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A study of the depth mode of light propagation in turbid media with slowly decreasing scattering phase
function xsgd (when the scattering probability decreases more slowly than g24 as the single scattering
angle g is enhanced) is performed outside the framework of the Fokker–Planck approximation. We propose
and realize a regular procedure for optimum determination of the parameters of a postulated approximate
angular spectrum in the depth mode. The dispersion in the depth mode and the depth damping coefficient
are found analytically. The obtained results are in good agreement with the results of numerical calculations
and transform, in the limit, into known results of the diffusion approximation. The calculations were also
performed in a two-dimensional scattering medium, for which the transport equation written in the quasi-
diffusion approximation was recently solved exactly for the particular case of the Henyey–Greenstein phase
function. In this case very good coincidence of our approximate results with the exact solution is shown.
 1995 Optical Society of America
1. INTRODUCTION
We study analytically the problem of the propagation
of stationary light fluxes in strongly absorbing media,
k .. D (k is the true absorption coefficient and D is
the angular diffusion coefficient) when scattering on in-
dividual centers exhibits strongly anisotropic features:
k1 2 cos gl ,, 1 (kcos gl is the average cosine of the
single scattering angle g). This situation appears when
the sizes of the scattering centers are significantly larger
than the wavelength of light sa .. ld, while the rela-
tive refractive index of the centers is nrel , 1. Scat-
tering on such centers occurs mainly at small angles,
gef , lya ,, 1, so kg2l ,, 1. In such media the follow-
ing double inequality is valid:

s .. k .. D, l ,, la ,, ltr . (1)

Here s is the scattering coefficient; l ­ 1ys is the pho-
ton elastic scattering length; la ­ 1yk is the absorption
length; and ltr ­ 1y2D is the transport scattering length,
i.e., the average path along which the initially monodi-
rected flux of photons undergoing purely elastic scattering
becomes isotropic. Investigation of the light-propagation
problem under the conditions above is of considerable
practical and theoretical interest for many real problems
relevant to the physics of the atmosphere, to hydro-optics,
and also to various artificial media.1 – 4

Below we shall be interested in depth ranges z $ la,
where the scattering of light is of an essentially mul-
tiple nature: Ncol $ lay l .. 1. However, owing to the
strong absorption sla ,, ltrd, the original flux does not
0740-3232/95/122726-10$06.00
become isotropic in practice; i.e., even at relatively large
depths sz $

p
laltr d we have only small-angle scattering:

ku2lz ,, 1 (ku2lz is the mean-square multiple scattering
angle at the depth z). Physically, this effect is caused
by the fact that, because of the strong absorption, large
depths are reached only by the photons proceeding along
weakly curvilinear trajectories. Thus scattering on large
angles appears to be strongly suppressed because of the
absorption. For this reason the small-angle approxima-
tion (SAA) may be applied to describe the propagation of
photons in such media.3 – 10

Until now, the problem being considered had, in the
main, been solved within the framework of the small-
angle diffusion approximation (SADA), in which the elas-
tic collision integral in the transport equation is written
in the differential form.11 – 16 In the Fokker–Planck ap-
proximation the scattering properties of the medium are
characterized only by the numerical value of the photon
angular diffusion coefficient: D ­ ssy2dk1 2 cos gl, i.e.,

D ­ ps
Z p

0
s1 2 cos gdxsgdsin gdg . (2)

Here xsgd is the scattering phase function that deter-
mines the photon-scattering law on an individual center.
It is normalized by the condition

2p
Z p

0
xsgdsin gdg ø 2p

Z `

0
gxsgddg ­ 1 . (3)

One can see immediately from relation (3) that, if the
phase function has at relatively large scattering angles
 1995 Optical Society of America
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sg .. gef d a power form g22s11nd, then the condition n . 0
is necessary for convergence of the integral in relation (3)
at the upper limit. This means that the phase function
must decrease faster then g22 as the single-scattering
angle g is enhanced; otherwise the SAA practically has
no domain of application.

We restrict ourselves to the case when a broad station-
ary light flux of intensity I0 is normally incident upon the
surface of a medium occupying the region z . 0 (the z axis
in the medium is directed inward). Then the expression
for the light intensity I sz, ud, derived within the SADA
framework with the fluctuations of photon paths owing
to elastic scattering taken into account, has a Gaussian
form4,6,9,11,12,15:

ID sz, ud ­ EDszdFD sz, ud , (4a)

where

EDszd ­ I0
exps2kzd

coshszy
p

laltr d
,

FDsz, ud ­
1

pku2l D
z

exp

0@2
u2

ku2lD
z

1A , (4b)

ku2lD
z ­ 2

p
2Dyk tanhsz

p
2Dk d

­ 2
p

layltr tanhszy
p

laltr d . (4c)

Here ED szd is the light flux at depth z and FDsz, ud is the
angular distribution density normalized by the condition

2p
Z `

0
uFDsz, uddu ­ 1 . (4d)

It follows a posteori directly from Eq. (4c) that in
strongly absorbing media [inequalities (1)] even in the
depth mode sz

p
2Dk .. 1d the value of ku2l` is small:

ku2l` ­ 2
p

layltr ­ 2
p

2Dyk ,, 1. (The fact that the an-
gular spectrum dispersion is small at a large depth was
revealed also, without recourse to the Fokker–Planck
approximation, by means of numerical calculations4 and,
for example, in the case of the Henyey–Greenstein phase
function.5)

However, the possibility of applying the SADA is re-
lated to a very rigorous restriction imposed on the form
of the scattering phase function xsgd: it must fall with
the rise of g more rapidly than g24, i.e., faster than a
phase function of the Rutherford form.8,17 – 20 In most
real turbid media, however, quite the opposite occurs:
xsg .. gef d , g22s11nd and 0 , n , 1. This means
that there are no arguments in favor of considering the
Gaussian scattering law [Eqs. (4b)] to be correct.

