FTI98OARA © Z 217 ~“333T

Astron. Astrophys. 217, 333-343 (1989)

ASTRONOMY
AND
ASTROPHYSICS

AMLT: anisotropic mixing length theory

V.M. Canuto

NASA, Goddard Space Flight Center, Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA

Received July 25, accepted November 18, 1988

Summary. The standard MLT assumed a) that the largest eddies
are the only ones that contribute to convection and b) that they
are isotropic. These two requirements are internally inconsistent
since it is experimentally known that only small eddies are
isotropic, while large eddies exhibit large degrees of anisotropy.
In this paper we present a new model: anisotropic mixing length
theory, AMLT, together with a model that relates the anisotropy
to other quantities of the problem. The new AMLT equations are
solved for two cases of interest in stellar structure calculations.

In the first case, the gradients V, and V,, are considered
known, and the resulting expression for V and V' derived. The
basic AMLT relations are given in two equivalent represen-
tations: Eqs. (49)—(52) and/or Egs. (53)—(54). It is shown that:
1) The value of V — V4 from the AMLT is up to two orders of
magnitude larger than the corresponding MLT value, Eq. (60).
2) In the physically important case of large degrees of ani-
sotropy, the turbulent velocity in the AMLT is lower than the
corresponding MLT value by a factor of 2, Eq. (67). This may
help lessen the problem of overshooting.

In the second case, the gradients V and V,4 are considered
known and the resulting expressions for V, and V’ are derived,
together with the expressions for the convective flux and the
turbulent velocity, Egs. (71), (73), (74) and (75). For the case of
large anisotropies, the AMLT can be solved analytically, Eqgs.
(79)—(83). The convective flux, the convective velocities, the tem-
perature excess, and the radiative gradient, are smaller than the
MLT relations by the factors x~ !, x~ /2 x~ 12 and x !,
respectively, where x > 1 is given in terms of known variables via
Eq. (79).

The present formalism is valid only in the optically thick case.
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1. Introduction

The mixing length theory, MLT, despite its well known short-
comings (e.g. Renzini, 1987; Baker and Kuhfuss, 1987), remains a
useful tool for the treatment of convective turbulence (Bohm-
Vitense, 1958; Kippenhahn, 1963, referred to as K63; Cox and
Giuli, 1968, referred to as CG68; Maeder, 1975; Maeder and
Mermilliod, 1981; Langer, 1987). In this paper we point out and
correct an internal contradiction of two basic assumptions of the
MLT: on the one hand, it is assumed that not all turbulent eddies
contribute to bulk properties like velocities and convective fluxes;
only a subset of them, the large eddies, make the most significant
contribution. (In practice, only one eddy in MLT is taken to

dominate.) While this is a physically acceptable approximation
(in turbulent flows the large eddies carry most of the energy), it is
not correct to assume that these same large eddies are isotropic.
In any turbulent flow, only the small eddies can be assumed to be
isotropic, but they are not considered within the MLT frame-
work since they contribute insignificantly to the bulk properties
of the flow. The large eddies are experimentally known to be
highly anisotropic and yet, in the standard MLT, they are treated
as isotropic. This occurs since all the different length scales that
enter into MLT are taken to be identical and equal to an
unspecified mixing length, /, even though they represent different
physical quantities.

A detailed derivation of the MLT expressions (see Appendix
A) shows that there are at least three different lengths associated
with the physical system:
1) The time derivative of the temperature and velocity fields is
usually transformed as

0 0
oW, (M
ot oA,

which introduces a length A,. Here, w is the velocity in the z
direction.

2) The three-dimensional Laplacian operator that enters in the
temperature equation, Eq. (A8), is changed to

—VioAT? 2.

which introduces a second length, A. To be more precise, the
action of the operator — V? can be thought of as giving rise to k2,
where k is the total wavenumber, see Eq. (6) below.

3) The third length appears in the Taylor expansion of the
temperature excess, see Eq. (A4), i.e.,

A, =z —z,. 3)
In the standard MLT, it is assumed that
Acx AR A =], 4

where [ is called the mixing length.

The identification (4) is tantamount to assuming isotropy. In
fact, A~ !, which represents the magnitude of the total wave-
number k, see Eq. (B19), is taken to be equal to A, ! which
represents only the z component of k, i.e., the inverse of the size of
the eddy in the z-direction. Since the large eddies are expected to
be considerably stretched in that direction, one expects a skinny
eddy which would mean that

(k3 + k3) > k2. (5)

To properly account for the anisotropy of the eddies, it is
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therefore convenient to introduce an anisotropy parameter x,
x = (kI +kJ)/kZ, (6)

which we expect to be much greater than unity when dealing with
the large scale portion of the eddy spectrum. In Appendix B, it is
shown that for the MLT expressions to be compatible with a
more complete model of turbulence, the relation between the
three lengths introduced earlier must be, Eqgs. (B28) and (B29),

A= (14 x)"12A, (M
1/2

Ae = 1x+ X Az ®

where

2A, =1 )

As expected, for large values of anisotropy, x, A, and A, are
considerably smaller than the mixing length I. Only for values of
x of order unity, i.e., isotropy, are the three lengths essentially
equal.

In what follows, we shall discuss the general expressions for
the turbulent velocity, the convective flux, and the temperature
excess, written as functions of A, A, and A,. (The derivation of
these expressions is given in Appendix A so as not to interrupt
the flow of the presentation.)

The introduction of the parameter x clearly demands that a
model be provided which relates this parameter to the other
quantities in the system. Such a model will be given in Sect. 4. In
Sect. 5, we will present the basic equations of the AMLT formal-
ism. Interestingly enough, the well known cubic equation that
must be solved in the standard MLT to derive the value of
V — V,q4 reduces to a quadratic equation in the AMLT. Only one
universal function G(x) enters the problem which is then tabu-
lated for different values of x. The values of the gradient V — V4
can then be obtained by solving a simple algebraic relation.

