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ABSTRACT

We compare the predictions of two solar models with the observed p-mode eigenfrequencies. The two
models use the same input microphysics (nuclear reaction rates, opacity, and equation of state) and the same
numerical evolutionary code, but differ in the treatment of turbulent convection. The first model employs the
standard mixing-length theory of convection (MLT), while the second model employs a new model of turbu-
lent convection (CM) whose primary goal was that of accounting for the whole spectrum of turbulent eddies
so as to avoid the MLT approximation that such a wide spectrum be represented by a single, large eddy.
With the suggestion that the mixing length, A, be taken to be z, the distance to the nearest convective bound-
ary, the new CM model has no free parameters, and yet it predicts a solar T, to within 0.5%. The A=z
suggestion, within the context of the MLT, would yield T, of by ~3% that forces the introduction of

A = aH,, with « a free, adjustable parameter.

The main result of this paper is that the p-mode eigenfrequencies calculated with the CM model show an
overall improvement with respect to those calculated with the standard MLT model.

Subject headings: convection — Sun: interior — Sun: oscillations — turbulence

1. INTRODUCTION

For many years the lack of a viable alternative to the
mixing-length theory of convection (MLT) has forced astro-
physicists who model stellar structure and evolution of work
with a model which has the practical advantages of being easy
to implement but which is based on a set of drastic approx-
imations more appropriate for a moderately viscous fluid than
for the almost inviscid stellar interiors.

Although numerical simulations of turbulent convection
have recently become available (Chan & Sofia 1986; Stein &
Nordlung 1989; Hossain & Mullan 1990), their inclusion in
stellar evolutionary codes would result in a prohibitive
demand of computer time.

More recently, a new approach to the problem of stellar
turbulent convection has been proposed by Canuto & Mazzi-
telli (1991, 1992; henceforth cited as CM1, CM2), the CM
model, which overcomes some of the drastic approximations of
the mixing length theory.

In particular, the more correct treatment of some basic fea-
tures of low Prandtl number turbulent convection vis 4 vis the
MLT treatment has improved the predictive power of the
model which can easily be employed in evolutionary codes
(CM1).

In order to further test to what extent the CM model has
improved the description of turbulent convection vis & vis the
standard MLT model, we calculate the p-mode eigen-
frequencies as predicted by the two models and compare them
with the helioseismological data obtained at the Big Bear Solar
Observatory during 1986-1987 by Libbrecht, Woodard, &
Kaufman (1990). The data set is an upgraded version of the
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data published by Duvall et al. (1988) and Libbrecht &
Kaufman (1988) and was kindly supplied to us by F. Hill.

2. MODELS AND CODES

2.1. Convection Theory

The mixing length theory, which originated with the pion-
eering work of G. L. Taylor and L. Prandtl, was first applied to
the stellar case by L. Biermann. The version currently used in
most evolutionary codes is due to Bohm-Vitense (1958).

In this theory, a fluid element rises under the effect of buoy-
ancy, travels with a characteristic velocity through a mean free
path, or mixing length, then breaks up and merges with the
surroundings. Velocity components of the consequent smaller
scale motions and associated temperature fluctuations are
assumed to be uncorrelated, so there is no contribution from
them to the overall heat transport (Gough 1977).

The mixing length model treats turbulence as quasi-
incompressible (c, is substituted for ¢, and the temperature
gradient V is measured with respect to its adiabatic counter-
part V4. A considerably more severe approximation is the
treatment of the wide spectrum of turbulent eddies as if it were
dominated by a single large eddy with size comparable to the
local pressure scale height. While this may be a reasonable
approximation for viscous fluids, which are indeed character-
ized by a rather narrow eddy spectrum, it fails when applied to
the nearly inviscid stellar interiors, where the ratio of the
largest to the smallest eddy may be ~ 108,

The CM approach, while retaining quasi-incompressibility,
accounts for the full spectrum of turbulent eddies using the
direct interaction approximation (DIA; Leslie 1973) and the
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(eddy damped quasi-normal Markovian (EDQNM; Lesicur
1989) models to treat the nonlinear interactions. The model
derives a new expression for the turbulent convective flux and
for the turbulent pressure, the latter usually ignored in the
MLT. At high convective efficiencies, the new turbulent flux is
up to 10 times larger than the MLT flux, whereas at low effi-
ciencies, the new flux is lower than the MLT flux. This indi-
cates that the new flux has an altogether different relationship
toward convective efficiency than the MLT model. We may
also note that a larger convective flux is in agreement with the
work of Chan & Sofia (1989) as well as with the recent numeri-
cal simulation of turbulent convection by Cabot et al. (1990),
who found that the MLT free parameter had to be scaled up to
a factor of 7-8 in order to match the numerical results.