Therefore the problem of calculating the light intensity
I sz, ud in real turbid media (even within the framework
of the SAA) becomes significantly more complicated, be-
cause now to compute I sz, ud one must solve the trans-
port equation with the elastic collision integral B̂elI of
the general form. In other words, light propagation in
such media is described adequately not by the differen-
tial Fokker–Planck equation but by the integrodifferen-
tial Boltzmann equation1,2,4

cos u
≠I
≠z

1 kI ­ B̂elI , I sz ­ 0, m $ 0d ­
I0

2p
ds1 2 md .

(5)
The elastic collision integral in the case of the flat geom-
etry has the following form:

B̂elI ­ s
Z 2p

0
dw0

Z 1

21
dm0xscos gdfI sz; m0 d 2 I sz; mdg , (6)

where m ­ cos u and m0 ­ cos u0. The cosine of a single-
scattering angle g from the stage sm0, w0d to the stage
sm, wd is defined by the well-known spherical trigonome-
try formula

cos g ­ mm0 1
p

1 2 m2
p

1 2 m02 cossw0 2 wd . (7)

(We note that, in the framework of the SAA, backscat-
tering of photons can be considered an additional
absorption21 that practically leads just to some renor-
malization of the absorption coefficient k and will not
affect our consideration.)

2. THEORY
The light intensity at a depth z may always be represented
in a form analogous to Eq. (4a):

I sz, ud ­ EszdFsz, ud . (8)

Here Fsz, ud is the angular function normalized by the
condition

2p
Z p /2

0
sin uFsz, uddu ø 2p

Z `

0
uFsz, uddu ­ 1 (9)

[thus the quantity 2pFsz, ududu is the probability for the
photons at a depth z to travel at angles within the range
from u to u 1 du), and Eszd is the light flux at depth z:

Eszd ­ 2p
Z p /2

0
cos uI sz, udsin udu ø 2p

Z `

0
uI sz, uddu .

(10)

Inasmuch as the trajectories of photons in matter are
curvilinear, the degree of their absorption depends on
their mean path kslz covered by photons in a layer of
matter of thickness z. Therefore we shall represent the
light flux Eszd in the form6

Eszd ­ I0 exps2kkslzd

­ I0 exp

242k

√
z 1

1
2

Z z

0
ku2lz0dz0

!35 . (11)

Here we have used the fact that in the case of small-angle
scattering sku2lz ,, 1d the average path kslz is determined
by the expression

kslz ­
Z z

0
dz0ksec ulz0 . z 1

1
2

Z z

0
ku2lz0dz0 , (12)

where, in accordance with the definition of the mean,

ku2lz ­
2p

Eszd

Z `

0
u3I sz, uddu ­ 2p

Z `

0
u3Fsz, uddu . (13)

The mutual influence of the absorption and scattering
processes on the form of the photon angular spectrum
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starts to manifest itself at such depths, when skslz 2 zd $

la.4,6,12

Now, substituting Eq. (8) into Eqs. (5) and (6), taking
into account relation (11) and assuming that m ­ cos u ø
1 2 u2y2, we obtain the following equation for the angular
function Fsz, ud in the SAA22:

≠F

≠z
1

k

2
su2 2 ku2lzdFsz, ud ­ B̂elF ,

Fsz ­ 0, ud ­
1

2p

dsud
u

. (14)

Here

B̂elF ­ 2s
Z 2p

0
dw0

Z `

0
u0du0xsgdfFsz, ud 2 Fsz, u0 dg ,

s15ad

g2 . u2 1 u02 2 2uu0 cossw0 2 wd . s15bd

Equation (15a) represents the elastic collision integral
[Eq. (6)] written in the SAA. Expression (15b) is a small-
angle variant of Eq. (7).

Actually, the set of Eq. (13) and (14) determines two
unknown functions: Fsz, ud and ku2lz. If these quanti-
ties are found, then one can calculate the total light flux
Eszd by Eq. (11) and then determine, by Eq. (8), the light
intensity I sz, ud at depth z.

Note that by using the sum rule for the Bessel func-
tions it is possible to write the elastic collision integral
[Eq. (15a)] in the form20

B̂elF ­ 2
s

2p

Z `

0
vdvJ0svudFvszdf1 2 xsvdg . (16)

Here Fvszd and xsvd are the Bessel transforms of Fsz, ud
and xsgd, respectively:

Fvszd ­ 2p
Z `

0
J0svudFsz, ududu, Fv­0szd ; 1 , (17)

xsvd ­ 2p
Z `

0
J0svgdxsgdgdg , xsv ­ 0d ­ 1 . (18)

At the same time we note that, if Eq. (14) is writ-
ten in the diffusion approximation, B̂elF . Ds1yuds≠y≠ud
fus≠y≠udFg, then by solving Eq. (13) and (14) we naturally
obtain the SADA result, Eqs. (4).