Before we enter the derivation and discussion of the equa-
tions, it must be mentioned that this is not the first time that
anisotropy has been considered in the context of the MLT. For
example, Gough’s expressions of 1976 and 1977 (for a review, see
Gough, 1978) included radiative losses but had an incorrect x
dependence. Further work (Gough, 1978) has the correct x
dependence but is valid only for the case of no radiative energy
losses. Finally, the expressions in Cox and Giuli (1968) include
radiative losses but assume isotropy, x & unity, which as we have
already discussed is intrinsically inconsistent.

2. The basic equations of the AMLT

Before presenting the equations to be solved, it is necessary to
establish a system of notation. Following Cox and Guili (1968),
Kippenhahn (1963), and Baker and Temesvary (1966; hereafter
referred to as BT), T is defined to be the average temperature at
any level in the medium and T’ the temperature of the rising
convective element. Furthermore,

H, dT P
T dz’ p_pg

) (10)

where H, is the pressure scale height. The radiative flux F, is given
by

dT  4acT*
F=—K—-=
dz  3pxH,

(1)

r

where K is the thermal conductivity. For future reference, we
shall also introduce the thermometric conductivity, y, defined as
(where k is the opacity)

K 4acT?

- p—cp B 3pikc,

(12)

Let us now consider the following expressions derived in
Appendix A:
Convective velocity in the z direction, w ( Eq. A5 ): with the volume
expansion coefficient « = T ~ !, which is valid for a perfect gas, we

have
dT’ dT
AA| ——— |,
dz dz
or

w=2" 1/2x1/2(1 + x)-; I/Z(AC/A,)I/Z(Q/HP)UZI(V _ V/)I/Z
(14)

Equation (14) can be compared with Eq. (14.28b) of CG68 and

Eq. (69) of K63. See, however, the cautionary remark after

Eq. (62).

Convective flux, F,: from Eq. (A7), we obtain

2x g

2 _ g
1+xT

(13)

F, A dr _ 4T te,pT : (V-V) (15)
= —_— =3 w—(V—-V’).
c CppW z dZ dZ szP Hp
Substituting the expression for w yields
F,=8712¢,px'2(1 4+ x)™ V2(A,/A,)'?
x (I/H,)* T(P/p)'*(V — V')*/2, (16)

to be compared with Eq. (14.18) of CG68 and Eq. (A1) of BT. As
one can see, the AMLT expressions formally have the same
structure as the MLT expressions which are valid for x ~ 1, even
though this appearance is deceptive since x is a function of all the
other variables within the system.

For the temperature excess, V — V’, we have from Eq. (A11),

- Vad

V-V)2=4 , 17
( ) S BV - V)7 an
where the new quantities A(x) and B(x) are defined as

9
A(x) = mxl’z(l + )72 (A/A) P (A/AL), (18a)
A,
B(x) = A(x)[— - 1], (18b)
Ag
U= 2T op gy 19
= el /9%, (19)

where U is the parameter defined in Eq. (71) of K63. Note that
U ! = 24, where A is defined in Eq. (14.70) of CG68. If Eq. (17)
is compared to the corresponding MLT expression, Egs. (14.71)
and (14.73) of CG68, i.e.,

(V=V)2=A(V = V,), (20)
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or Eq. (A7) of BT, it is noticed that (17) is structurally different
because of the appearance of the new function B(x) whose
presence is due to the difference between the various length
scales.

Having derived the basic equations, we shall proceed to solve
them in two different cases. In Sect. 4 we present a model for x.

3. Solution of the AMLT equations when the total flux is given

Following standard procedure, we write for the total flux F, with
o =acl4,

4acT*
F=F. +F =0T%= 21
3pxH,
Using now Egs. (11) and (16), we obtain
V,=V=Cx)(V-V)P, (22)
where the function C(x) is given by
C(x) = AZA™2A(x). (23)

Equation (22) should be compared with Eq. (14.72) of CG68 and
Eq. (A6) of BT.

Equations (17) and (22) contain the four gradients V, V', V,,
and V,4. The standard procedure is that of eliminating V' be-
tween the two relations so as to obtain one equation for V as a
function of the two gradients V, and V4, which are considered to
be known. The solution of (17) is

o 1 . 2
V-V = 5o [E(x) = U(x)T% (24)
where
A,
o(x) = B(x)/A(x) = — — 1. (25)
A
The functions ¢(x) amd U(x) are generalizations of
Kippenhahn’s ¢ and U, namely
Ex)=[Ux) +V = Vy,]'? (26)
U(x)" ' =24(x)[1 + a(x)]V2 27
Substituting Eq. (24) in (22), we obtain the cubic equation,
(AZ/2A%)[¢(x) = U(x)]?
+EHX)U(x) = U3 (x) = U(x)(V, = V,0) = 0, (28)

which generalizes the well known cubic equation of the standard
MLT, Eq. (72) of Kippenhahn (1963). In order to proceed, we
need a model for the anisotropy x as a function of the other
variables.

For completeness, let us remark that in the standard MLT, if
one introduces the variable T,

1+2r = 5 (29)
Eq. (28) becomes

2F3+F2+F———(V,—Vad)=0, (30)
4 4U?

which is Eq. (14.82) of Cox and Giuli after use is made of (14.80)
and (14.81).

335

4. The degree of anisotropy x

The reason why there is convective flux is because there is a
convective instability that can be characterized by a growth rate
ny(k), ie., a stability analysis indicates that disturbances grow
exponentially like
exp [n,(k)t], ng(k) > 0. (31)
In the linear analysis, the instability causes the kinetic energy to
increase exponentially at the rate 2n (k). The system can reach
stationarity only if the non-linear interactions are taken into
account so as to distribute the energy injected at the largest scales
to all the remaining eddies (scales). By imposing that balance, one
finds the resulting turbulent energy spectral function. The way
one sets up the non-linear interactions is determined by the
turbulence model [see Canuto and Goldman (1985), Eq. (1) and
Eq. (5) for the turbulent viscosity].

