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Summary. A reliable quantification of many problems of astro-
physical interest, e.g. mixing in the interior of the sun with
implication for the solar neutrino problem, chemical evolution of
the galaxy with cosmological consequences, grain sedimentation
in the primitive solar nebula, etc., requires the knowledge of the
turbulent diffusivity tensor D;;. In this paper, we treat two
problems.

First, given a passive scalar (e.g., a particle) embedded in an
otherwise turbulent medium, and responding to it via frictional
forces, we derive an expression for its turbulent velocity, Eq. (52),
as well as for the components of D;; for an axisymmetric case.
These formulae are relevant to the problem of grain sedimentation
in the primitive solar nebula.

Second, when the velocity of the contaminant coincides with
that of the fluid, we show that the diffusivity tensor becomes
diagonal, i.e., D;;= D1d;; and we provide an expression for Dy,
Eq. (65). This quantity is of interest, for example, to the
astrophysical case of mixing in the interior of the sun.

In either case, one needs to know the turbulent energy spectral
function F(k), the eddy decorrelation rate o (k), and the growth
rate ng (k) of the underlying instability. A model for them is also
provided. We compute Dy in two cases: a constant n, (k) = ng and
the n, corresponding to a convective instability with and without
rotation. In both cases we find that, Eq. (83),

Dy =v,Ko®, (a)

where Ko =1.5+20% is the well-known Kolmogoroff constant of
the theory of turbulence, and v, is the “‘eddy viscosity” defined in
Eq. (82) and expressed in a variety of ways by Eqgs. (88) (for a full
discussion of v,, see Canuto et al., 1987a, hereafter referred to as
Paper I).

In addition to the general formula, Eq. (65), which involves the
contribution of the whole spectrum of the turbulent eddies, we
also derive a simplified formula for D, which yields a remarkably
good approximation to the exact formula (see Sect. 7).

To test our results, we have compared our predicted values for
Dy with recent results from full numerical simulation studies as
well as with laboratory data on shear turbulence. The agreement is
good.

In the case of astrophysics, we comment on the work of
Schatzman and collaborators who, in the absence of a determin-
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istic model for D, adopted an empirical relation of the type (v is
the kinematic viscosity)

Di=vRe* (b)

and fitted the empirical “effective” Reynolds number Re* to
astrophysical data. We show that the empirical Re* is not to be
identified with the “turbulence Reynolds number” Ry, but with
the “microscale Reynolds number” R,. In fact, we compute R,
and find it to be approximately 80, a value very close to the one
empirically cetermined by Schatzman and Maeder in their study
of the interior of the sun.

The application of our method to determine D from the
knowledge of the underlying instability, together with the empiri-
cally determined value of D from Eq. (b) above, may help narrow
down and hopefully single out, “the instability” that is most likely
to operate. This would allow one to learn a great deal about the
microscopic physical processes reflected macroscopically in Dy.

In summary, our method can be used in two ways: if the
underlying instability generating turbulence is known, Eq. (65)
allows Dy to be computed. If, on the other hand, one must
consider more than one candidate for the instability, as it is
probably the case in the astrophysical situations considered by
Schatzman et al., our method may be used to narrow down the
most likely candidate, thus revealing information about the
underlying physics.

Finally, we consider the case of grains embedded in the
turbulent gas characteristic of the primitive solar nebula. We
compute the grain’s turbulent velocity, Eq. (117), and the two
components of the diffusivity tensor, D, and D,, Egs. (60) and
(61). The results are presented in Figs. (6-11) for a range of
parameters characteristic of the primitive solar nebula (Cabot et
al., 1987).
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1. Introduction

In many problems of astrophysical interest, turbulence is known
to play an important role. Examples are turbulent heat transfer in
stars (Cox and Giuli, 1968), turbulent transfer of momentum in
accretion disks (Pringle, 1981; Colgate and Petschek, 1986; Cabot
et al., 1987) and turbulent diffusion mixing in stars and in the
galaxy (Schatzman, 1987).
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If one calls v, y and D the coefficients of molecular viscosity,
thermal conductivity and molecular diffusivity, it can be shown
that the presence of turbulence induces a “‘renormalization” of the
type

vov+ve, x—=x+xr, D->D+D; M
with
vp>v, xr>x, Dp>D, 2

where v, yr, and Dy are the coefficients of turbulent viscosity,
turbulent conductivity and turbulent diffusivity respectively.

