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ABSTRACT
One approach to studying turbulent convection in stars is through the use of large computers with a

technique called Large Eddy Simulation (LES). Since no computer presently available, or even projected
in the foreseeable future, can resolve all of the scales that characterize a fully developed turbulent Ñow,
the LES technique resolves the largest scales, while it models the ““ unresolved ÏÏ scales with a subÈgrid
scale (SGS) model. In the astrophysical literature, two such models have been used.

It is the purpose of this paper to show that the Ðrst of the SGS models (1) contradicts Galilei invari-
ance, (2) employs an incorrect timescale (Eulerian instead of Lagrangean), (3) contradicts the Kolmogo-
rov inertial law and the Richardson di†usion law, (4) misinterprets dynamical and kinematic e†ects, and
(5), from the numerical view point, gives rise to a turbulent viscosity much larger than it ought to be.

The second SGS model has none of the above problems, the only shortcoming being its incomplete-
ness, since it was originally devised for shear rather than buoyancy dominated Ñows. Thus, it must be
improvedÈa process that present knowledge of turbulence allows us to carry out quite systematically.

In conclusion, the Ðrst SGS should be avoided, while the second should be used and improved.
Subject headings : convection È methods : numerical È stars : interiors È turbulence

1. INTRODUCTION

Historically, the one-point closure model, also known as
the Reynolds stress approach &(Speziale 1991 ; Shih
Shabbir has been widely and suc-1992 ; Lumley 1978),
cessfully used to describe all types of turbulent ÑowsÈ
except, thus far, the ones of astrophysical interest where the
model is only recently being considered, in spite of its more
than 50 yr of successes in other Ðelds where convection,
shear, and rotational e†ects are present. Since compress-
ibility e†ects can be incorporated into these models (Sarkar

the only outstanding feature di†erenti-1990 ; Canuto 1996),
ating astrophysical settings are the radiative losses, which,
however, are a separate issue from the heart of the nonlinear
problems that constitute the major hurdle in constructing a
reliable model of turbulence.

While the Reynolds stress models (also called second-
order closure [SOC]) are being continuously improved, in
the last decade a new methodology has come to the fore,
based on the use of large computers that attempt to solve
the Navier-Stokes equations (NSE) themselves : a technique
known as Large Eddy Simulation (LES). Such techniques
are presently employed in astrophysics The(Canuto 1994).
LES method, however, faces a basic difficulty : a fundamen-
tal and model-independent law of turbulence &(Landau
Lifshitz shows that the1982 ; Lesieur 1991 ; McComb 1990)
number of degrees of freedom of a fully developed three-
dimensional turbulent Ñow, or alternatively, the number of
grid points N, scales with the Reynolds number Re as

N D Re9@4 . (1a)

Since todayÏs fastest computers can handle at most
N D 109, the Re that one is really able to resolve is

Re'D 104 , (1b)

which is several orders of magnitude smaller than the one
encountered in either geophysics (ReD 108) or astrophysics
(ReD 1010). In other words, one can fully resolve a Ñow
that is considerably less turbulent than the real Ñow one
needs to study. To quantify the problem in terms of convec-
tive parameters, we recall that, since the Reynolds number

Re, the Prandtl number p, and the Rayleigh number Ra are
related by

pRe2D Ra('S~1@2)2@3 , (2a)

where ' is a dimensionless function representing the ratio
between turbulent and molecular conductivity, and S is
given by

'\ s
t

s
, S \ pRa . (2b)

We also have

N D Re9@4 D p~9@4S9@8('S~1@2)3@4 . (2c)

We must distinguish two cases :

1. L aboratory convection.ÈIn this case, one usually
employs substances with

p D 1 (2d)

et al. For a fully developed,(Kerr 1996 ; Castaing 1989).
highly efficient turbulent regime, 'D S1@2, and so the
maximum Ra one can resolve is

(Ra)' D 108 . (2e)

Indeed, the latest numerical approach to turbulent con-
vection has resolved all the scales up to(Kerr 1996)
RaD 107. Since one of the major goals of this calculation
was to study the newly discovered et al.(Castaing 1989)
transition to ““ hard turbulence,ÏÏ that is, the change in the
Nusselt number (Nu) versus Ra relationship

Nu D (Ra)1@3 ] Nu D (Ra)2@7 , (2f )

and since the latter is known to set in at the lowest Ra
(D104), in the case of the largest aspect ratio, the calcu-
lations were carried out for an aspect ratio of D7 and,
indeed, they conÐrmed the existence of such a transition.
Thus, the numerical approach known as direct numerical
simulation (DNS) and the laboratory data conÐrmed each
other quite convincingly. There is no need to employ an
LES unless a transition to a new exponent of Ra is found at
even higher values of Ra.
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2. Stellar convection.ÈIn the middle of the convective
zone (CZ) of a star, turbulence is so efficient,

