Dissipation of Marine Stratiform Clouds and Collapse of the Marine Boundary Layer Due to the Depletion of Cloud Condensation Nuclei by Clouds

Andrew S. Ackerman,* Owen B. Toon, Peter V. Hobbs

When the production of cloud condensation nuclei in the stratuscumulus-topped marine boundary layer is low enough, droplet concentrations can reduce concentrations of cloud droplet numbers to extremely low values. At low droplet concentrations a cloud layer can become so optically thin that clouds do not radiatively cool the ocean surface. Under these conditions, model simulations indicate that the stratuscumulus-topped marine boundary layer collapses to a shallow fog layer. Through this mechanism, marine stratiform clouds may limit their own lifetimes.

Marine stratiform clouds overlie about a third of the Earth's oceans and play a prominent role in the Earth's radiative heat balance (1). As shown by satellite imagery, marine stratiform clouds reflect much more sunlight than the darker underlying ocean surface and strongly enhance the Earth's global albedo (2). It has been estimated that the global cooling that would result from a 4% increase in the area covered by marine stratuscumulus would offset the expected warming from a doubling of atmospheric carbon dioxide concentrations (3). Extensive sheets of marine stratuscumulus are a climatological feature of the eastern regions of subtropical oceans, where the planetary boundary layer is capped by strong temperature inversion produced by large-scale subsidence. The vertical mixing that supplies moisture to these clouds and maintains the depth of the boundary layer is generally driven by cloud-top radiative cooling (4). Clearly, an understanding of the processes that determine the lifetime and albedo of marine stratuscumulus is of critical importance to an understanding of the Earth's climate system.

Twomey (5) suggested that increased numbers of cloud condensation nuclei (CCN) can enhance cloud albedo because they increase the droplet surface area for a fixed mass of cloud water. Albrecht (6) argued that increased CCN concentrations, which decrease cloud droplet sizes and reduce drizzle, can increase the fractional coverage of marine stratiform clouds because drizzle can regulate the liquid-water content and the lifetime of a cloud. Evidence that increases in particle concentrations can increase cloud albedo is provided by linear high-albedo cloud features over the ocean, often hundreds of kilometers long, known as "ship tracks" because they are caused by emissions from ships (7, 8). In this report we identify a phenomenon that is the converse of ship tracks. We have found, through numerical modeling studies, that clouds themselves may reduce particle concentrations to such an extent that the clouds dissipate and, as a consequence, the boundary layer collapses. Variations in CCN concentrations can strongly affect cloud cover (Fig. 1). In the dark, nearly cloud-free region shown in Fig. 1, low ambient CCN concentrations were measured from aboard a ship (8). There were apparently not enough CCN in this dark region to maintain an optically thick cloud layer. However, a prominent cloud line (ST in Fig. 1) formed behind an underlying ship during the same period. Along this line, the injection of a large number of CCN apparently allowed a persistent cloud to form.

We suggest that drizzle in marine stratiform clouds can reduce CCN concentrations sufficiently to cause the stratuscumulus-topped boundary layer to collapse to a shallow fog layer, in which cloud-top radiative cooling can no longer drive vertical mixing. A typical scenario (scenario 1) for such a collapse would be for CCN concentrations to build under cloud-free conditions. Then, when clouds form, CCN concentrations are depleted by collisions between cloud droplets that have formed on CCN and by the removal of cloud water in drizzle. The reduction in CCN concentrations can lead to the dissipation of the clouds and the collapse of the boundary layer.

We used a numerical model (9) to investigate this process. The production of CCN in the model was represented by a constant CCN source of $5 \times 10^{-4} \text{cm}^{-3} \cdot \text{s}^{-1}$ throughout the depth of the boundary layer (10). The model domain was initially unsaturated and cloudless (11). The initial CCN concentration of 100cm^{-3} corresponds to a constant production rate over about 2 days of cloud-free conditions in which no significant loss processes are active. Once the simulation was started, it took ~1.5 hours for a cloud layer to form (Fig. 2).
The most direct and immediate response of the system to cloud formation was a decrease in CCN concentrations throughout the boundary layer. This result is reflected in the droplet concentration at cloud top (Fig. 2A), which fell from 35 to 20 cm$^{-3}$ after 1 day in the simulation and to 4 cm$^{-3}$ after 2 days. As a result, the average droplet radius increased (Fig. 2B) from 17 to 19 μm in the first day and reached 30 μm after 2 days. With bigger droplets the drizzle flux increased, thereby reducing the liquid-water path (Fig. 2C). These coupled effects contributed to a 60% reduction in the cloud optical depth in 2 days (Fig. 2D).

Before the collapse, vertical mixing in the boundary layer was primarily driven by cloud-top radiative cooling, which is frequently observed (12, 13). The cloud layer was optically thick enough for the profile of infrared cooling to attain a pronounced maximum near cloud top. As the cloud layer became less optically thick, the peak in the cooling rate diminished and moved downward. Although infrared cooling below cloud top continued to destabilize the cloud layer with respect to the subcloud layer, it stabilized the cloud layer above the altitude of the peak cooling rate. This stabilization allowed the subsiding air to push the inversion downward, leading to the collapse of the boundary layer (Fig. 2E).