The growth rate n, of the convective instability is known to be
given by the solution of (Cabot et al., 1987)

nd (k) + szns(k)—gdﬂ[k—lj] =0, (32)

where « is the volume expansion coefficient and f is the super-
adiabatic temperature gradient,

gap=gH, " (V—Vy), k*=ki+k. (33)
The growth rate given by Eq. (32) is the eigenvalue resulting from
the stability analysis. As in many other problems, the specific
form of n, is the result of having imposed specific boundary
conditions. Furthermore, since the structure of the equations is

such that the velocity in the z-direction (L stands for linear) is
given by

W, (z) = W,sink,z, (34)
k,d is defined so that

W, (d) =0, (35)
ie.,

k,d = nm. (36)

Introducing the anisotropy parameter x, Eq. (6), one has for the
total wavenumber k

k2 = k2(1 + x) = (mn/d)* (1 + x). 37

The smallest wavenumber k = k,, corresponds to taking n =1,
so that Eq: (B7) follows. Furthermore,

k2 X

L 38
k> 1+x (38)
Introducing (37) with n = 1 and (38) into (32), and requiring that

rm ns(x) = Oa

dx (39)

which corresponds to determining the anisotropy that yields the
fastest growing mode (the shortest timescale), one can work out
the relation

(x = 1)(x+1)> =(81/32) U2 (V—V,,). (40)
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Eliminating the quantity V — V,, via Eq. (26) Eq. (40) becomes

(x—l)(X+1)3U2=8—14(d/1)4[€2(X)—U2(X)]- 41)
2n

If we eliminate U using (18a) and (27) and employ (B29), Eq. (41)
further simplifies to
(2x = DU (x) = {(x), 42

which is the extra relation needed to solve the problem. Introduc-
ing (42) into (28), the function &(x) can be eliminated in terms of
U (x) and the equation becomes of second order in U (x). Using

The procedure is therefore as follows: given a value of U and V,
— V> Egs. (49)-(50) are solved for x; values of the function
G(x) are listed in Table 1 and Fig. 1. When the value of x is
substituted in (51) and (52), the values of V. — V,y andV — V' are .
obtained.

5.2. Second representation

To render the comparison between AMLT and MLT more
transparent, we shall employ the variables { and B introduced by
Cox and Giuli, Egs. (14.78) and (14.81), i.e.,

then the definition of U (x) from Eq. (27), one finally obtains V-V
- (= - > B=[(V,.—Vad)/9U2]l/3, (53)

G(X) = (Vr - Vad)U 2’ (43) Vr_vad
where G(x) is a universal function of the variable x given by in which case Egs. (50)—(51) become

161+ G(x)=9B3
G(x)=— x(Az/A)4[A§A‘2(x— 1P +x(x—1)]. (44 (x)

81 1—¢=(32/729)B 31 + x)}(x = 1)
Equation (43) has considerably simplified the problem. The right vy — Vo + (1 =)V, = V,4), (54)

hand side of the equation contains only known quantities, while
the left hand side is a universal function of x that can be tabulated
once and for all.

5. Solution of the AMLT equations when the total flux is given

The basic equations of the AMLT formalism are Egs. (42)—(44),
(26)—(27), and (18)—(19). Before we collect them together in their
final form, we shall transform them so that only the x variable
appears. To do this, the relations (B28)—(B30) are used to elimin-
ate the A’s in terms of the variable x. When that is done, the basic
equations of the AMLT can be written as

where G(x) is given by (49). The procedure is now: given a value of
B, the first of (54) is solved for x, which is then used in the second
relation to obtain the variable { and in the third relation to obtain
the gradient V. The temperature excess V — V' is obtained from
Eq. (52).

For completeness, we shall also give the expressions for the
convective flux F, and convective velocity, w. They are,

FL‘=C(1 _Vad/vr)F (55)

where F is the total (known) flux. The velocity w, derived from
Egs. (14) and (22), is, with v, the sound speed and T the ratio of
specific heats,

V, = Vi =U2G(x), @s5) T'2w/o =112y 0)xV2(1 + x)"23(I/H,) UBLY?, (56)
U(x) = (8Y2/9)x™ 12(1 + x)3? U, (46a) 3
E(x)=(2x = 1) U(x), (46b) [
E2(x) = U(x) + V = V,q, (46¢) E
(82/32)G(x) =y "1+ x)*(x =1} + (1 +x)3(x—1). @47 -
Given the simple structure of the above equations, which we have [
written in detail to simplify the comparison with the standard 2
case, one can reduce the set of Egs. (46) to one equation, i.e.,
V=V, =32/81)(1 +x)*(x - U2, (48) 5(x)
X
so that the three basic equation of AMLT are now given by (45),
(47), and (48).
l ______

5.1. First representation
Eliminating U 2 between (48) and (45), the complete system of
equations, including Eq. (22), becomes
G(x)=(32/8)(x — )(x + D*[x+1+7y '(x—1)] (49)
V _V.=U2G 50 o L1 111l L1 1 LIlill L1111l

v (x) (50) | 10 102 103
Vr - Vad -1 2 X
v v =ty T (x =1 (x+ 1), (51) )
V=V Fig. 1. These are plots of the function G(x) for 1 < x < 10* and for
V_V = (217/12y1/6/81f/3) y =1 and 2 as indicated. G(x) is deﬁnefl to be G(x), Eq. (49), divided

by the value of G(x) as x — o0, ie, G(x)= G(x)/G(x — o), where
x (1 4+ x)¥3x~ U2y 23(V, — V)23, (52) G(x—o0)=32x%/(81y), Eq. (64)
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Table 1. Values of the function G(x), Eq. (47)