+\ +ad] O(10~8) , (3a)

that one hardly needs a sophisticated turbulence model.
The interesting and challenging case is near the borders of
the CZ, where convection is inefficient and therefore

+\ +ad] O(1) . (3b)

The interpretation of the most recent helioseismological
data & Miranova Christensen-(Baturin 1995 ; Monteiro,
Dalsgaard, & Thompson depend critically on the1996)
proper quantiÐcation of O(1), that is, on the convective
model one employs. In this region, we have ('D S2)

S ¹ 1 , (3c)

and so becomes (p D 10~10) ,equation (2c)

N D 10~4p~9@4S9@4 B 1016 , (3d)

which is D107 larger than the maximum oneN'D 109
can resolve with todayÏs computers (even with the upcom-
ing teraÑop machines, one is still some 8 orders of magni-
tude short of what is required). Thus, the behavior of the
most important region of a stellar CZ cannot and will not
be fully describable by a numerical approach alone, since a
huge number of scales remain unresolved. One can easily be
convinced that, with one actually resolves a fewN'D 109,
percent of all the scales. This has two consequences : (a) one
must supplement the LES with a physical model to rep-
resent the subgrid scales, and (b) the LES results depend on
how complete a physical model one adopts for the SGS.

In this paper, we shall discuss the two SGS models used
in astrophysical LES calculations and show that the Ðrst is
physically incorrect on several accounts, while the second is
physically correct, but its physical content needs to be
improved.

2. THE SGS PROBLEM

At the level of the fundamental dynamic equations, it can
be said very succinctly that an LES resolve not the full NSE
but the truncated version,

C L
Lt

] lk2] q~1(k o k
*
)
D
ua:(k) \;

j
Mabc: (k)ub:( j)uc:(k [ j) ,

(4a)

where the symbol ““ \ ÏÏ indicates that one resolves the
scales smaller than a limiting wavenumber

k \ k
*

D *~1 . (4b)

The e†ect of the unresolved scales is represented by q(k o k
*
),

which can also be represented as a dynamical, subgrid vis-
cosity,

q~1(k o k
*
) \ k2l

d
(k o k

*
) . (4c)

The choice of this timescale is therefore a crucial matter.

2.1. Incorrect SGS Model
Suppose one identiÐes q with the Eulerian timescale qE,given by

qE~1D e1@2k D V k , (5a)

where e is the turbulent kinetic energy, which, being con-
tributed mostly by the large scales, justiÐes the second

expression, where V is the velocity of the largest eddies. The
choice physically means that the SGS are govern-(eq. [5a])
ed not by dynamical e†ects, which are local and therefore
entail only on local properties like k and v (the rate of
energy input), but rather by kinematic e†ects, also known as
sweeping e†ects. This presents an immediate problem
because kinematic e†ects cannot govern the small scales,
since they are in e†ect a Doppler shift

u[ kV , (5b)

which, once integrated, cannot a†ect the eddy energy spec-
trum. This has been amply discussed in the appropriate
literature on turbulence where it(Orszag 1973 ; LÏvov 1991),
is shown that the e†ect of large scales is akin to a uniform
convection that cannot distort an eddy and transfer energy,
therefore defeating the very purpose of an SGS of represent-
ing the energy drawn by the small scales from the large
ones. Being a purely kinematic rather than a dynamic e†ect,

cannot represent the basis for a SGS. In addi-equation (5a)
tion, the use of uniform convection as per equation (5a)
would contradict Galilei invariance of the many times
moments, since, for example, the correlation timescale tÈt@
of two-time energy spectrum would be dominated by q
rather than by local dynamical e†ects.

In the development of theories of turbulence (Kraichnan
the use of and the1958, 1959 ; Leslie 1973), equation (5a)

implication of large-scale convective e†ects on small scales
was recognized as the main reason for the failure to obtain
the Kolmogorov law,

E(k) D v2@3k~5@3 , (6a)

which is an amply validated law in turbulence. Rather,
yieldsequation (5a)

E(k) D v1@2V 1@2k~3@2 , (6b)

which is not found experimentally and which we shall
discuss in The law even if taken as an empiri-° 3. (eq. [6a]),
cal law, indicates the absence of e†ects of kinematic origin
that are represented in by the presence of V .equation (6b)
Kolmogorov law indicates instead that the convective
e†ects of the large scale are dynamically unimportant, since
an eddy that is superimposed on a uniform velocity Ðeld is
convected without exchange of energy. One can say that the
message of is that small eddies are statisticallyequation (6a)
independent of the large eddies. Alternatively but equiva-
lently, the energy transfer among small eddies is local ; that
is to say, it cannot depend on the large-scale peculiarities of
the Ñow. contradicts these facts.Equation (5a)