Here we consider only the case of relatively large depths
skslz 2 zd . la. The main feature of the depth mode is the
factorization of the emission spectrum:

Iassz, ud ­ I0a exps2kzdFassud . (19)

When normalization condition (9) is taken into account,
this actually means that in the depth mode the angular
function is independent of the depth: Fassud ­ Fsz !

`, ud. The quantity k is the depth damping index; the
quantity I0a exps2kzd is the light flux in the depth mode.
Now, instead of Eqs. (13) and (14) we obtain the following
system:

sky2dsu2 2 ku2l`dFassud ­ B̂elFassud , (20)

ku2l` ­ 2p
Z `

0
u3Fassuddu . (21)
Here ku2l` is the dispersion of the photon angular distri-
bution in the depth mode. Using Eq. (11), we find that

k ­ ks1 1 1/2ku2l`d , s22d

a ­ exp

"
sky2d

Z `

0
sku2l` 2 ku2lzddz

#
. s23ad

Thus to calculate the damping index k it suffices to
know the value of ku2l`. To calculate the coefficient a
in Eq. (19) it is necessary to know the value of ku2lz over
the whole range of depths 0 # z # `.

However, the coefficient a that appears in Eq. (19) can
be calculated in a completely different way without the
use of Eq. (23a). Indeed, at any depth z the light inten-
sity I sz, ud can be expanded by the complete orthonormal
system of functions [see, e.g., Eq. (14) in Ref. 23]. Inas-
much as the intensity of light in the depth mode [Eq. (19)]
is determined only by the term corresponding to the least
eigenvalue, one can use orthonormality of the angular
functions and boundary condition (14) to obtain that

a ­
Fassu ­ 0d

2p
Z `

0
Fassud2udu

. (23b)

From Eqs. (4b), (4c), and (23b) it follows that, in the
depth mode in the SADA,

Fas
Dsud ­

1
pku2l`

D exp

√
2

u2

ku2l`
D

!
, aD ­ 2 ,

ku2l`
D ­ 2

p
slayltrd ­ 2

p
s2Dykd , kD ­ k 1

p
2Dk .

(24)

Analysis of experimental data reveals that the scatter-
ing phase function of light on large-scale scattering cen-
ters in clouds, fog, aerosols, seawater, etc. exhibits, in the
range of angles 1 . g .. gef , a power (or close to such)
form: xsgd , g22s11nd, and the parameter n usually lies
in the interval 0.25 # n # 0.75. Therefore we shall fur-
ther take advantage, for xsgd, of a two-parameter expres-
sion of the following form:

xnsgd ­
ngef

2n

pfgef
2 1 g2g11n

. (25)

Equation (25) satisfies normalization condition (3).
Typical values are gef # 5± in seawater and gef ,
6±–15± in clouds. The parameter n ­ 1 corresponds to
Rutherford scattering, whereas in the case of n ­ 1y2
one obtains the Henyey–Greenstein phase function.
Equation (25) represents the two-parameter phase func-
tion

xnscos gd ­
n

p

gef
2ns4 1 gef

2dn

fs4 1 gef
2dn 2 gef

2ng

3
1

fgef
2 1 2s1 2 cos gdg11n

(26)

written in the SAA. Phase functions of the form of
Eqs. (26) and (25) were used in Refs. 17, 20, and 24–26.
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3. CALCULATION OF THE DEPTH
MODE ANGULAR SPECTRUM
If photon path-length fluctuations owing to scattering are
not taken into account, i.e., if the standard small-angle
approximation (SSAA) is used [when the term ,k on the
left-hand side of Eq. (14) is neglected], one can obtain the
following expression20:

FSSAAsz, ud ­
1

2p

Z `

0
vdvJ0svudexph23zf1 2 xsvdgj .

(27)

It is clear from Eq. (27) that in the framework of the
SSAA it is impossible to describe the depth mode, be-
cause even in the formal limit sz ! ` factorization (19)
of the spectrum does not occur. However, even in the
framework of this simplest approximation, the angular
functions FSSAAsz, ud show principally different behav-
ior, as the scattering angle u is increasing, for differ-
ent values of the parameter n in Eqs. (25) and (26). (A
comprehensive analysis of light fields in the framework
of the SSAA for a great variety of phase functions was
given in a review paper20 and in Ref. 25.) When n . 0,
FSSAAsz, ud , exps2u2y4Dzd, i.e., it has a Gaussian form.
On the other hand, in the case of interest, when n , 0,
in the range of relatively large depths sz .. 1 (while, of
course, z ,, ltr) we have FSSAA , u22s11nd, i.e., the light
intensity decreases with an increase in the angle accord-
ing to the power law with the same power index as the
phase function [see Eq. (47) of Ref. 20]. For example, for
the Henyey–Greenstein phase function sn ­ 1y2d, when
xsgd , g23 one has20

FSSAAszs .. 1, ud ø
1

2p

gefzs

fsgef zsd2 1 u2g3/2
.

