optical ¯ow techniques that
are not necessarily oriented toward cloud motion
are reviewed and compared by Barron et al.
(1994). One of the region-based matching tech-
niques, a technique developed by Anandan (1989),
as described and implemented by Barron et al.
(1994) was used in this study for computation of
optical ¯ow estimates.

The literature on genetic algorithms and evo-
lutionary computation includes several examples
of evolutionary systems that have been used for
motion segmentation, robotic navigation and
shortest path problems. Two evolutionary systems
that are particularly analogous to our cloud
tracking evolutionary system with respect to type
of problem and evolutionary methodology are the
Evolutionary Planner/Navigator (EP/N) system
(Xiao et al., 1997) for robotic navigation and the
multiresolution genetic algorithm (MGA) devel-
oped by Voicu and Myler (1998). Our evolutionary
system seeds the search space with potentially
good partial storm tracks in a manner similar to
the way in which the Voicu and Myler cloning
operator constructs and extends partial paths
when searching for shortest paths in planar
graphs. The approach of distinguishing and de-
veloping di�erent evaluation functions for feasible
and for infeasible paths was a technique that was
used in both our system and in the EP/N robotic
navigation system.

In this paper, we describe the preprocessing of
datasets for our evolutionary system, our evolu-
tionary methodology, and the results of comparing
the output from our system with tracks produced
from analyses of low sea level pressure anomalies
(SLPA) and with tracks from correspondence-
based analyses using (a) the k-nearest neighbor
rule (k-NN) and (b) self-organizing maps (SOM).
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Section 2 outlines the process of constructing time-
sampled cloud optical thickness and cloud top
pressure datasets from ISCCP datasets. The pro-
cess of selecting candidate pixels and/or collections
of pixels that could potentially be members of a
storm track is explained in Section 3. Section 4
describes our k-NN and SOM correspondence-
based approaches for determination of storm
tracks. The details of our evolutionary methodol-
ogy together with illustrative results are presented
in Section 5. In Section 6 we conclude with a
general discussion of results and suggestions for
future research.

2. Construction of time-sampled datasets

From stage D1 ISCCP datasets for the ®rst 12
days in April 1989, cloud optical thickness (TAU)
and cloud top pressure (CTP) parameters were
extracted. The D1 ISCCP datasets, which sum-
marize and merge stage DX pixel-level results from
several satellites, have a spatial resolution of 280
km and a temporal resolution of 3 h. The cloud
top pressure and the cloud optical thickness equal-
area datasets can be, and generally are, displayed
and analyzed as images with 144 columns and a
maximum of 72 rows in which values of data at
latitudes north and south of the equator are re-
peated two or more times as needed to create an
image with values at every 2.5° of latitude and 2.5°
of longitude. In order to analyze the cloud struc-
tures within the northern midlatitudes from 30°N
to 60°N, we extracted 28 rows of data which
covered the latitudes from 0°N to 70°N. With the
exception of data missing due to failure of satellite
coverage, cloud top pressure values, which are
based on infrared (11 lm wavelength) observa-
tions of cloud top temperature, are typically
available every 3 h. However, cloud optical
thickness values, which are based on satellite ob-
servations in the visible spectrum (0.6 lm wave-
length), are typically missing for over one-half of
the globe (72 or more columns in the image) due to
lack of re¯ected sunlight during night-time hours.

The importance of cloud optical thickness
(TAU) values in the characterization of storm
systems in the northern midlatitudes makes it im-

perative that this information be included in the
analysis of cloud tracks associated with storm
systems. In any given region of the globe, the
maximum number of consecutive TAU values that
could be reliably obtained during a 24 h period
was three (corresponding to a period of about 9 h
of daylight). Although our analysis could have
been performed using the unprocessed TAU im-
ages, we decided, for purposes of simpli®cation of
optical ¯ow feature extraction and identi®cation of
cloud structures associated with storm systems, to
construct time-sampled TAU images.

A time-sampled TAU image consists of eight
di�erent longitude intervals of TAU data sampled
from eight consecutive three-hourly ISCCP data-
sets. Neighboring longitude intervals (groups of
columns) in a time-sampled image contain TAU
values that are separated in time by 3 h. At any
given spatial location within a sequence of time-
sampled TAU images, consecutive TAU values at
the same location will be actual TAU values ex-
tracted from ISCCP datasets separated in time by
either 3 or 15 h. Using the time-sampled TAU
values for tracking meant that the tracks that were
generated consisted of two steps separated by 3 h
followed by one 15 h step. For each time-sampled
TAU image, a corresponding time-sampled CTP
image was constructed so that at any given spatial
location the TAU and CTP information in the
corresponding images came from the same time
frame.