Since the standard MLT does not provide an expression for
the mixing length, A, it is usually suggested that A be taken as
A = aH,, where H,, is the local pressure scale height; the free
parameter « is then adjusted to reproduce the observed posi-
tion of a given star in the H-R diagram. The procedure usually
yields values of o larger than unity, in contrast with some of the
basic assumptions of the mixing length treatment.

The CM model sets A = z, where z is the distance between
the point at which the superadiabatic gradient is computed
and the top of the convection zone. The value of z at each point
is found as the result of an eigenvalue problem, thus freeing the
model of the presence of a free parameter. We may note that
the same relation A =z would yield poor results within the
MLT (CM1,CM2).

As recently shown in CM2, the model yields a solar T
within 0.5% of the observed value. In that sense, the applica-
tion of the CM model to evolutionary studies can be said to be
free of adjustable parameters.

Recently, two of the authors have proposed a refined version
of the A = z model so as to account for local effects. As dis-
cussed in CM2, to the extent one is interested in evolutionary
studies only, the new refinement is quite unnecessary since the
results clearly demonstrate that the nonlocal nature embodied
in the A =z relation does indeed capture the bulk of the
mixing length.

The new, more general expression for A is A = «(S)z, where
oS) is a calculable function of S (the latter is related to the
convective efficiency by egs. [7] and [8] of CM1). The function
o does, however, also depend on a new variable, called a in
CM2, such that 1 — a represents the contribution of local
effects to the mixing length. The expression of a(S, a) is given in
equation (9) of CM2. By tuning the value of a, one can achieve
a fit to the solar T even better than 0.5%, but this is not the
spirit nor the reason only it was introduced, a point that we
shall take up again in § 2.2 below.

2.2. Evolutionary Code

The evolutionary code used to produce the MLT and CM
models of the present Sun is described in detail elsewhere
(Mazzitelli 1989 and references therein). It is basically a stan-
dard code for stellar evolution and may not differ significantly
from codes of other authors.

The numerical integration follows the Newton-Raphson
scheme, with the local mass as independent variable along all
the structure, including the superadiabatic subsurface regions.
The fit to the optical atmosphereis at 7 = 3.

A find zoning has been adopted for the internal structure,
mainly in the convective region, the total number of mesh
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points ranging from 900 to 1100 along the evolutionary path.
More than half of the mesh points are always in the region
from the surface to the base of the convection zone.

The chemical evolution scheme makes use of the lineariza-
tion procedure by Arnett & Truran (1969) and a simple zero
order Runge-Kutta integration for the initial convective core.
Each of the physical time steps required by the model to reach
the present age, starting from a chemically homogeneous Sun,
is subdivided in 10 smaller steps, along which the chemical
evolution is computed, allowing also for convective mixing
when and where required. Since ~ 100 physical time steps are
required before the small initial convective core disappears
(complete CNO and *He relaxation), and 200 further physical
time steps are necessary for the model to reach the present
solar luminosity, the total number of chemical evolution time
steps is ~ 3000.

The radiative opacities adopted for low temperatures
(T < 6000 K) are those computed by Kurucz (1992) and for
higher temperatures are those by Iglesias & Rogers (1991),
both based on the Anders-Grevesse mixture (Anders & Gre-
vesse 1989). It is worth noticing that, in the range of tem-
peratures 6000 K < T < 10,000 K, both opacities give similar
results. The values of the opacity at a given temperature,
density, and chemical composition are obtained by quadratic
interpolations of the tabulated values.

The equation of state and the related thermodynamic quan-
tities are those computed by Magni & Mazzitelli (1979).

The nuclear network accounts for the complete p-p chain,
including beryllium branch, and CNO cycle, without forcing
the elements to equilibrium. The cross sections are taken from
Harris et al. (1983), and the weak and intermediate screening
effects from Graboske, De Witt, & Grossman (1973).

Both MLT and CM models reach the present luminosity of
the Sun (L = 3.846 x 10%® ergs s~ !) after 4.7 billion years of
evolution with initial values Z = 0.018 and Y = 0.285.