However, in media with strong absorption, when
inequalities (1) are satisfied the situation is essentially
different, because scattering on large angles is heavily
suppressed because of the absorption of photons moving
along highly curvilinear trajectories. Therefore asymp-
totic behavior of angular functions in the depth mode dif-
fers dramatically 8 from that in the SSAA: Fas , u22s21nd,
whereas Fassud again falls according to a power law but
much faster than the phase function.

What we have said about the power law of intensity
decreasing with an increase in the scattering angle u sug-
gests that we look for an approximate solution to Eq. (20)
for the class of functions of the form of Eq. (25) but that
fall, as u is enhanced, faster than u24. The latter ob-
vious requirement is necessary for convergence of inte-
gral Eq. (21) at the upper limit. Basing on the above
reasoning, the authors suggest the following approximate
expression for angular function in the depth mode22:

Fassud .
s1 1 adsaku2l`d11a

pfaku2l` 1 u2g21a
sa . 0d . (28)

Expression (28) satisfies normalization condition (9)
and Eq. (21) for ku2l`. The quantities a and ku2l` are
free parameters. To determine them it is necessary to
formulate an appropriate set of two equations.
We immediately obtain the first of these equations by
setting u2 ­ ku2l` in Eq. (20):

B̂elFasju2­ku2l` ­ 0 . (29)

Thus in the depth mode the elastic collision integral
in the transport equation is zero at a deviation angle
u ­ sku2l`d1/2. Now, using Eqs. (16)–(18) and taking into
account Eq. (25) and formula (28), we obtain

Z `

0
v21aJ0svdK11asv

p
a d

241 2 xn

0@v
gefp
ku2l`

1A35dv ­ 0 ,

(30)

where

xnsvd ­
212n

Gsnd
vnKnsvd . (31)

Here Gsnd is the gamma function; Knsvd is the Macdonald
function. If n ­ 1y2, we have x1/2svd ­ exps2vd. It is
essential that the quantities gef and ku2l` occur in Eq. (30)
only in the form of the ratio gefysku2l`d1/2. Because it is
obvious, beforehand, that sku2l`d1/2 .. gef , then through-
out the entire region of integration over v sv # 1d the
value of vgefysku2l`d1/2 ,, 1.

This circumstance permits essential simplification of
Eq. (30). To see that, let us use the following approxi-
mate relation:

sf1 2 xnsvgef ,, 1dg ø

(
Dnv2 if n . 1
Dn

QDv2n if n , 1
. (32)

The coefficient at v2 in formula (32) is the usual angular
diffusion coefficient that appears in the Fokker–Planck
equation, which is valid only when n . 1. In the case
of interest, when n , 1, it seems natural to give the
name quasi-diffusion coefficient to the coefficient at v2n,
because approximation (32) is called the quasi-diffusion
approximation20 (QDA) when n , 1. It is clear that the
angular diffusion coefficient in the case of phase functions
of the form of Eq. (26) can be calculated for any value of
the parameter n, both n . 1 and n , 1 (Ref. 20):

Dn ­
sk1 2 cos gl

2
ø

8>>>><>>>>:

s

n 2 1
gef

2 if n . 1

s
n

n 2 1

√
gef

2

!2n

if n , 1

.

(33)

Inasmuch as Dn
QD ­ sfGs1 2 ndyGs1 1 ndgsgefy2d2n, it

is easy to see that in a three-dimensional medium Dn and
Dn

QD obey the following simple relation:

Dn
QD ­

1 2 n

n

Gs1 2 nd
Gs1 1 nd

Dn . (34)

[Thus, for example, in the case of the Henyey–Greenstein
phase function sn ­ 1y2d D1/2

QD ­ 2D1/2 ­ 4gef .] On this
basis, from now on we shall express all quantities sought
(e.g., ku2l`) not in terms of Dn

QD but in terms of the more
conventional quantity Dn according to Eq. (34).
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Now, taking into account that in the quasi-diffusion
approximation the expression in brackets in Eq. (30) is
proportional to v2n , after calculation of the integral over
v we obtain

2F1

√
2 1 n 1 a, 1 1 n; 1; 2

1
a

!
­ 0 . (35)

Here 2F1sa, b; c; zd is the Gauss hypergeometric function.
Thus in the first approximation the value of the unknown
parameter a is independent of the quantity ku2l`. More-
over, the value of a is determined uniquely by the sole
parameter n: a ­ asnd. Thus the speed with which the
angular function Fassud decreases in the depth mode de-
pends only on the single scattering law and is independent
of both the scattering coefficient s and the true absorp-
tion coefficient k.

A numerical solution of Eq. (35) was carried out for the
entire range 0 , n , 1. The dependence asnd is plotted in
Fig. 1. It can be seen that asnd increases monotonically
from 0 at n ­ 0 toward ` as n ! 1. In other words, the
faster the phase function xnsgd falls with enhancement
of the single scattering angle g, the faster the photon
angular spectrum in the depth mode decreases, as the
scattering angle u increases.