This simulated collapse of the boundary layer is not an artifact of the specified initial conditions. Cloud formation did “shock” the modeled atmosphere through the release of latent heat. To demonstrate that the collapse of the boundary layer was not simply a recovery from this shock but rather a result of an imbalance between the source and sinks of CCN, we considered a second scenario (scenario 2). In it the initial CCN production rate was four times the value used in the first scenario, which was great enough to offset the loss of CCN due to cloud processes. After 3 days, the production rate of CCN was reduced to that used in scenario 1 (corresponding to time 0), and the boundary layer collapsed in an identical manner to that obtained in the first scenario (Fig. 2). In scenario 2 there were diurnal oscillations during the 3 days preceding time 0, in which the cloud layer thickened at night and thinned during the day because of changes in vertical mixing produced by solar heating (14).

The albedo and infrared cooling rate of a cloud both depend on cloud optical depth (τ), which is approximated by (15)

$$\tau = \frac{3\omega h}{2\tau_{\text{eff}}}$$

where ω is the average cloud liquid-water content, h is the cloud thickness, and τ$_{\text{eff}}$ is the effective radius of the cloud droplet distribution. A comparison of the changes in these parameters over 2 days (Table 1) indicates that all three parameters on the right side of Eq. 1 are of comparable significance in reducing τ (and therefore the cloud albedo). The change in τ caused the broad-band solar albedo at the top of the atmosphere to fall from 43 to 31% in 2 days (16). The effects on τ and cloud albedo due to changes in τ$_{\text{eff}}$ and ω caused by variations in aerosol concentrations have been discussed (5, 6). However, the changes in τ and in cloud albedo discussed here are self-induced rather than imposed by external perturbations in CCN concentrations.

To the extent that our model represents the cloud-topped marine boundary layer, it has revealed a mechanism by which marine stratiform clouds can disperse in addition to cloud-top entrainment instability (17) and decoupling between cloud and subcloud layers from solar heating (18). Albrecht (6) discussed the effect of CCN concentrations on fractional cloud amount. In his model, cloud microphysics was represented through the specification of a precipitation efficiency, assumed to be inversely related to CCN concentrations. He concluded that marine stratiform cloud coverage depends on CCN concentration because precipitation removes cloud water and reduces mixing (between the cloud and subcloud layers) through evaporation of drizzle below cloud base. Both of these mechanisms play a role in the dissipation of the cloud layer in our simulations but do not account entirely for the collapse of the boundary layer. In our simulations the main mechanism responsible for the cloud dissipation is the drastic reduction in optical depth, and the associated change in the profile of infrared cooling, that results from the coupled decreases in droplet concentration and cloud liquid-water content.

The collapse of the marine boundary layer and the associated dissipation of the marine stratiform clouds may be prevented, prolonged, or accelerated, depending on the atmospheric conditions such as the CCN production rate, initial concentration, and input size distribution, as well as the wind speed, the sea-surface temperature, and the divergence rate of the horiz...
horizontal wind velocity. We varied these conditions and repeated the scenario 1 simulation (the scenario 1 results presented above are hereafter referred to as the base case). To compare results, we defined an initial τ by its average value during the -6-hour recovery from the shock of cloud formation and then determined a collapse time as the time it took for τ to decrease to 0. Applying this definition to the base case, we found that the collapse took 45 hours, during which time the boundary layer depth decreased from 750 to 450m. A factor of two change in the CCN production rate strongly affected the simulated collapse of the boundary layer (Table 2). When the CCN source strength was reduced to one half of the value used in the base case, the collapse took half the time; after 45 hours the boundary layer depth decreased to 250m. When the CCN source strength was twice that in the base case, the boundary layer did not collapse at all. In this case, the droplet number concentration declined to 11cm^{-3} over 53 hours, τ_{eff} increased to $20 \mu\text{m}$, and the liquid-water path remained nearly constant. Apparently

<table>
<thead>
<tr>
<th>Variable</th>
<th>Diurnal average*</th>
<th>Value after 2 days</th>
<th>Change ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h (\text{m})$</td>
<td>510</td>
<td>450</td>
<td>0.88</td>
</tr>
<tr>
<td>$w (\text{g m}^{-3})$</td>
<td>0.23</td>
<td>0.18</td>
<td>0.78</td>
</tr>
<tr>
<td>$\tau_{\text{eff}} (\mu\text{m})$</td>
<td>18</td>
<td>31</td>
<td>0.58</td>
</tr>
<tr>
<td>τ</td>
<td>9.8</td>
<td>3.9</td>
<td>0.40</td>
</tr>
</tbody>
</table>

*The change ratio for h and w is defined as the value after 2 days divided by the diurnal average before time 0; for τ_{eff} this ratio is defined as the inverse. When these definitions are combined with Eq. 1, the change ratio for τ is the product of the change ratios for the other three properties. We used the average state of the cloud before time 0 from the second scenario because it provided a more clearly defined baseline than did the first scenario (Fig. 2).