X G(x) G(x)
=1 =2
2 1.422 x 10! 1.244 x 10!
3 1.011 x 10° 7.585 x 10!
4 4.148 x 102 2.815 x 10?
5 1.252 x 103 7.964 x 102
6 3.097 x 103 1.887 x 103
7 6.675 x 103 3.944 x 103
8 1.299 x 10* 7.504 x 103
9 2.339 x 10* 1.327 x 10*
10 3.958 x 10* 2.216 x 10*
20 1.265 x 106 6.670 x 10°
30 9.601 x 108 4.971 x 108
40 4.046 x 107 2.076 x 107
50 1.235 x 108 6.301 x 107
60 3.072 x 108 1.563 x 108
70 6.640 x 108 3.369 x 108
80 1.295 x 109 6.556 x 108
90 2.333 x 10° 1.180 x 10°
100 3.951 x 10° 1.996 x 10°
150 3.000 x 1010 1.510 x 1010
200 1.264 x 10! 6.353 x 1010
250 3.858 x 101! 1.937 x 101
300 9.600 x 10! 4.816 x 101
350 2.075 x 102 1.041 x 1012
400 4.045 x 1012 2.028 x 1012
450 7.290 x 10" 3.653 x 1012
500 1.235 x 103 6.185 x 1012
550 1.988 x 1013 9.960 x 10'?
600 3.072 x 103 1.539 x 1013
650 4.584 x 1013 2.296 x 1013
700 6.640 x 1013 3.325 x 103
750 9.375 x 103 4.694 x 1013
800 1.295 x 1014 6.481 x 10'3
850 1.753 x 1014 8.775 x 1013
900 2.333 x 10 1.168 x 10
950 3.057 x 104 1.530 x 10
1000 3.951 x 104 1.977 x 10"
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For the MLT case, we shall adopt Eq. (14.86) of CG68, i.e. (the
equation satisfied by ( is given below, Eq. 58),

[12w/p =27 Y2(I/H,)UB{'3, (57)

However, a cautionary remark is in order. Within the AMLT
formalism, w is the convective velocity in the z direction, while v,
is the average convective velocity; the two are in principle differ-
ent, their relation being given by Eq. (B8). Within the MLT
formalism, the difference between the two is not so clear: for
example, in Eq. (14.18) of CG68, the velocity v is defined by CG68
as the vertical velocity which therefore coincides with our w; on
the other hand, the same velocity is then identified with the one in
Eq. (14.23) which is defined by CG68 as the average speed, i.e.,
our v,. For this reason, one must be careful in interpreting the
ratio (56) to (57), computed in Table 2 below, especially for small
values of x, where the difference between w and v, is significant,
see Eq. (BB).

In order to compare the AMLT results with those of the
MLT, we solved the relations (54) together with the cubic equa-
tion that in the MLT relates the variables B and (. The latter is
given by Eq. (14.82) of CG68, i.e., with a, = 9/4,

V3 4 B{2P + agBX( — agB? = 0. (58)

The results are presented in Table 2 and in Figs. 2 and 3.

In each of the two Tables 2, for y = 1 and 2 and a given value
of B, we present the value of x, as from the first of Egs. (54), the
value of 1 — (, as from the second of Egs. (54) and the value of
1 — { as from the MLT, Eq. (58). In the fifth column, we present
the value of the ratio

(V - Vad )AMLT
(V= Vag)uer

As one can see from the numerical results from Fig. 2, the ratio is
of order unity for B = 1, i.e,, x &~ 1, which as we shall see means
inefficient convection. On the other hand, it becomes significantly
larger than unity for B> 1 and x > 1, i.e,, efficient convection.
Numerically, one can see from Fig. 2 that for y = 1 to 2, we have
for B = 10* the result

(V - Vad )AMLT
(V= Vag)ur

i.e., the MLT underestimates the superadiabaticity by almost two
orders of magnitude, the cause being the lack of a proper treat-
ment of anisotropy.

The numerical result (60) can be generalized to an analytical
expression by using the asymptotic relations for 1 — { for large
values of x, see Eq. (65). Since in the MLT, 1 — { = (4/9B), we
derive

(59)

~ 50 — 80, (60)

(V= Vag)amer

=1.2 4/532/5, 61
Vs D

which represents the numerical results quite accurately.

Finally, in column 6 of Table 2 we give the ratio of the
turbulent velocities w from the AMLT and MLT, Egs. (56) and
(57). As one can see from Fig. 3,

WamLt < WmLT> (62)

a result for which we shall derive an analytical expression, see
Eq. (66). (In deriving these numerical results, we assumed that the
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Table 2. Results of the solution of the AMLT and MLT equations, Egs. (53)—(54), (56)—(57) and (58) of the text