In certain cases it turns out to be possible to obtain
an analytical solution of Eq. (35) or to reduce it to a
simpler one. Thus, if n ,, 1, one can obtain that asnd ø
n. On the contrary, when n , 1, i.e., 1 2 n ,, 1, the
parameter asnd is determined by the following formula:
asnd ø 5.14ys1 2 nd. When a ­ 1, Eq. (35) reduces to a
simpler equation for determination of the corresponding
value of n:

tan

√
pn

2

!
­

2s1 1 nd
s2 1 ndn2

2664G

√
1 1 n

2

!
Gsny2d

3775
2

. (36)

From Eq. (36) we find that n ø 1y3. This coincides with
the solution to the general equation (35). Now, having
found asnd, it is necessary to formulate the second equa-
tion to determine the quantity ku2l`. That equation is
readily obtained from the correct normalization condi-
tion for the angular function of the second approximation
when Eq. (20) is iterated and the value [formula (28)] for
Fassud is used as the first approximation:

2p
Z `

0
udu

0@ 2
k

B̂elFas

u2 2 ku2l`

1A ­ 1 . (37)

On performing simple transformations, similar to the
ones described above, for Eq. (37) we obtain the following
expression for the angular dispersion in the depth mode:

ku2l` ­

√
8dn

Dn

k

!1/11n

. (38)

Here Dn is the coefficient of angular diffusion [for-
mula (33)].

The function dn in Eq. (38) is determined by the follow-
ing expression:
dn ­
4n21Gf2 1 n 1 asndgGs2 2 nd

na11nGf1 1 asndg
bn , (39a)

where

bn ­
Z `

0

dx
1 2 x 2F1

"
2 1 n 1 asnd, 1 1 n; 1; 2

x
asnd

#
.

(39b)

Note that the integrand in Eq. (39b) has no singularity
at x ­ 1 because by Eq. (35) the function 2F1f2 1 n 1

asnd, 1 1 n; 1; 2xyasndg is equal to zero at that point.
Investigation of Eq. (39b) shows that, with good accu-

racy (not worse than 5%), the following simple formula
holds:

bn .
asnd

asnd 1 spy4dn 1 1.125
. (40)

Thus, unlike asnd, the dispersion of the spectrum in the
depth mode depends not only on n but on the ratio ssykd
also, i.e., on the scattering coefficient s and the light-
absorption coefficient k. In the limit case of n ! 1 the
value of a ! ` and dn ! 1. Therefore, in this case,

ku2l` ­ 2

√
2D
k

!1/2

­ ku2l`
D . (41)

Passing to the limit a ! ` in formula (28), we obtain that
Fassu; n ! 1d coincides exactly with the result [Eq. (24)]
of the diffusion approximation.

The dependence of dn is shown in Fig. 2. Unlike asnd,
the function dn decreases monotonically as n increases.
Here, if n ! 0, dn , n21 ! `; consequently ku2l` ! ` also.
This means that the SAA cannot be applied in the case
of phase functions xsgd , g22. Within the wide range
1y3 # n # 1 the value of dn ø 1. Thus in this interval of

Fig. 1. Dependence of the power index a of the depth mode
angular distribution [ formula (28)] on the parameter n of the
phase function [Eq. (25)], obtained by numerical solution of
Eq. (35) in the range 0 , n , 1.
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Fig. 2. Dependence [Eqs. (39)] of the coefficient dn , an element
of Eq. (38) for the depth mode angular dispersion ku2l`, on the
phase function parameter n.

n values the dispersion is determined by the very simple
formula:

ku2l` .

√
8

Dn

k

!1/11n

­

√
4

s

k

!1/11n

k1 2 cos gl1/11n . (42)

The quantity Dn here is defined by formula (33).
Now, when the parameters asnd and ku2l` of the angu-

lar function Fassud in the depth mode are defined, one can
find the value of the coefficient a according to the general
formula, Eq. (23b):

a ­
2asnd 1 3
asnd 1 1

. (43)

In the limit case n ­ 1 (when a ! `) one can obtain from
Eq. (43) that asn ­ 1d ­ 2. This value exactly coincides
with the value of aD calculated in the framework of the
Fokker–Planck approximation, Eq. (24).

4. TWO-DIMENSIONAL CASE
Above we have dealt with the scattering of light in an
ordinary three-dimensional (3D) medium. Recently,
however, a number of publications raised the issues of
multiple scattering of light in two-dimensional (2D) mat-
ter, which can be represented as an ensemble of disor-
dered parallel fibers or rods (see, for example, Refs. 23,
27, and 28–33).

As in the usual 3D case, the degree of scattering
anisotropy depends on the ratio of the size of the scatter-
ing center a (in two dimensions, of the transverse cross
section of the fiberlike inhomogeneity) and the wave-
length of the incident radiation, l. The effective mul-
tiple scattering angle gef can be estimated as gef , lya,
and therefore, when conditions (1) are valid, the case in
which we are interested, of sharply anisotropic small-
angle scattering at any depth, occurs.