3. Identi®cation of candidate tracking events

A synoptic-scale storm system is characterized
by long track duration and existence within the
track of one or more events (regions of interest)
that satisfy the ISCCP radiometric cloud classi®-
cation criteria for deep convection. In order to
identify the start of a track and other possible
tracking events along a track, the cloud optical
thickness (TAU) data and the cloud top pressure
(CTP) data in the corresponding time-sampled
images were thresholded at values corresponding
to 23 and 440 mb, respectively, which demarcate
deep convective cloud systems as de®ned in the
ISCCP classi®cation scheme. Regions consisting of
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three or more distinct connected points that met
the deep convective cloud system criteria were
considered as possible candidates for the beginning
of a storm track. In order to con®rm that a region
represented the beginning of a storm track, a
search had to be conducted within the previous
time-sampled images to con®rm that there were no
possible predecessors.

Coupled with the identi®cation of deep con-
vective cloud systems, a multi-threshold technique
was applied to the time-sampled TAU images to
extract candidate tracking events that might ap-
pear along a storm track after the initial region of
tracking events had been identi®ed. The TAU
images were thresholded and labeled connected
components extracted for three di�erent threshold
levels. The ®rst level corresponded to the TAU
criteria of 23 and above for cloud optical thickness
for deep convective systems. The second and third
threshold levels corresponded to TAU criteria of
13.5 and 9.4, respectively. For all three threshold
levels, in each of the connected components, all
points that had a value of TAU that was equal to
the maximum TAU value within that component
were extracted and added to the pool of candidate
tracking events.

4. Feature extraction

A binary image was formed for each time pe-
riod consisting of candidate tracking events. Each
image consisted of only two gray levels, 0 and 255.
From these sequences of binary images, optical
¯ow estimates for each pixel in every time frame
were extracted using the technique developed by
Anandan (1989) as implemented by Barron et al.
(1994). For each pixel in the candidate tracking
event images, other features that were extracted
included the location of the tracking event itself
(row and column coordinates), location in the next
frame of the nearest point to the east allowing
westward movement of at most one pixel, and
location in the next frame of the closest point. For
the k-nearest neighbor analysis, the TAU values
from the time-sampled images were retained and
formed one of the features in the input datasets.

5. Track generation by correspondence determina-

tion

Two techniques for determination of the best
corresponding tracking event in the next image
were applied to input datasets. The input datasets
contained expected projected locations in the next
image of the current tracking location based on
optical ¯ow estimates and on nearest projected
tracking event to the east calculations. The ®rst
technique, the k-nearest neighbor rule, included
within training and test datasets TAU values and
analyzed exclusively tracking events whose TAU
values met the deep convective system TAU
threshold level of greater than or equal to 23. The
second technique, self-organizing neural networks
or maps, was based on projections and included
candidate tracking events from all three threshold
levels.

5.1. k-nearest neighbor (k-NN) analysis)

For each time frame in a given sequence of n
time steps from time t2 to time tn, the k-nearest
neighbor classi®er with k � 1 was applied to the
input datasets described above using the input
dataset from the previous time step as the cali-
bration dataset. In the test dataset, features rep-
resenting projected locations were replaced by the
actual location of the candidate tracking event.
Class categories were de®ned as the component
labels associated with the highest threshold value
(TAU� 23) from the dataset at the previous time
step. Output for a dataset for time ti consisted of a
point-by-point listing of points labeled with class
categories that were component labels associated
with components from time tiÿ1. Each individual
point in a connected component ci for a dataset for
time ti thus had a component label lci associated
with time ti and a component label lciÿ1

associated
with time tiÿ1. The location of the track at time ti

was de®ned as the location of the tracking event
with the maximal TAU value within the compo-
nent labeled lci . Thus, through a process of pro-
gressive training and testing cycles for each time
step, tracks were generated proceeding from cor-
responding connected components.
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5.2. Self-organizing map (SOM) analysis

The self-organizing map neural network
clusters items in the input dataset into categories
of similar objects by creating a two-dimensional
feature map (layer of processing elements or
nodes). With each node in the feature map is
associated a reference or codebook vector in
higher-dimensional space. An input vector is
mapped onto the feature node whose reference or
codebook vector provides the best match to the
input vector. Reference or codebook vectors are
obtained after a given number of training itera-
tions have been performed in order to stabilize the
SOM.