Finally, one can also see that contradictsequation (5a)
the Richardson di†usion law (Lesieur 1991 ; McComb 1990 ;

In general, one has that the di†usion coefficientLeslie 1973).
D is deÐned as

D\ 1
2

d
dt

X2(t)\ Sv2Tq , (6c)

where X2(t) represent the mean square distance X(t) trav-
eled by a di†using particle in a turbulent medium. We have
purposely written the last equality in such a way as to allow
more generality. Suppose we choose and thereforeq\ qLSv2T \ e. We get a di†usion coefficient that is

DD e1@2l , (6d)

where l represents the largest scales. Such a law does not
reproduce the well-known Richardson law,

DD v1@3l4@3 . (6e)
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In conclusion, is not physically acceptable.equation (5a)
For an astrophysical LES, see Nordlund (1982).

2.2. Correct SGS Model
In a turbulent Ñow, the smallest scale one strives to

resolve is the dissipation length scale, given by

k
d
4 (l3v~1)~1@4 . (7a)

Since the ratio of to (smallest wavenumber) isk
d

k0
k
d

k0
\ L

l
\ Re3@4 , (7b)

a full numerical simulation must resolve all the scales from
L all the way down to l. Since this is not possible in a large
Re situation, one resolves all of the scales up to, for instance,

wherek
*
,

k0¹ k
*

> k
d

. (7c)

To mimic a DNS, an LES must try to extend as close ask
*possible to This means that the l that appears in thek

d
.

original equations should actually be as close as possible to
the one obtained from inverting that is,(eq. [7a]),

l
d
D v1@3k

*
~4@3 . (7d)

The corresponding timescale is then

q~1 D k
*
2@3v1@3 , (7e)

which is quite di†erent from in that it noequation (5a)
longer contains any memory of the convective e†ects of the
large scales. In fact, it is an entirely local expression, in
agreement with the general arguments that only dynamical,
rather than kinematic, e†ects ought to govern the eddy
energy distribution.

An alternative, more formal, way to derive equation (7e)
is by way of avoiding the choice of a Eulerian timescale, and
instead, use the Lagrangean timescale

qL~1\
CP

0

k
E(q)dqq2

D1@2
, (8a)

which we recognize as the timescale based on the square
vorticity. If one substitutes Kolmogorov law oneeq. [6a],
obtains

qL~1 D k
*
2@3v1@3 , (8b)

which is identical to It is important to recallequation (7e).
that once the failure to derive Kolmogorov law was recog-
nized as being due to the choice of a Eulerian timescale, the
same theory was reformulated in Lagrangean terms
(Kraichnan This resulted, as expected, in the1965, 1996).
derivation of the correct Kolmogorov law. One can also
interpret as a function that removes kineticequation (7d)
energy at the resolved scales that would other-(Leith 1996)
wise attempt to cascade to unresolved scales, creating an
erratic behavior in the numerical simulation.

In practical terms, one can also say that, since on general
grounds

qE\ qL , (8c)

The dynamical viscosity generated by Eulerian timescale
overestimates the true value of notwithstanding the factl

d
,

that it is not the correct physical representation of the SGS
physics.

Finally, let us note that if in we interpret v2equation (6c)
and q as

v2\ v2(k) \ kE(k) D k~2@3v2@3 (8d)

q~1\ qL~1 D kv(k) D k[kE(k)]1@2D k2@3v1@3 , (8e)

respectively, we obtain

DD v1@3k~4@3 D v1@3l4@3 , (8f )

which coincides with the Richardson law (eq. [6f ]).
was used in & ChanEquation (7d) SoÐa (1984), Hossian

& Mullan SoÐa, & Chan Theobald,(1991), Fox, (1991), Fox,
& SoÐa and & Toomre(1991), Xie (1991).

2.3. Smagorinsky Model
In actual LES calculations & Chan(SoÐa 1984 ; Hossian

& Mullan et al. & Toomre1991 ; Fox 1991a, 1991b ; Xie
the SGS is not used in the form but in an equiva-1991), (7d)

lent expression, as we now show. If we assume that locally
production equals dissipation, we have

v\ [q
ij
S
ij

, (9a)

where is the Reynolds stress and the shear generatedq
ij

S
ijby the largest scales on the SGS. If we write

q
ij
\ [2l

d
S
ij

, (9b)

we derive

v\ l
d
S2 , (9c)

where is the mean rate of shear. Thus, substi-S24 2S
ij
S
ijtuting in yieldsequation (7d)

l
d
D k

*
~2S D *2S , (9d)

which is the well-known Smagorinsky model (Lesieur 1991 ;
widely used in a large variety of LES.McComb 1990),

3. KOLMOGOROV LAW ; EULERIAN AND LAGRANGEAN

TIMESCALES

We have stated that depending on which timescale one
chooses, one may or may not obtain Kolmogorov law. Here
we suggest a proof of such a statement. Consider the NSE
written in the k, u4 i representation :