Unlike in a 3D medium, in the 2D small-angular
case there are other exactly solvable models, besides
the known small-angle diffusion approach to the prob-
lem of light propagation. One of the most interesting
models is the scattering model that complies with the
Henyey–Greenstein law and that describes the diffrac-
tion cross section averaged over oscillations.20,23,27

One of the advantages of these models is the possibility
to estimate the accuracy of any approximation just by
direct comparison of its results in the 2D case with the
exact results. In this section we shall proceed according
to this scheme: we shall use the exact solution23 to check
the accuracy of the approximation described in Section 3.

We consider a broad stationary light beam of intensity
I0, normally incident upon the plane boundary of a 2D
medium, which occupies the semispace z . 0 (the z axis is
normal to the surface and directed inward). Scattering
occurs in the xOz plane.

As in the 3D case we assume single scattering to be
sharply anisotropic s1 2 kcos gl ,, 1d and the condition of
strong absorption to be satisfied:

la ,, ltr, i.e., k .. Dn ,

Dn ­
s

2
kg2l ­

s

2

Z p

2p

g2xnsgddg .

The transfer equation for the radiation intensity I sz, ud
is of the following form:

cos u
≠I sz, ud

≠z
1 kI sz, ud ­ B̂elI sz, ud,

I sz ­ 0, ud ­ I0dsud , (44)

where B̂elI sz, ud is the linearized Boltzmann collision
integral23:

B̂elI sz, ud ­ s
Z p

2p

du0xsgdfI sz, u0d 2 I sz, udg (45)

and u is the angle between the direction in which the
radiation propagates and the yOz plane. In the 2D case
g ­ u0 2 u is the angle of single scattering from u0 to
u. As usual in the SAA, one may formally consider all
angular variables to vary within infinite limits: 2` ,

u, g , `.
Let us single out in the intensity that we are seeking

the exponential attenuation of the beam, which takes into
account the absorption of light in the medium:

I sz, ud ­ I0 exps2kzdĨ sz, ud . (46)

Then, substituting Eq. (46) into Eqs. (44) and (45) and
expanding all the coefficients in small angle u up to the
first nonnegligible terms, we get the transport equation
in the SAA and account for the influence of absorption on
the photon angular distribution:

≠Ĩ sz, ud
≠z

1
k

2
u2Ĩ sz, ud ­ B̂elĨ sz, ud,

Ĩ sz ­ 0, ud ­ dsud , (47)

where

B̂elĨ sz, ud ­ s
Z `

2`

du0xsgdfĨ sz, u0 d 2 Ĩ sz, udg . (48)
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The analog of the phase function [Eq. (25)] in the 2D
case is

xnsgd ­
1

p
p

Gsn 1 1y2d
Gsnd

gef
2n

fgef
2 1 g2gn11/2

(49)

(we suppose that 0 , n , 1), which satisfies the normal-
ization condition Z 1`

2`

xsgddg ­ 1 . (50)

In the particular case when n ­ 1y2 we obtain the 2D
Henyey–Greenstein phase function

xHGsgd ø
1
p

gef

gef
2 1 g2

. (51)

Because factorization of the angular spectrum of
radiation occurs in the depth mode, we introduce, as
before, together with the intensity Iassz, ud, the angular
function

Fassud ­
1

gef
f

√
u

gef

!
, (52)

normalized by the conditionZ `

2`

Fassuddu ­
Z `

2`

f scddc ­ 1 , (53)

so it may be interpreted as the probability density of
photon scattering through angles between u and u 1 du.
Then Iassz, ud may be represented in the form

Iassz, ud ­ EasszdFassud , (54)

where

Easszd ­ I0a expf2sk 1 k0dzg (55)

is the total radiation flux in the depth mode.
The exact solution23 to the problem of Eqs. (47) and

(48) with the phase function of formula (51) is rather
complicated, so here we present only the depth mode
results obtained in the framework of the quasi-diffusion
approximation. (Actually, these are the only results that
we need for our purposes.) Of course, they can be readily
obtained from the exact expressions. So, we have from
Ref. 23 the following expressions:

a ­
1

b0Ais2b0d

Z `

2b0

Aisxddx ø 1.47 , (56)

f scd ­
1

Ais2b0d
Pb0 sch21/3d ,

Pbsxd ­
1

ph1/3

Z `

0
Aisy 2 bdcossxyddy , (57)

where b0 ø 1.019 is the first root of the formula:

Ai0s2bd ­ 0 , (58)

Aisxd is the Airy function, and

h ­
2s

kgef
2

(59)

is the main parameter of the problem. The dispersion of
the angular distribution and the coefficient k0 calculated
by means of the formulas

ku2l` ­ gef
2

Z `

0
c2fscddc, k0 ­

k

2
ku2l` (60)

take the following values:

ku2l` ø 1.019h2/3gef
2, k0 ø 1.019h21/3s . (61)

Now we will apply the approximate method developed
above for the 3D case to define the optimal parameters
of the depth angular function in two dimensions [analo-
gously to formula (28)]:

Fassud .
1

p
p

Gsa 1 3y2d
Gsa 1 1d

s2aku2l`da11

f2aku2l` 1 u2ga13/2
sa . 0d ,

(62)

which satisfies normalization condition (53) and Eqs. (60)
for ku2l`. The quantities a and ku2l`, as before, are free
parameters. Let us set in Eqs. (47)

Ĩassz, ud ­ a exps2k0zdFassud , (63)

where Fassud is determined by formula (62) and k0 can
be expressed in terms of ku2l` by Eqs. (60). Then, ex-
pressing the right-hand side of Eqs. (47), determined by
Eq. (48), as a Fourier transform, one can get the equation

k

2
su2 2 ku2l`dFassud ­ 2

s

p

Z `

0
dv cossvudFassvd

3 f1 2 xnsvdg , (64)

where the Fourier transforms of Fas and xn are the fol-
lowing:

Fassvd ­
22a

Gsa 1 1d
fs2aku2l`d1/2vga11Ka11fs2aku2l`d1/2vg ,

(65)

xnsvd ­
Z `

2`

dv cossvgdxnsgd ­
212n

Gsnd
jvgef j

nKnsjvgef jd .