The Self-Organizing Map Program Package
SOM_PAK (Kohonen et al., 1995) developed by
the SOM founder, Teuvo Kohonen, and his
colleagues at the Helsinki University of Technol-
ogy was used to implement neural network anal-
ysis of tracking event correspondences in this
study. The feature vectors used as input to the
SOM consisted of the row and column coordinates
in the next consecutive frame of the optical ¯ow
projections and the row and column coordinates in
the next consecutive frame of the nearest point to
the east projections. No TAU features were in-
cluded. The tracking events included all tracking
events isolated at all three threshold levels which
was di�erent from the number of tracking events
processed by the k-NN analysis. Calibration labels
consisted of connected component labels which
were di�erent for each of the threshold levels. The
SOM architecture used was a 12� 18 rectangular
lattice. As in the k-NN analysis, the location
features in the test sets were set identically equal to
the actual coordinates of the location of the
tracking event. Calculation of tracks then
proceeded by determination of which, if any, of
the calibrated units or component labels from a
training run on the previous image corresponded
to a given tracking event in the test set. Tracking
always proceeded by looking for the component
label at the highest or deep convective threshold
level before examining tracking events that did not
meet the deep convective system TAU criteria.

The steps in the implementation of the SOM
network consisted of:

1. random initialization of the 12� 18 rectangular
feature map;

2. (phase 1 map training for 1000 iterations, using
a neighborhood radius of 10 and a learning rate
of 0.05;

3. phase 2 map training for 10000 iterations, using
a neighborhood radius of three and a learning
rate of 0.02;

4. calibration using the input dataset for time tiÿ1;
5. visualization using the dataset for time ti.
Correspondences were obtained by determination
of the component labels of the feature nodes and
tracking was performed as described above as a
result of the visualization and calibrations steps.

6. Track generation by evolutionary computation

Evolutionary systems use principles of evolu-
tion to optimize functions. In an evolutionary
system, the coding of a chromosome or individual
in a population must be de®ned, genetic operators
for recombination, mutation and selection must be
speci®ed, and a ®tness function for evaluation of
each individual in the population and selection for
recombination must be constructed. The system
then continues to evolve new populations until
some termination condition such as maximum
number of iterations has been satis®ed. At that
time, the best individual or individuals in the
population represent the solution to the optimi-
zation problem.

For our system, each individual in a population
represented a track. A chromosome or individual
consisted of n integers, where n represents the
number of time-sampled images in the image se-
quence. The value of n for our experiments was 34
which corresponded to about a 12 day period. If a
tracking event was found in an image at time i in
the sequence as described above, then all integer
values in the chromosome prior to the ith value
were set to a no-event value such as ÿ1. In each of
the images, candidate tracking events were num-
bered consecutively starting at 1. The tracking
number for the beginning of the track was then
used as the only possible value for the integer at
position i in the chromosome. The integer values
for other positions j following position i could
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range from zero which represented the end of a
track to the number of tracking events ntj in image
j as the number of iterations increased. Initially
only the value at position i� 1 was allowed to
vary.

Specialized application-speci®c mutation and
crossover operators were de®ned for an initial
period in the evolutionary process in order to seed
the population or search space with good partial
tracks. After every m iterations, where m was set to
20 for our experiments, mutation was speci®ed to
occur at the next position only. After the initial
period passed, mutation could occur at any valid
position. The crossover operator used was one-
point crossover in order that good partial paths
would not be disrupted. During the initial seeding
period, crossover was restricted to the site of track
extension. These specialized operators, in addition
to a special routine for initialization of the popu-
lation were added as customized operators into
PGAPack, a parallel genetic algorithm library
(Levine, 1996), which was used for our experi-
ments.

The function to be optimized or minimized was
the sum of all the distances or absolute values of
deviations along the track from the best projec-
tions based on connected component correspon-
dences for the lowest threshold level, optical ¯ow
projections, nearest point to the east projections
and closest point projections. A ¯owchart of the
procedure is given in Fig. 1. The component pair
classes consisted of class labels for every pair of
connected components in consecutive images, de-
scribing whether or not the relationship between
the two components was (1) a direct correspon-
dence, (2) a merge, (3) a split or (4) no relationship.
Classi®cation techniques used are described in

(Parikh et al., 1997). Distance was de®ned as the
city block distance, i.e., the sum of the absolute
values of the row di�erence and the column dif-
ference. The number of values added into the sum
increased as partial paths were extended from the
beginning of the evolutionary process until the end
of the seeding period.