([iu] lk2)u
i
(i)\ f

i
(i) ] P

ijl
(k)M

jl
(i) , (10a)

where represents an arbitrary external force and M rep-f
iresents the nonlinear terms

M
ij
(i) 4

P
di@u

i
(i@)u

j
(i [ i@) . (10b)

Here is the standard projection operator. We are inter-P
ijlested in the correlation function

Su
i
(i)u

j
(i@)T 4 Q

ij
(i, i@) \ P

ij
(k)Q(k, u)d(i ] i@) . (10c)

The energy spectrum E(k) is given by

E(k)\ 4nk2
P

Q(i)du . (10d)

In the absence of nonlinear interactions, we have simply

Q(i) ] Q0(i)\ /(i)
u2] l2k4 , (11a)

where / is the correlation function of the external force
is, In the presence of nonlinearities, wef

i
Èthat /

ij
D f

i
f
j
.

can use the formal solution of the NSE Ðrst given by Wyld
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and usually referred to as the Wyld-Dyson solution.(1961)
Equation (11a) becomes

Q(i)\ /] /8
u2] q

d
~2 . (11b)

This is formally interpreted as implying that the e†ects of
the nonlinearities are twofold : on the one hand, they renor-
malize the external forcing by introducing a new forcing /8 ;
and they also renormalize the viscosity by introducing a
new timescale, (d for dynamical). The Wyld-Dyson solu-q

dtion is formal in that it does not provide the expressions for
or In the region of interest in the construction of an/8 q

d
.

SGS, we can neglect / by deÐnitionÈsince the external
force is no longer actingÈthe dynamical behavior of the
small scales being governed by the ghost forcing Since, of/8 .
course, the knowledge of and is equivalent to the full/8 q

dknowledge of the turbulent solution, we shall employ a form
for suggested in & Yaglom that corre-/8 Monin (1971)
sponds to the case of a turbulent forcing that is delta corre-
lated in time. Though not the most general case, it serves the
purpose of the present case. The expression is

/8 D [k~2%(k)E~1(k)
L
Lk

E(k) , (12a)

where %(k) is the energy Ñux (the derivative of which is the
transfer), which, in the present situation, is constant and
equal to the rate of energy input v. Thus, using equations

and we obtain(10d) (11b),

E(k)D [q
d
(k)E~1(k)

L
Lk

E(k) , (12b)

which can be integrated to yield

E(k) D v
CP

q
d
~1(k)dk

D~1
. (12c)

At this point, we must choose the variable Let us beginq
d
.

with the Lagrangean case,

q
d
~1 4 qL~1D k2@3v1@3 . (13a)

yieldsEquation (12c)

E(k)D v2@3k~5@3 , (13b)

which is Kolmogorov law On the other hand, if(eq. [6a]).
we choose the Eulerian timescale

q
d
~14 qE~1 D ke1@2 , (13c)

we obtain from equation (12c)

E(k) D V 1@2v1@2k~3@2 , (13d)

since vD ke3@2. is the spectrum ÐrstEquation (13d)
obtained by and it does not conform toKraichnan (1958),
the observed law (eq. [13b]).

4. CONCLUSIONS

LES methodology has clear advantages and equally clear
limitations. The advantage is that it circumvents one of the
major problems presented by any type of turbulenceÈthe
occurrence of a huge number of scalesÈby separating them
into two broad categories, which are then treated di†er-
ently :

1. The largest eddies, which are sensitive to the boundary
conditions, the details of the stirring mechanisms, etc., and,
which therefore lack universality, are treated (resolved)
numerically without introducing adjustable parameters.
The downside is that the number of such scales is only a
fraction of the total.

2. Therefore, the remaining, unresolved scales are
assumed, without a real proof, to be more homogeneous,
more isotropic, less dependent on the geometry and injec-
tion peculiarities, and therefore more amenable to a theo-
retical model. That is the goal of the SGS.

We have already suggested a hierarchy of(Canuto 1994)
SGS models that include stable stratiÐcation, rotation,
shear, convection, etc. The simplest possible model coin-
cides with the Smagorinsky model, upon which one builds
physically more complete models. Such procedure ought to
be implemented since the background model is physically
sound though incomplete.

The other SGS model we have discussed and that has
been used in stellar/solar LES calculations, is physically
unacceptable at a rather basic level because it contradicts
several well-established laws, ranging from fundamental
ones such as Galilei invariance to Kolmogorov inertial law.
Irrespective of how ““ reasonable ÏÏ the ensuing LES results
might appear, they are the result of a Ñawed representation
of a large fraction of eddies.

The construction of a new SGS model based on a recent
model of fully developed turbulence (Canuto & Dubovikov

and that is parameter free, is under1996a, 1996b, 1996c),
way.
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