(66)

Here Km is the Macdonald function. Now one can take
the expansion of 1 2 xnsvd in the small vgef up to the
first nonvanishing term:

sf1 2 xnsvdg ø Dn
QDv2n , (67)

where

Dn
QD ­ s

Gs1 2 nd
Gs1 1 nd

√
gef

2

!2n

(68)

is the angular quasi-diffusion coefficient in the 2D case
for n , 1.

After substitution of Eqs. (65) and (66) including
formula (67) into Eq. (64) and performing integration
over v, we get the following equation:
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k

2
1

p
p

Gsa 1 3y2d
Gsa 1 1d

s2aku2l`da11

s2aku2l` 1 u2da13/2
su2 2 ku2l`d

­ 2
Dn

QD

p

4nGsn 1 a 1 3y2dGsn 1 1y2d
s2aku2l`dn11/2

3 2F1

√
n 1 a 1

3
2

, n 1
1
2

;
1
2

; 2
u2

2aku2l`

!
, (69)

where 2F1 is the Gauss hypergeometric function.
Now one can set u2 ­ ku2l` in Eq. (69) and obtain the

relation between a and n that does not contain any other
parameters of the problem:

2F1

√
n 1 a 1

3
2

, n 1
1
2

;
1
2

; 2
1

2a

!
­ 0 . (70)

One can solve this equation numerically and find the ex-
plicit dependence asnd. The graph of this function is plot-
ted in Fig. 3. Estimation of the asymptotic behavior of
asnd gives asn ! 1d . 1.21ys1 2 nd, i.e., a ! ` while
n ! 1. One can easily verify that in this limit the an-
gular function [formula (62)] transforms into the normed
Gaussian function:

Fas
D sud ­

1q
2pku2l`

D
exp

√
2

u2

2ku2l`
D

!
, (71)

that is, the solution to the transfer equation in the diffu-
sion approximation (SADA).

Equation (69) does not hold at all u, so the value of ku2l`

obtained from it depends on the method of calculation.
However, it follows from the homogeneity of that equation
that an expression for angular dispersion in the depth
mode always has the form

ku2l` ­

√
2dn

Dn
QD

k

!1/11n

. (72)

Here Dn
QD is the coefficient of angular quasi-diffusion

[Eq. (68)], and the coefficient dn can be determined by
one of several methods. We shall consider two of the
most obvious of them. First, one can demand that the
equality in Eq. (69) hold at some fixed u; e.g., at u ­ 0,
it gives us the value

dn
I ­

2n

p
p

a2n Gsa 1 n 1 3y2dGsn 1 1y2d
Gsa 1 3y2d

. (73a)

Another way is to require that the equality in Eq. (69)
hold on average, i.e., that the integrals on the left-hand
side and the right-hand side of Eq. (69) be equal. This
condition is completely equivalent to the 2D analog of
normalization condition (37). In this way we obtain

dn
II ­

2n

an11

Gsa 1 n 1 2dGsn 1 1d
Gsa 1 1d

3 2F1sa 1 n 1 2, n 1 1; 3y2; 21y2ad . (73b)

[In Eqs. (73) it is assumed that a ­ asnd, as described
above.] Graphs of dn

I and dn
II are plotted in Fig. 4. In

the case n ­ 1y2, Eqs. (73) take the following simple form:

dn­1/2
I ­

s
2

pa

Gsa 1 2d
Gsa 1 3y2d

, (74a)

dn­1/2
II ­

r
p

2a3

Gsa 1 5y2d
Gsa 1 1d

√
1 1

1
2a

!2sa15/2d

. (74b)
After substitution of the value asn ­ 1y2d ø 1.89 into
Eqs. (74) we get dn­1/2

I ø 1.03 and dn­1/2
II ø 0.95.

Now, observing from Eq. (68) that Dn­1/2
QD ­ sgef , one

can obtain expressions for the angular dispersion and the
damping index in the depth mode defined by Eqs. (60):

ku2l` ­ sdn­1/2d2/3h2/3gef
2, k0 ­ sdn­1/2d2/3h21/3s .

(75)

Then we plug in the numerical values and get

ku2l`
I ø 1.019h2/3gef

2, ku2l`
II ø 0.966h2/3gef

2 , (76)

k0
I ø 1.019h21/3s, k0

II ø 0.966h21/3s , (77)

which are in very good agreement with the exact QDA
expressions (61).

Graphs of the angular spectra f scd derived from
formula (62) are given in Fig. 5 (solid curves).