Since in helioseismological studies the value of the solar
radius is crucial, within the MLT we had to tune carefully the
value of « so as to obtain the value of the present solar radius
(Ro = 6.9599 x 10'° cm) at L = L, within four significant
figures. This procedure leads to a value o = 1.7473 with the
convection zone base (V — V4 = 0) located at r, = 0.735 R,

As already discussed in § 2.1, the CM model does not
require, in principle, any tuning, since the solar radius is cor-
rectly obtained as the result of the computations. Specifically,
with A = z, the value of the predicted solar radius differs by
less than 1% from R (less than 0.5% in T, ; CM2, Fig. 2).
This small difference, altogether immaterial in stellar evolution
studies, becomes extremely important for the present compari-
son.

The more refined version of the original CM1 model (CM2)
takes into account, besides the dominant nonlocal effects rep-
resented by A = A(z) = z, also the local contribution to the
mixing length, A = A(l, z), where | represents local variables.
The latter effect may be especially important at the top and
bottom of the convection zone. The improved CM2 model
thus includes a parameter, a, which represents the relative
strength of the nonlocal versus the local effects, with a = 1
corresponding to A = z. The sensitivity of the solar radius to
the variation of the parameter a is very weak, but sufficient to
tune its value within the fourth decimal figure in order to
obtain exactly Rg. With the present model we obtained
a = 1.91 to fit exactly Ry at L. Even though a is an adjust-
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able parameter, its role cannot be compared with that of the
MLT « parameter, since the latter can dramatically effect the
value of solar radius, whereas a cannot. Therefore, the CM
model can still be considered a model which does not require a
free parameter to fit the present solar radius and T,. Stated
differently, while the MLT model contains the first-order free
parameter, , the CM2 model contains only the second-order
adjustable parameter, a. The results of the CM2 computations
give V=V,  at r, = 0.735 R, as in the MLT case. This is not
surprising, since the depth of the convection zone is controlled
by the total luminosity.

Both the MLT and CM models yield, of course, the same
effective temperature (T, = 5785 K).

The two models are therefore comparable in that they have
the same Ly and R, use the same input microphysics
{equation of state, nuclear reaction rates, and opacities) and the
same numerical code. The difference lies in the treatment of
convective transport. Differences in the predicted p-mode
eigenfrequencies should therefore be ascribed to the different
treatment of convection.

We fitted the surface of the models (r = ) to the HSRA
atmosphere model (Gingerich et al. 1971) to reach the tem-
perature of 4170 K (¢ = 10~ %) at the minimum.

2.3. Oscillation Codes

In order to compute the radial and nonradial p-mode adia-
batic eigenfrequencies we use two numerical codes. The first
has been developed by Dziembowski (1971) and makes use of
the complete set of the four first-order ordinary differential
equations, which include the perturbation of the gravitational
potential. This code has been used to compute eigenfrequencies
up to I = 100. For I > 100, we use a second, faster code devel-
oped by Gough and Paternd (Belvedere, Gough, & Paternd
1983), which makes use of the Cowling approximation.

Both codes use the same outer boundary conditions {aken at
T = 4170 K, namely, the solutions match onto a causal linear
eigenfunction of the plane-parallel isothermal atmosphere. The
causal eigenfunctions are those which correspond to forcing
from below, excluding the possibility of incoming waves from
infinity or evanescent motions produced by pressure pertur-
bations from above.

The first code uses the standard inner boundary conditions
usually taken near the center. The second code is used only for
modes with [ > 100. Since these modes have the turning point
well above the center, in order to speed up the calculations, we
start the integration at some level below the turning point, with
the boundary condition of vanishing radial perturbation at
that level.

We carried out some numerical tests to verify the accuracy
of the eigenfrequency calculations for the two CM and MLT
models.

The first test was based on the construction of models with
an increasing number of radial mesh points, until a frequency
convergence to a limit model was found. This limit model had
3079 mesh points, but yet a model with 2075 mesh points gave
frequency differences of about a hundredth of a microhertz
with respect to the limit model. The models used in this paper
have ~ 1000 mesh points (CM, 1032; MLT, 993), and their
error is below 1 uHz for a large variety of modes with
5 <n<33and 0 < < 100. This test can be compared with an
analogous one carried out by Guenther & Serajedini (1988) for
the mode I =1, n =17, reported in their Figure 1. In that
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figure a difference of about +2 uHz can be seen between 1000
and 3000 mesh point models. This difference is sensibly larger
than our difference of +0.49 uHz for the same mode. The
reason for that probably depends on the way the equilibrium
models for oscillation codes are constructed. We calculated
accurately the derivate quantities which are used in the oscil-
lation codes. Derivatives were obtained analytically by a third-
order polynomial fitting to the mesh-points of the models. The
result was a smoother behavior of all the quantities with the
consequence of increasing the numerical accuracy without
requiring a very large number of mesh points.