ry=1 y=2
(V=9 ) w (Y Jaer Wamr
B * ' S P W:VNTAEQ % B X 1= Gt 1= Sur V= iMLT WT_
ad’MLT MLT ad
0.1 1.003 1.000 1.000 1.000 0.6685 0.1 1.003 1.000 1.000 1.000 0.4727
0.2 1.022 9.998 x 107 9.993 x 10 1.000 0.6663 0.2 1.022 9.999 x 101 9.993 x 107 1.001 0.4712
0.3 1.069 9.977 x 101 9.931 x 107! 1.005 0.6632 0.3 1.069 9.988 x 107! 9.931 x 107! 1.006 0.4695
0.4 1.146 9.902 x 10 9.700 x 10 1.021 0.6652 0.4 1.147 9.950 x 107 9.700 x 10 1.026 0.4724
0.5 1.245 9.739 x 101 9.220 x 10 1.056 0.6765 0.5 1.247 9.866 x 101 9.220 x 10 1.070 0.4835
0.6 1.357 9.488 x 101 8.544 x 107! 1.110 0.6957 0.6 1.363 9.729 x 10 8.544 x 107! 1.139 0.5016
0.7 1.473 9.169 x 10" 7.796 x 107! 1.176 0.7184 0.7 1.486 9.547 x 107! 7.796 x 107! 1.225 0.5233
0.8 1.591 8.812x 10"  7.067x 10"  1.247 0.7412 0.8 1.611 9.332 x 10" 7.067 x 107 1.321 0.5456
0.9 1.707 8.442 =107 6.401 x 10" 1.319 0.7625 0.9 1.737 9.007 x 101 6.401 x 10 1.421 0.5670
1.0 1.820 8.074 x 107 5.813 x 107 1.389 0.7817 1.0 1.861 8.853 x 10 5.813 x 107! 1.523 0.5868
2.0 2.798 5.403 x 107 2.784 x 107! 1.940 0.8859 2.0 2.965 6.725 x 10 2.784 x 107! 2.415 0.7051
3.0 3.588 4.065 x 10" 1.765 x 10" 2.304 0.9216 3.0 3.874 5.413 x 10" 1.765 x 107 3.067 0.7520
4.0 4.275 3.297 x 1077 1.280 x 107 2.577 0.9365 4.0 4.666 4.574 x 107 1.280 x 10! 3.575 0.7745
5.0 4.894 2.799 x 107! 1.000 x 10! 2.799 0.9431 5.0 5.380 3.994 x 107! 1.000 x 10! 3.994 0.7865
6.0 5.464 2.450 x 107 8.197x 102 2.988 0.9456 6.0 6.037 3.568 x 1071 8.197 x 102 4.353 0.7933
7.0 5.996 2.189 x 107 6.938 x 102  3.156 0.9461 7.0 6.651 3.239 x 107 6.938 x 102 4.669 0.7970
8.0 6.498 1.987 x 107 6.011 x 10 3.306 0.9453 8.0 7.230 2978 x 1071 6.011 x 10 4.954 0.7990
9.0 6.976 1.826 x 107 5301 x 107 3.444 0.9439 9.0 7.781 2.764 x 10 5.301 x 102 5.214 0.7998
10.0 7.432 1.693 x 10 4.740 x 102 3.572 0.9420 10.0 8.307 2.585x 1071 4.740 x 10 5.454 0.7999
20.0 1.127 x 10! 1.042 x 10" 2298 x 102 4.533 0.9185 20.0 1.273 x 10! 1.664 x 107 2.298 x 102 7.241 0.7878
30.0 1.438 x 100 7.912x 102  1.516 x 102  5.220 0.8984 30.0 1.630 x 10! 1.288 x 10 1.516 x 102 8.497 0.7734
40.0 1.709 x 10" 6.532 x 10 1.130 x 10> 5.778 0.8822 40.0 1.941 x 100 1.075x 107 1.130 x 102 9.507 0.7610
50.0 1.954 x 10! 5.639 x 102 9.013 x 10 6.257 0.3688 50.0 2.223 x 10! 9.345x 10 9.013x 10 10.37 0.7504
60.0 2.180 x 10! 5.007 x 102 7.494 x 1073 6.682 0.8574 60.0 2483 x 10! 8.340 x 10 7.494 x 107 11.13 0.7413
70.0 2391 x 10! 4.531x 102 6.413x 10 7.066 0.8476 70.0 2725 x 10! 7.577x 102 6413 x 10 11.82 0.7333
80.0 2.590 x 10! 4.158 x 102 5.604 x 103 7.419 0.8390 80.0 2.955 x 10! 6.974 x 10 5.604 x 10 12.45 0.7262
90.0 2.780 x 100 3.855 x 102 4.977 x 10°  7.746 0.8312 90.0 3172 x 101 6484 x 102 4977 x 10 13.03 0.7198
100.0 2.961 x 100 3.604 x 102 4.476 x 102 8.053 0.8243 100.0 3.381 x 10! 6.075x 102 4.476 x 103 13.57 0.7140
200.0 4.489 x 10" 2327 x 102 2230 x 103 10.43 0.7776 200.0 5.136D x 10! 3.966 x 102 2.230 x 10 17.78 0.6749
300.0 5725 x 100 1.808 x 102 1.485x 103 12.17 0.7502 300.0 6.556 x 10! 3.095 x 102 1.485x 103 20.84 0.6515
400.0 6.804 x 10! 1.513x 10 1.113x103  13.59 0.7309 400.0 7.795 x 101 2.597 x 10 1.113 x 10 23.34 0.6350
500.0 7779 x 100 1.319x 107 8.901 x 107 14.81 0.7161 500.0 8.915x 10! 2268 x 102 8.901 x 10°*  25.48 0.6223
600.0 8.678 x 10! 1.179 x 107 7.416 x 107 15.90 0.7041 600.0 9.948 x 10! 2.030 x 102 7.416 x 107*  27.37 0.6120
700.0 9.519 x 10! 1.073 x 10  6.356 x 107+ 16.88 0.6940 700.0 1.091 x 10> 1.849 x 10 6.356 x 107 29.09 0.6033
800.0 1.031 x 10> 9.885x 10 5560 x 107 17.78 0.6853 800.0 1.183 x 102 1.705 x 102 5.560 x 10 30.67 0.5958
900.0 1.107 x 10> 9.198 x 103 4.942x 107 18.61 0.6777 900.0 1.269 x 10°  1.588 x 10 4.942 x 107 32.13 0.5893
1000.0  1.179 x 10 8.626 x 103 4.448 x 10" 19.39 0.6710 1000.0  1.352x 10> 1490 x 102  4.448 x 10™*  33.49 0.5835
2000.0 1787 x 10> 5.658 x 10 2223 x 107t 25.45 0.6278 2000.0  2.051 x 10> 9.799 x 10 2.223 x 10™*  44.08 0.5461
3000.0 2279 x 10>  4.426 x 10®  1.482x 10"t 29.87 0.6036 3000.0  2.616x 10> 7.674 x 103 1.482x10"*  51.79 0.5252
4000.0  2.709 x 102 3.719x 10 1.111 x 10°*  33.47 0.5869 4000.0  3.109 x 10>  6.453 x 10 1.111 x 107  58.06 0.5107
5000.0  3.097 x 10> 3.250 x 103 8.890 x 10  36.56 0.5742 5000.0  3.555 x 10> 5.641 x 103 8.890 x 10°  63.46 0.4997
6000.0  3.455 x 10> 2,911 x 10 7.408 x 10 39.30 0.5640 6000.0  3.966 x 10> 5.055 x 103 7.408 x 10°  68.23 0.4908
7000.0  3.789 x 10> 2.653 x 10 6.350 x 105 41.78 0.5555 7000.0  4.351 x 102 4.607 x 10 6.350 x 10°  72.56 0.4834
8000.0  4.106 x 10> 2.448 x 10  5.556 x 105 44.05 0.5483 8000.0  4.714 x 10> 4.252 x 107®  5.556 x 10 76.52 0.4771
9000.0  4.406 x 10> 2.280 x 103 4.939 x 10°  46.16 0.5419 9000.0  5.059 x 10> 3.961 x 10 4.939 x 10 80.20 0.4716
10000.0  4.694 x 10> 2.140 x 103 4.445x 10> 48.14 0.5363 10000.0  5.390 x 10> 3.718 x 103 4.445x 105 83.64 0.4668
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Fig. 2. Plot of (V — V,g)amer/(V — Vagdwut, versus B for y =1 and 2.
See text for details

two mixing lengths [, for the AMLT, and A used by CG68 for the
MLT, are identical. That is why the parameters U are identical.)