One can calculate the value of the constant a in Eq. (55)
in a similar manner, as was done in a 3D medium [by
Eq. (23b)]:

a ­
Fassu ­ 0dZ `

2`

Fassuddu

­
Gsa 1 1dGs2a 1 3d

Gsa 1 3y2dGs2a 1 5y2d
. (78)

Fig. 3. Dependence of the parameter a of the depth mode
angular function [ formula (62)] on the parameter n of the phase
function [Eq. (49)] in a 2D medium, obtained by numerical
solution of Eq. (70).

Fig. 4. Graphs of the coefficients dn
I and dn

II as functions of
the phase function parameter n in the 2D case. These coeffi-
cients appear in Eq. (72) for angular dispersion in the depth mode
and are defined by Eqs. (73a) and (73b), respectively.
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Fig. 5. Plots of the 2D depth angular spectra f Iscd and f IIscd
derived from formula (62) in the case n ­ 1y2 with the use
of ku2l`

I and ku2l`
II, respectively, from formulas (76). Here

c ­ uygef , and the value of the parameter [Eq. (59)] is h ­ 150.
For comparison the exact QDA spectrum [Eqs. (57)] is plotted by
the dashed curve. Good coincidence between the approximate
and the exact functions is seen.

As well as in a 3D medium, the value of a depends only on
the parameter n: a ­ asnd. The function asnd varies in
the range from amin ­

p
2 ø 1.4 at n ­ 0 to amax ­ 16y3p ø

1.7, when n ­ 1 and a ! `. The value amin ­
p

2 exactly
coincides with aD in the Fokker–Planck approximation
in a 2D medium.

After substitution of the value of asn ­ 1y2d into
Eq. (78) we obtain asn ­ 1y2d ø 1.51, which is very close
to the exact QDA value [relation (56)].

From Fig. 5 one can see that the deviations of our
approximate functions from the exact QDA spectra do not
exceed 1–2%.

5. CONCLUSIONS
It is interesting to compare the values of ku2l`

computed by Eq. (38) with the results for the same
quantity obtained in Ref. 18. In the latter paper an
original method, a self-consistent Gaussian approxi-
mation, was used for computation of some important
characteristics of light fields in strongly absorbing
anisotropically scattering media. This approximation is
based on a generalization of well-known results of the
diffusion theory in the cases of both normal and oblique
incidence of light upon the surface of a medium. (In the
latter case the effect of the brilliancy body rotation, as
the depth is increasing, should be taken into account.)
A heuristic procedure for renormalization of the angular
diffusion coefficient that depended on the depth of the
light beam penetration into the medium was used.18 In
the case of power-law phase functions analogous to the
ones used in the present paper, the following expression
for ku2l` in the depth mode was obtained:

ku2l` ­ rn

√
8

Dn

k

!1/11n

, rn ­

√
j

2

!2s12n /11nd

, n , 1 .

(79)

Here j is a free parameter the value of which can be
determined, for example, by comparison with results of
numerical calculations. For instance, the value j ­ 1.8
is given in Ref. 18 in the case of the Henyey–Greenstein
phase function and is r ­ 0.93. And it was pointed out
there that for other phase functions one also usually takes
j ø 2. In this case r ø 1, and Eq. (79) exactly coincides
with formula (42) obtained in the present paper, which,
however, does not contain any fitting parameters. (Let
us note that in Ref. 18 the angular spectrum was a priori
assumed to have Gaussian form, which is certainly not
justified in the case of slowly decreasing phase functions
when n , 1.)

The values of ku2l` obtained with the aid of for-
mulas (33) and (42) permit calculation of the depth
damping index k by Eq. (22). The obtained values were
compared with the results of Monte Carlo calculations.4

The results of such comparison are presented in Table 1.
The accuracy of coincidence turned out to be of the order
of magnitude of Dyk , layltr, which was to be expected
and which is directly related to the applicability of the
small-angle approximation.

As far as a 2D medium is concerned, one is pre-
sented with an extra possibility to compare the results
for ku2l` obtained in the present paper for the case of
the Henyey–Greenstein phase function with the results
of analogous calculations in the framework of the QDA
from Ref. 23. One can see that a near coincidence of
formulas (76) and (61) occurs.
Table 1. Values of the Depth Damping Index k Computed by Formulas (22),
(33), and (42) Compared with the Results of the Numerical Calculations

Photon-Survival Probability
kcos gl
skg2ld L* ­

s

s 1 k*

D
k*

D ­
k 2 k*
k* 1 s

D Numerical
Calculationa

0.95 0.2 6.25 3 1023 0.0542 0.0518
(0.1) 0.4 1.67 3 1022 0.0783 0.0750

0.8 1.00 3 1021 0.0862 0.0812

0.97 0.2 3.75 3 1023 0.0386 0.0379
(0.06) 0.4 1.00 3 1022 0.0557 0.0545

0.8 6.00 3 1022 0.0613 0.0587

0.98 0.2 2.5 3 1023 0.0295 0.0294
(0.04) 0.4 6.67 3 1023 0.0425 0.0422

0.8 4.00 3 1022 0.0468 0.0453

aRef. 4.
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