The second test was to verify to what extent the eigen-
functions of the high radial order modes (n = 33) were spatially
resolved with our 1000 mesh point models. A comparison
between the eigenfunctions of the 1000 mesh-point models
with those of the 3079 mesh-point limit model showed that the
nodes were completely resolved and the eigenfunctions over-
lapped with a high degree of accuracy, the only visible effect
being a frequency difference smaller than 1 uHz.

The third test was concerned with the use of the Cowling
approximation for the / > 100 modes, with the inner boundary
condition of vanishing radial perturbation taken at some level
below the mode turning points. The comparison between the
eigenfrequencies calculated with non-Cowling and Cowling
approximation codes showed that the frequency differences
decrease rapidly with increasing ! and, although less rapidly,
with decreasing n. Since we start to use the Cowling approx-
imation code by [ = 200, and high -modes contain only low
radial orders, the error of our calculations, using the Gough &
Paternd’s code, is smaller than 0.01 yHz for all the calculated
modes. The comparison between the Gough & Paternd’s code,
with the inner boundary condition of vanishing radial pertur-
bation taken at some level below the mode turning points, and
the Dziembowski’s code (used in the Cowling approximation
option), with standard inner boundary conditions taken at the
center, showed no differences in either the eigenfrequencies or
the eigenfunctions.

In conclusion, numerical errors in eigenfrequencies deter-
mined by our oscillation calculations are smaller than 1 uHz
for all the considered modes, and thus any difference larger
tlzan 1 yHz should be attributed to the physics and assump-
tions of the model, when comparing models with observations,
and to the different treatment of convection, when mutually
comparing models.

3. MODEL COMPARISON SCHEME

In view of a helioseismological p-mode analysis and as the
waves propagate with the sound speed ¢, = [[",p/p]'/?, this
seems to be the most appropriate quantity to highlight the
structural differences of the two models. The differences in the
p-mode eigenfrequencies should in fact reflect the differences in
¢, between the models. In this context, we also look at the
well-known helioseismological variable:

© -1
vy — (z L ?) : M

the quantity (1), which is the inverse of twice the sound travel
time from the surface of the Sun to its center, is most sensitive
to the structure of the layers very close to the Sun’s surface
(Provost 1984), where the major differences between the
models are expected to occur.
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In the asymptotic analysis (Tassoul 1980), valid for n > [, the
quantity (1) is closely related to the first-order frequency
separation between modes with the same /s, and with n’s differ-
ing by one unity, namely, Avo =v,, — v,_; .

A second comparison is based on the analysis of modes with
0 <1 < 11, following the procedure described in Dziembowski,
Paterno, & Ventura (1988). This analysis allows us to gain
information on the regions responsible for the deviations of the
theoretical eigenfrequencies either from those of another model
or from the observed ones.

Variations in frequency v, associated with small changes in
the structure of the equilibrium model, depend on the fre-
quency v and the harmonic degree [ of the modes. They can be
expressed as (Dziembowski, Paterno, & Ventura 1988):

Roe (8 . E% 43
(MV’DJO (ez’(i)l)f dx, ?

where 6. is a linear operator which depends on the modifi-
cations of the model structure, ¢ is the eigenfunction, and E(v, ])
is the mode energy defined in Christensen-Dalsgaard (1986).

The energy of modes with | < 20 does not depend on [, but
only on v (Christensen-Dalsgaard 1986). Consider a surface
layer whose thickness is r, <r < Ry, and choose r,» r, =
¢ [l + 1)]Y2/2nv, namely, well above the mode turning point
r.. In this layer, the motions are nearly vertical and the mode
eigenfunctions do not depend on [, but only on v. This allows
us to split the integral in the expression (2) into two parts: the
first depends on ! and v in the region r < r,, while the second
depends only on v in the region r > r,. In so doing, the source
of inaccuracies in the models can be identified by looking at the
behavior of dv as a function of frequency for modes with
O0<i<Il

The shallowest turning point for these modes is the one
related to the mode with the highest degree (I = 11) and the
lowest frequency (v = 1320 uHz; radial order n = 5), namely,
r. =0.55 Ry. Thus we can safely take r, =r, =0.735 R,
which is the base of the convection zone in both the MLT and
CM models.