Having established these results, it is useful to discuss some of
the general features of the AMLT relations. First, in order to
reduce the AMLT equations to the ones corresponding to the
MLT, it is advisable to go back to the general formulation, i.e.,
Eq. (28), which is structurally identical to Kippenhahn’s 1963
relation once the x dependence is neglected. At the level of Eqs.
(49)—(52), and/or (54), one must be careful because a physical
model has already been introduced to relate x to the other
variables of the problem, i.e., Eq. (40), which has no direct
physical analog in the MLT since it is based on a physical
ingredient, the maximization of the growth rates, that does not
exist in the standard framework.

As for the physical implications, let us note that from Eq. (51)
it follows that

x—1, small anisotropy, V-V,

x> 1, (63)

which implies that small anisotropies are equivalent to inefficient
convection, while large anisotropies are equivalent to very efficient
convection.

From the physical point of view, these results are in accord
with the picture of a turbulent medium being composed of large
and small eddies. In a given turbulent fluid, most of the bulk
properties (like heat fluxes) are contributed by a relatively small
group of large and very anisotropic eddies whose spectral energy
function depends strongly on both the specific nature of the
stirring source (the instability), as well as on the geometry of the
system. Large eddies do not become isotropic until they have
undergone a significant number of non-linear interactions that

large anisotropy,V — V,4,

Wamcr
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Fig. 3. Plot of w1/ Wmet, Egs. (56)—(57), versus B for y = 1 and 2. See
text for details, especially the cautionary remark following Eq. (57)

induce successive break-ups leading to a subset of eddies, the so-
called Kolmogoroff eddies, that are indeed small and isotropic. It
is known that these eddies contain a~small fraction of the total
turbulent energy but a large fraction of the total vorticity; they
are therefore particularly useful for the study of the dynamics of
the non-linear interactions (which can be formulated in terms of
vorticity), for any type of turbulent flow, since these eddies exist
in any turbulent flow independently of the specific nature of the
stirring mechanism. They are called universal because, being
removed in wavenumber space from the largest eddies, they are
no longer sensitive to the details of the source; they only sense the
amount of energy that is being transferred to them by the largest
eddies, but not the specific nature of it. On the contrary, the
largest eddies are not universal, i.e., their spectrum depend sensi-
tively on the specific nature of the source, they contain little
vorticity, they are highly anisotropic, and they contribute to most
of the bulk properties.

Given these fundamental differences, the two classes of eddies
must be treated differently, i.e., the correlation time scale that
characterizes the non-linear interactions cannot be the same.
When the argument was studied quantitatively (Canuto et al.,
1985), it was found that if one assumes that the time scale
suggested by Kolmogoroff for the small scale eddies is valid also
for the large eddies, the resulting bulk properties, for example,
heat flux, are not in agreement with the convective formulae
calibrated by Gough and Weiss (1976) using stellar structure
models. The result implies that the large scale eddies must be
treated differently than the Kolmogoroff eddies. One such treat-
ment was proposed by Canuto and Goldman (1985) who were
able to derive for the first time the MLT formulae from a model
of turbulence, i.e., from a closure for the non-linear interactions.
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6. The case of large anisotropies

When U < 1, the corresponding value of x is also large, as one
can surmise from Table 1 and Fig. 1. In this limit, the function
G(x) becomes, to the highest order, see Eq. (49),

G(x) = Gyx5, G, = 32/81, (64)
and so, from Egs. (54), we obtain
x=x0B*% 1 -{={(,B73, (65)

where x, = (729y/32)!/% and {, = (32y*/729)!/5. Using (65) in
(56), as well as the MLT relation (57), and noting that for large x,
Camir = Ot = 1 (see Table 2), we derive

WAMLT _ {35, - 1/5 g~ 1/10, (66)
WMmLT

i.e., for the largest value of B in Table 2 we have

WAMLT _ 6 545115, (67)
WMLt

which reproduces rather well the asymptotic results of Table 2.
If we use the first representation, Eqs. (49)—(51) then give

V,—V
Myl (68)

x =Gy 3V, = Vo)3U 723, v_v.
— VYad

Eliminating the variable x and taking logarithms, we obtain
log(V, — V,g) = — $log U + $log(V — V,4) + C, (69)

where 4C = — log(32y*/81). In the standard MLT, one can
derive an analogous relation from Figs. (14.3) of Cox and Giuli
and Table Al of Baker and Temesvary. The result is, with  of
order unity,

log(V, — V,q) = —logU + nlog(V — V,4). (70)

For the standard MLT, the slope of log(V, — V,4) is steeper;
instead of 4, the coefficient in front of log U is 1.

7. Solutions of the AMLT when the actual gradient is known

In the previous sections, we have solved the AMLT equations for
the case in which V, is specified. In this section, we shall consider
the reverse case in which the actual gradient V is specified at some
point in the convective zone. Since V,4 is also known, we shall
therefore calculate V,. The needed relations have already been
worked out in Appendix A. Making use of the relations between
the various A’s as given in Appendix B, we have the following
results: From Eq. (A12)

U 2
V—V'=W(l+x)2x‘”2[(l+2)”2—1]2, 1)
Z=081/8)U 2x(1+x)"*(V—V,), (72)

which should be compared with the standard MLT expression
given by Eq. (14.111) of CG68, where 24 = U ~ . Substituting
Eq. (71) into Eq. (22), we obtain

4
V=V = oo UL+ X[+ )2 17,
y

to be compared with the MLT expression, Eq. (14.107) of CG68.
The convective flux F, and the turbulent velocity w are given

(73)

by Eqgs. (A14) and (A15), i.e.,

4acT*g 4
- I U+ x)[(1 + )2 — 17,
3kp 8ly

(74)

=

which we have written in a way that facilitates the comparison
with the standard expressions, Eq. (14.108) of CG68. For the
velocity, we have

w/v, =239y 202 LU (I/Hy ) x P [(1 + £)'2 — 1], (75)
which can be compared with CG68 Eq. (14.110), once the cau-

. tionary remarks following Eq. (62) have been taken into account.