The ®tness of an individual was de®ned in terms
of this sum of deviations from predictions. If there
was no tracking event in the next image that was
within range (as de®ned by the number of rows
and columns that a storm system could move
within the given time period) of a given tracking
event and the corresponding value in a chromo-
some track indicated the existence of a track, the
distance value for that part of the track was
speci®ed by a ``not feasible penalty''. Similarly,
there was a ``premature end penalty'' if the value in
a chromosome track position was zero and there
was in reality a good corresponding tracking event
in the next image.

7. Discussion of results and concluding remarks

The sea level pressure tracks for two storm
systems, STORM P and STORM A, that origi-
nated in the Paci®c and Atlantic Oceans, respec-
tively, close to 5 April 1989 are shown in Fig. 2
and the corresponding results for the cloud system
tracks using our three di�erent techniques are
shown in Figs. 3±5. It is to be noted that the tracks
for the k-nearest neighbor analysis and for the self-
organizing maps were restarted manually a maxi-
mum of one time when the track was lost. The loss
of a track is denoted in the ®gures by a break in the
line segments of the track. The evolutionary sys-

Fig. 1. Processing steps for storm tracking evolutionary system. Fig. 2. NCEP sea level pressure tracks for storms P and A.
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tem, however, was able to follow the track without
any manual restart and also was able to investigate
and output other feasible tracks. These capabilities
represent potential advantages of evolutionary
techniques for tracking storm systems over stan-
dard pattern classi®cation techniques and data
clustering techniques such as self-organizing maps.
All three automatic techniques yielded results that
were generally consistent with each other at loca-
tions where domain-speci®c knowledge or longer
track look-ahead analyses were not necessary. The
evolutionary system, which did have the ability to
compare tracks throughout a long time period,
produced not only complete tracking results but
also results which were more consistent than the

results produced by the correspondence-based
techniques with the movement of the cloud sys-
tems associated with the low sea level pressure
tracks.

Our evolutionary system is currently still under
development. We have been investigating the
addition of a smoothness term to the evaluation
function that would not prohibit a storm system
from turning sharply in response to factors such as
location of the jet stream. We expect to add in
future improved estimates of optical ¯ow and
information based on analyses of cloud system
structures. A signi®cant advantage of the
evolutionary system framework is that it provides
a mechanism for the incorporation of domain-
speci®c expertise into the tracking procedure.
The results of this study demonstrate the poten-
tial of evolutionary techniques for tracking
synoptic-scale cloud systems associated with
midlatitude storms through low resolution cloud
product datasets. Future research will focus on
enhancements to the system and application of the
system to datasets from di�erent months and
years.

Discussion

Goode: You mentioned a couple of times that
you were intending to include the information
about cloud structure to enhance your tracking
performance. How do you incorporate that in-
formation?

Parikh: The evaluation function in the evolu-
tionary algorithm computes the sum of the dis-
tances between the next tracking event (as speci®ed
within an individual chromosome) and the best
prediction of the next tracking event. During the
initial seeding period, as partial tracks are
extended, and also during the processing after the
initial seeding period, the best prediction for the
next tracking event is an event that lies within a
corresponding cloud structure (for the lowest
threshold level). At the previous Pattern Recog-
nition in Practice conference, PRP-V, we presented
a paper that discussed our methodology for clas-
si®cation of correspondences between cloud

Fig. 4. Self-organizing map cloud tracks for storms P and A.

Fig. 5. Evolutionary system cloud tracks for storms P and A.

Fig. 3. k-Nearest neighbor cloud tracks for storms P and A.

J.A. Parikh et al. / Pattern Recognition Letters 20 (1999) 1389±1396 1395



structures. (Note of the editors: see Parikh et al.
(1997) in this paper).

Goode: Have you considered incorporating a
probability distribution for di�erent cloud struc-
tures and maybe a Bayesian approach?

Parikh: We are looking at only one type of
cloud structure here: cloud structures that are very
high and represent deep convective systems. We
are thresholding these storm cloud structures into
di�erent categories de®ned by atmospheric scien-
tists. Essentially, there is just only one cloud clas-
si®cation category, namely deep convective
systems.
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