The region above r, can be further separated into two
regions: an inner region in which the asymptotic approx-
imation (v > |dc/dr|/27) holds and an outer region close to the
surface. The separation boundary, determined by the above
condition, can be set at r; = 0.95 R, where |dc /dr|/2n =~ 210
uHz, a value considerably lower than the lowest frequency of
the modes considered here.

If the frequency differences were originating from sound
speed differences in the region r, < r < r;, where asymptotics
applies, the same straight line dependence on v should attain
for all I's (Dziembowski, Paternd, & Ventura 1988). Therefore,
we are able to distinguish three regions responsible for differ-
ences in the mode frequencies: (1) a first region, 0 <r <r,, in
which év =f(v, }; (2) a second region, r, < r < r;, in which
dv = av + b with a and b constants; (3) a third region, r; < r <
R, in which év = g(v).

A third comparison concerns the behavior of the frequency
differences between models and observations for some modes
with | ranging from 40 to 1300, so as to verify which of the
eigenfrequencies of the two models is closer to the observed
values. With increasing / and decreasing frequency, or n, the
mode propagation region is shifted toward the surface and
becomes thinner. This again allows us to estimate where the
most important deviations from an ideal solar model arise.

PATERNO
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4. RESULTS AND DISCUSSION

As apparent from Figure 1, the relative difference between
the sound speed of the MLT and CM models is negligible
throughout the Sun, except in the outmost layers (0.95 R, <
r < Ry), where it is of the order of a few percent. This is hardly
surprising since the most noticeable difference between the two
treatments of turbulent convection occurs in the super-
adiabatic layers.

To this regard, we would like to mention some very recent
results by Dziembowski, Pamyatnykh, & Sienkiewicz (1992).
The authors, using a variational method, were able to find the
corrections to the quantities p/p = ¢2/T"; and p to be applied to
a solar standard model so as to reproduce the observed
p-mode frequencies. They used the same opacities and element
mixture as those used by us, and a MLT model. Their results
show that, in the outmost layers, the quantity p/p should be
2% less than that of the standard MLT model. This variation
is consistent with the CM sound speed trend, and implies that
the variation in sound speed should be of the order of 4% if ",
does not vary. Similarly they found that, in a very thin layer
close to the surface, the density should be some 10% lower
than that of the standard MLT model, again in agreement with
the CM model (CM1, Fig. 11).

In the layers above 0.65 Ry the CM sound speed is lower
than that of the MLT: thus, the CM eigenmodes should have
smaller frequencies than those of the MLT model, especially
the high ] modes trapped in the superadiabatic layers. This fact
is related to the high convective efficiency of CM with respect
to MLT, which produces a shallower temperature gradient in
the superadiabatic layers as reflected in the lower sound speed.

We computed Av, as the average frequency separation
between modes with [ = 0 with »’s ranging from 12 to 33, i.e.,

33
Avg = Avy = ;3("".0 = Va-1,0)/21;
for a proper comparison, the range of the radial orders con-
sidered has been chosen on the basis of the available observa-
tional data. The results yield Avoy(MLT) = 136.92 uHz, with
standard deviation 6(MLT) = 1.67 yHz and range of variation

T T T T T T
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0 2 4 8 8 1
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F1G. 1.—Relative sound speed difference between the CM and MLT
models, (CS¢y — C8y;1)/CSyy 1, as a function of the Sun’s fractional radius.
The small frame shows the behavior of the same quantity in an enlarged
portion of the surface layers.
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Fi1G. 2.—Frequency differences between CM and MLT models, Av(uHz) =
Vou — Vmurs @8 functions of the MLT model frequencies for modes with
0<li<11.

r(MLT) =624 uHz, and Avy(CM)= 13623 puHz, with
o(CM) = 2.00 uHz and r(CM) = 6.76 uHz, to be compared
with the observational value Avy(obs)= 13549 uHz, with
o(obs) = 1.29 uHz and r(obs) = 4.50 yHz.

The comparison shows that the CM model yields a mean
value closer to the observed value than MLT model, even
though the spread and range are slightly larger. As already
stated, this depends on the different structural characteristics
of the layers near the surface where different treatments of
turbulent convection produce the largest effects. This is also
evident by comparing our result with that derived from a very
recent solar standard model (Guenther et al. 1992; Table 2A)
which gives Av, = 137.15 pHz, with ¢ = 1.45 pgHz and r = 4.64
pHz.