The procedure is thus as follows: given a value of V and V 4,
Eq. (40) is solved for x which is then substituted in Eqs. (71)—(75)
to obtain the desired results.

While the form of the previous equations is useful for physical
interpretation as well as comparison with the standard MLT
expressions, for the purpose of their numerical solution an even
simpler representation can be devised. Combining (40) with (72),
yields
X =4x(x — 1), (76)

and so F, and w can be expressed entirely as functions of x, which
is given by the solution of (40). The results are

4acT*g 32
F. = I 22 U+ 12(x — 1),
81y

w/vg= 2749y V2" YU (I/Hy)x 2 (x — 1).

an

=

3kp
(78)

To obtain the model, it is only necessary to solve Eq. (40) for x
and substitute the result in Egs. (77) and (78).

8. The case of large anisotropy

As in Sect. 6, we shall analyze here the case of large anisotropy
since it allows a complete analytical solution of the problem. In
that case, Egs. (40) and (76) give

T = 4x?

x=(81/32)"4U ~ YV -V, )4 (79)
and so Egs. (71), (73)-(75) yield

V-V =212y -V, )x" 12 (80)
V,—V=9(2%%y)"'U "}V -V,,)¥*x"! (81)
F.o=(4y) te,pTg'? 1P H 32(V — V) 2x 7, (82)
w?=(829)"1glPH (V= V,)x~ . (83)

The explicit x dependence makes the comparison with the MLT
expressions, see for example Langer (1986), easy. In fact, since
x > 1, it follows that

F.(AMLT) < F.(MLT),
w(AMLT) < w(MLT),
(V- V/)AMLT < (V- VI)MLT’

(Vr - V)AMLT < (Vr - V)MLT‘ (84)

9. Conclusions

In this paper, we have presented a mixing length formalism that
incorporates an arbitrary degree of anisotropy in the eddies sizes.
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The new expressions for the convective velocities in the z-direc-
tion and the convective flux are given by Egs. (14) and (16),
together with relation (B28). The temperature excess V — V' is
given by Eq. (17) which differs structurally from the standard
MLT expressions because of the presence of the functions A(x)
and B(x).

A model to determine the degree of anisotropy x is proposed
in Sect. 4 where the basic relation is Eq. (40), which expresses x as
a function of the other physical variables of the system.

The new AMLT equations are solved for two cases of interest
for stellar structure calculations.

In the first case, the gradients V and V,4 are given and the
gradients V, and V' are solved for. The AMLT relations are
presented in two different representations, Eqgs. (49)—(52) and
(53)—(54). Numerical solutions are presented in Tables 1 and 2
and in Figs. 1, 2, and 3. The main physical results, see Figs. 2 and
3, can be expressed by saying that

(V= Vag)amer
(V= Vvt

i.e., that the MLT formalism underestimates the adiabaticity by a
factor which can be as high as one hundred, while it overestimates
the convective velocities by a factor of two. These results may
lessen the problem of overshooting.

In the second case, the gradients V and V,4 are given and the
gradients V, and V' are solved for. The value of x is determined by
solving Eq. (40). Equations (71) and (73) yield V' and V,, while
Egs. (74) and (75) yield F, and the convective velocity w. In the
case of large anisotropies, or, equivalently, efficient convection,
the model can be solved analytically and the results are given by
Egs. (79)—(83).

In this case, it is shown that the MLT framework over-
estimates F., w, V—V' and V,—V in various degrees of the
anisotropy x, as indicated by Egs. (80)—(83).

Having presented the extension of the classical MLT model
to include anisotropies in the large eddies spectrum, it would be
interesting to carry out stellar structure calculations so as to
quantify the astrophysical implications of this new model.

102 WamLt 1
~ 107, — -
WMmLT 2

, (83)

Appendix A

We shall employ the MLT formalism (Spiegel, 1963; Gough,
1977, 1978). Consider the Navier—Stokes equations for the
velocity field. Eliminating the pressure terms, making use of the
compressibility relation, and taking the z component of the
resulting equation, the equation for w is

6w_ X
o 1+x

g0, (A1)
where x has been defined in Eq. (6) and « is the volume expansion
coefficient. For a perfect gas, o = T ~ *. The fluctuation tempera-
ture 0 is defined in terms of the total temperature 7'(x, y, z) and
the average temperature 7'(z) as

T'(x,y,2z)=T(z) + 0(x, y, z). (A2)
Taking
0/0t = wd/0A,, (A3)

where A, 1s the eddy displacement, integrating (A1), and assum-
ing that the fluctuations at the point (x, y, z) are caused by the
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arrival of a convective element from the point (x, y, z,), one can
show that

dr’ 4T
0=A, s A, =z—z, (A4)

dz  dz
where dT’/dz is the total temperature gradient as experienced by
the convective element. We then obtain from (A1)

2x Yz /4T dT \'/?
w=< gocAﬁAz> <— - —> s (AS)
1+ x dz dz

and from the definition of the convective flux

F. = c,p{wb), (A6)
we obtain

dT’ dT . 1 ,

F.=c,pwA, it 3C,pwITH, 1 (V=V') (A7)

(cf. Cox and Giuli, 1968, Egs. 14.18).
Next, we must eliminate d7"’/dz. This is done using the MLT
equation for 6,

00

5 V20 — Bw =0, (A8)

where f is defined as

=), (%) w0
dz )4 dz

and where y is defined in Eq. (12). From (A8) and (A4) we obtain
the desired result,

dT’ 4T dT dT'| wAA; !
——=|l=) Sl (A10)
dz dz dz /.4 dz Jx+ wA®A;
or alternatively,
dT’  dT [ <dT> dT’] wA2A; !
dz  dz | \dz )y dz Jyx+wA (A7 —ADY)