Doubling of the geostrophic wind speed accelerated and slightly weakened the collapse of the boundary layer (Table 2). A higher wind shear from surface drag resulted in greater mixing, which led to increased drizzle and thereby reduced droplet concentrations faster. But because it maintained mixing, increased shear also offset some of the collapse. Another source of increased mixing is surface buoyancy. An increase in the sea-surface temperature of 3K delayed and weakened the collapse of the boundary layer. In the first day of evolution (before droplet concentrations started to fall dramatically), the boundary layer thickness climbed to 850m. By the time τ e-folded, the boundary layer thickness had decreased by 250m, which represents a vertical collapse only 50m less than for the base case but that results in a final boundary layer thickness 150m greater than in the base case. Finally, an increase in the divergence rate of the horizontal wind velocity caused the boundary layer to collapse further in the same amount of time as in the base case (Table 2). Increased divergence resulted in stronger subsidence of the inversion air, which offset cloud-top radiative cooling, thereby decreasing mixing. Stronger subsidence alone would accelerate the deepening of the inversion, but drizzle was reduced because mixing was diminished, and any potential acceleration was offset by the reduced droplet removal rate.

We do not know how often these processes result in the collapse of the marine boundary layer, but several sets of observations are consistent with its occurrence. For instance, low particle concentrations are common in the marine boundary layer (8, 20). Also, the meteorological conditions under which ship tracks form correspond closely with the collapsed boundary layer that we have described (21). An explanation of the formation of visible ship tracks in such a boundary layer is the converse of the description of the collapse of the boundary layer described here (22).

Our study suggests that there is a closely coupled life cycle between CCN and stratiform clouds in the marine boundary layer. First, CCN accumulate under clear, cloud-free conditions. Clouds then form, which reduce CCN concentrations through droplet losses. After enough time, the final stage is the collapse of the boundary layer produced by a reduction of cloud optical depth, which dissipates the clouds. Through this mechanism, marine stratiform clouds may contain the seeds of their own destruction.

REFERENCES AND NOTES

2. The global albedo is the fraction of incident (short-wave) solar radiation reflected by the Earth. Because low-lying clouds radiate to space at a temperature near that of the ocean surface, their impact on the global longwave radiation budget is small.
High-Temperature XAS Study of Fe$_2$SiO$_4$ Liquid: Reduced Coordination of Ferrous Iron

X-ray absorption spectroscopy (XAS) of Fe$^{2+}$ in Fe$_2$SiO$_4$ liquid at 1575 kelvin and 10$^{-4}$ gigapascal (1 bar) shows that the Fe$^{2+}$–O bond length is 1.98 ± 0.02 angstroms compared with 1.222 angstroms in crystalline Fe$_2$SiO$_4$ (fayalite) at the melting point (1478 kelvin), which indicates a decrease in average Fe$^{2+}$ coordination number from six in fayalite to four in the liquid. Anharmonicity in the liquid was accounted for using a data analysis procedure. This reduction in coordination number is similar to that observed on the melting of certain ionic salts. These results are used to develop a model of the medium-range structural environment of Fe$^{2+}$ in olivine-composition melts, which helps explain some of the properties of Fe$_2$SiO$_4$ liquid, including density, viscosity, and the partitioning of iron and nickel between silicate melts and crystalline olivines. Some of the implications of this model for silicate melts in the Earth’s crust and mantle are discussed.

Ferrous iron (Fe$^{2+}$) is the major transition metal in mafic and ultramafic silicate melts in the Earth’s lower crust and upper mantle (1) and in some metallurgical slags. In such liquids, Fe$^{2+}$ is commonly believed to be six-coordinated by oxygen (2), but it might be four- or five-coordinated as well (3, 4). Such differences in iron coordination would have a significant effect on the physical properties of these liquids, particularly on their density, viscosity, and ionic diffusivity, because of expected increases in metal-oxygen bond strength with decreasing coordination number and bond length. Thus, knowledge of the local coordination environment of Fe$^{2+}$ in silicate liquids as a function of temperature is necessary to understand these and other properties and to help constrain models of Earth’s partially molten interior (5).

There is little direct information about the coordination environments of transition metals in silicate liquids because structural studies of liquids at temperatures >1000 K are experimentally difficult and techniques such as nuclear magnetic resonance (NMR) and Raman spectroscopy, which have provided valuable information on the polymeric structure of silicate liquids, are not well suited for studies of transition-metal environments. Most information on the effects of temperature, pressure, and composition on the structure of such melts, including the coordination environment of transition metals, has been derived by inference and extrapolation from

*Present address: General Electric Company, 6325 Huntley Road, P.O. Box 566, Worthington, OH 43085.
†To whom correspondence should be addressed.