Inspection of Figure 2 reveals that the I-dependence of the
frequency differences Av’s is negligible, since all the curves are
parallel. In addition, since the dependences on v are not
straight lines, the differences between the two models arise only
from the layers above r; = 0.95 R, as already mentioned in
§ 3.
This fact also validates our helioseismological analysis to
ascertain which of the two treatments of turbulent convection
is more appropriate to describe the Sun, in that it demonstrates
that we are comparing two almost identical models which
differ only in the region where the effects of a correct treatment
of turbulence are more important. Differences in eigen-

F1G6. 3—Frequency differences between MLT model and observations,
Av(uHz) = vy 1 — vy, (squares), and CM model and observations, Av(uHz) =
Vom — Vous (Crosses), as functions of the observed frequencies for modes
0<lgs.

frequencies of up to 15 uHz can be seen in Figure 2, with | Av|
increasing with frequency, the eigenfrequencies of the CM
model being systematically lower than those of the MLT
model.

Figures 3 and 4 highlight the difference of each model with
observations. Here, even though the dependence of Av on v is
dominant, a slight dependence on I cannot be ruled out. The
v-dependence appears less pronounced in the CM model than
in the MLT model, indicating an improvement in the treat-
ment of the surface layers. A least-square linear fit of data
indicates, in fact, that the slopes |Av/v| relative to the CM
model are systematically lower than those of the MLT model,
ranging from a factor of 2 ( = 0) to a factor of 20 (I = 11).
However, both models indicate that the treatment of the
surface layers is still a problem. The small /-dependence may
also indicate that the physics of the solar interior needs
revisions. The differences between theoretical and observed
eigenfrequencies range from —20 to +20 uHz, well above the
accuracy of observations, which is of the order of few tenths of
microhertz in this range of I’s.

In Figures 5-8 we compare MLT and CM eigenfrequencies
with the observed values for some high-degree modes with [
ranging from 40 to 1300. For all the values of / we have exam-
ined, the CM eigenfrequencies are, in general, closer to obser-
vations than the MLT eigenfrequencies. In the range
40 < 1 < 200, deviations of the MLT model range from —20 to
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FiG. 8—Frequency differences between MLT model and observations,
Av{pHz) = vy 1 — v ps (Squares), and CM model and observations, Av(uHz) =
Vo — Vobs (Crosses) as functions of the radial order n for the modes with
I'=1000, 1100, 1200 and 1300. The straight line on the top of the figure
indicates the turning points of the modes, r_, in terms of the solar radius. The

c

deepest point refers to the mode with the lowest ! and highest n, while the
shallowest one refers to the mode with the highest ! and the lowest n. Modes
with intermediate n’s and I’s have intermediate penetrations.

+40 pHz, while those of the CM model range from —20 to
0 pHz. In the range above | = 200, the deviations tend to
increase with [, and, in the range above | = 400, the deviations
are always positive.

This indicates that the theoretical sound speed in the convec-
tion zone is overestimated by both the MLT and CM models,
although in the CM model the deviations are sensibly smaller.

PATERNO ET AL.

For modes with 400 < I < 900, they range from few micro-
hertz to 100 yHz, while the MLT deviations range from 30 to
180 uHz. The largest deviations occur in the range
1000 < I < 1300, which concerns modes trapped in a very thin
surface layer (20.006 R). Here, even though the CM devi-
ations are smaller than those of MLT model, there is a ten-
dency to converge to the same value for both the models. This
depends on the very sharp increase of the CM sound speed
near the surface.

Observational errors for the very high degree modes
(I > 400) are quite large, of the order of some tens of micro-
hertz. The deviations we are reporting here are nonetheless real
and should be attributed to deviations of the models from the
real Sun.

5. CONCLUSIONS

In Figs. 1 and 2 we compare the predictions of two solar
models with the same microphysics input, but which differ
significantly in the treatment of stellar convection in the layers
very close to the surface.

Notwithstanding problems in the treatment of the interior
(i.e., uncertainties in the opacities, equation of state and nuclear
reaction cross sections), the present analysis shows that both
MLT and CM models suffer from inadequacies in the treat-
ment of the surface layers. However, since these inadequacies
are common to both models, the results should only reflect the
different treatments of turbulent convection.

The overall assessment is that the new CM model predicts
eigenfrequencies closer to the observed values than the stan-
dard MLT. The relevance of this conclusion lies in the fact that
the improvement has been achieved without adjustable param-
eters of the first order, like « in the MLT, but only through the
calibration of a second-order parameter, like a in the CM2, to
obtain the solar radius within the required accuracy of the
fourth decimal figure.
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