(A1)

Substituting (AS) into (A10) and solving for dT’/dz yields

dr’ dT A dTr dTr
___E_éli< > ___:|z—l[(]+z)1/2_1]1/2,
ad

dz dz A, dz dz
(A12)
with
8 A*
z= x_gob . (A13)
L+x x?
Substituting (A12) into (A5) and (A6), we obtain
A 2
Fc=%cppﬁx<xg> T+ 1T, (A14)
A,
w=%xP[(1+Z)”2—1]. (A15)

The above procedure does not determine the correct x depen-
dence, a problem that is by no means trivial within MLT (see
main text).
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Appendix B

The model for large scale turbulence to be used here has been
described in detail elsewhere (Canuto and Goldman, 1985; in this
Appendix we shall refer to this work as CG). Here, we will merely
quote the relevant expressions.

The turbulent velocity v, is defined as

v? = |2 F(k)dk, (BI)

where k, is the smallest wavenumber allowed by the system, see
Eq. (B7), and where the turbulent energy spectral function F (k)
for the case of convection is given by Eq. (8) of the CG paper. The
integration over all wavenumbers in (B1) can be carried out
analytically. We have done so with the result

v, =my " Y2B,(1 + x)V2[(1 + bS)Y2 — 1]yd™ .. (B2)

Here y is a parameter that is shown to be of order unity, CG,
Eq. (20). B, is a function of the parameter A defined as

1 3 4
RO Gkl (B3)
x S
The quantities S and b are defined as
d4
s=? “ﬁz , (B4)
X
Tt (14 x)Y

The quantity S is defined as the product of the Rayleigh number
and the Prandtl number (v/y); for a perfect gas, a = 1/T.
The quantity f is defined as (see Eq. A9)

g (dT) (d T >

T \dz /g dz )’
The size of the convective zone is defined so that (see Eq. 37 of the
text)

(B6)

kod = m(1 + x)/2, (B7)
The relation between v, and its z-component w is
x \'?

W=(1+x> vy, (B8)
so that, finally,

w=my Y2B,x2[(1 + bS)*'? — 1]yd " . (B9a)
Compare now this expression with Eq. (A5), i.e.,
w(MLT)=%<%2d~>[(1 + )2 —1]yd " (B9b)

First, for X, defined in Eq. (A13), and bS to be identical, we must
have

2mt(1+x)2A*=d*. (B10)
Secondly, we must have
AeA™2d =2my” 2B x12, (B11)

Let us now consider the convective flux F,. From Eq. (11) of the
CG work, we have

F, = copBr® = copfras ' [(1+ bS)"? — 17, (B12)

where the parameter a is defined as
8ya =n*A2(1 + x)% (B13)

The function A4, will be discussed momentarily. From the MLT
treatment, we have also derived the following expression,
Eq. (A14),

FC(MLT)=%cppﬂxA§A‘22‘1[(1 + X)) 173 (B14)

Since (B10) assures us that bS = X, Eqs. (B12) and (B14) are
identical if

y~ 142,

AFA™? = 2ab = - a

(B15)
+ x

Consider now relations (B10), (B11), and (B15). From the last
two, we obtain

2nA, = AFB; 'y V2xM2(1 + x)7 N, (B16)
2nA = A, B; (1 + x)~ /24 (B17)
When substituted (B10), they imply

A, =23%?B,. (B18)

Let us now recall the fact that the symbol A? actually stands for
k™2 where k is the total wavenumber. Since we are dealing with
a one wavenumber model and since in the CG turbulence model
the smallest wavenumber k, corresponding to the largest eddy is
related to the size of the convective zone by the relation (B7), we
must take

A=kgt. (B19)

Before proceeding, we shall present a more quantitative deriva-
tion of (B19). Consider again the original MLT equations, (A1)
and (A8). The time derivative can in principle be thought of as
operating on w and 0 which may be taken to vary in time as
exp (nt) where n is the growth rate corresponding to a convective
instability, see Eq. (7) of CG,

2n(ko) = xk3[(1 + A7 212 —1], (B20)

with the parameter A given by Eq. (B3). Since we have taken (A3),
we must identify

wA; ! = n(ko). (B21)

Using (B9b) for w and the fact that £ = A~ 2 because of (B10),
Eq. (B21) can be satisfied only if (B19) is satisfied.
Let us now return to (B19). Using (B7) and (B17), we find

A, =2B,, (B22)

which, within the accuracy of the MLT one mode approxima-
tion, must be considered consistent with (B18). It is quite remark-
able that the empirical relations (B18) and (B22) are actually
satisfied by the explicit expressions for 4, and B, computed with
the CG turbulence model, i.e.,

A7 =1+ )2 C5,

43262B, =[1 — (tan~14,)/5,]1'3, (B23)
where
6, =20 V2Cct, C2 =14 (1+1%)12 (B24)

One can easily check that for the case 1 <1, 4, =1, and
B, =1/2, in good agreement with the previous relations.
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We have related A and A, to d, but nothing has yet been said
about the functional relationship between A, and d. Since this
quantity does not enter in the MLT expressions for F, and/or w,
Eq. (B9b), it is not possible to relate it to d by comparing the
MLT expressions with those derived from a model of turbulence.
We shall therefore propose an alternative method. Much in the
same way as A? is a symbol that was introduced to represent an
average value of k2, in the same way one can make the
argument that A, is a symbol that stands for k! since it is

derived from a Fourier expansion. We shall therefore take
A, =kt (B25)

Because of (36), this implies that the relation between d and A, is
given by

d=nA,, (B26)
so that the mixing length | = 2A, is related to d by
7l = 2d. (B27)

With this identification, and making use of (B18), Egs. (B16) and
(B17) become, with 4, =1,

1/2

X
AN, =214y 172 , B28
¢/ Y 1+ x ( )
AJA; =271 4 x)7 12, (B29)
X
(A/AY =y~ ' ——. (B30)

14+ x
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