The renormalization (1) comes about in the following way.
Call U the fluid velocity and ¥ a passive scalar embedded in the
fluid (e.g. temperature, particle concentration, etc.), whose pre-
sence does not affect the motion of the fluid. Using Reynolds
decomposition, one first writes the velocity field as the sum of a
mean quantity (KU, (¥)) and a fluctuating component (u, ).
The equations for the mean quantities are then as follows (see
Hinze, 1959) (for ease of notation we shall temporarily omit the
brackets on the mean quantities and use the convention
a;, ;= (0/0x;) a;)

0 1

EUH_ U; U ;+ uu;p ;+ EP’i=VUi’jj’ (3a)
0

P U ¥ ;+<yu =DV ;. (b)

As one can see, two new quantities have appeared in Egs. (3),
implying the correlations between fluctuating or turbulent quan-
tities. Therefore, the solution of Eqs. (3) requires the knowledge of
the turbulence equations also. If these correlations are thought to
be caused by gradients in the mean quantities, one can write the
Reynolds stress tensor 7;; = — {u;u;» and the flux F; = {yu;), as

Tij="Vr ﬁ—xj U, (4a)
d
Fi=—Dy 5 ¥, (4b)
J

where D;; is the diffusivity tensor. In this case Egs. (3) take the
form

0 1
EU,'F Ule,J+EP.l=(v+vT)Ul.J]7 (Sa)
0

which justify Eq. (1) when D;; = D1d;;. The next problem is the
determination of the transport coefficients v; and D;;.

For a long time, the lack of a reliable model to describe fully
developed turbulence greatly hindered the determination of these
transport coefficients. The problem was circumvented by the use
of a variety of methods all of which are however beset by
shortcomings. For example, in the treatment of accretion disks, vy
has been traditionally written as (Pringle, 1981)

vr=oacH, (6)

where ¢, is the sound speed and H a typical scale height. The
unknown coefficient « is then determined by fitting astrophysical
data. The disk models constructed using Eq. (6) are known as
a-models (see Pringle, 1981; Colgate and Petscheck, 1986; Cabot
et al.,, 1987). In the absence of a calculation of ;;, it has been
suggested that v, be identified with v, (Canuto et al., 1987a,
Paper I).

As for yr, the traditional approach has been that of using the
Mixing Length Theory (MLT) (Cox and Giuli, 1968). In Canuto
et al. (1987a, Paper 1), yr was computed and the MLT results
found as a particular case. The computation of y; can easily be
extended to include rotation and magnetic fields (Canuto and
Hartke, 1986).

Finally, let us consider the turbulent diffusion coefficient, Dy.
Schatzman (1987) has repeatedly stressed the importance of this
quantity in the context of stellar evolution. Recently, he has shown
that a reliable determination of Dy is instrumental to the
determination of the abundance of *He in galaxies, a problem with
important cosmological consequences.

In the present paper, we study Dy and derive an expression for
it, Eq. (65), in terms of quantities that can be evaluated using the
model of turbulence described in Paper I. Numerical values for Dy
are presented for the case of convective turbulence with and
without rotation. The results we obtain are also compared with
numerical simulation studies as well as laboratory data. The
astrophysical problems raised by Schatzman are also addressed.

2. General formalism

2.1. General formulae

Consider a turbulent fluid. Its motion can be described using two
complementary points of view. One is the so called “Eulerian”
point of view, in which the velocity of the fluid is specified (at a
given time ¢) by a function U (x, ¢) at each point x in a fixed frame
of reference. The other is a ““Lagrangian” point of view in which
one specifies the position X(x, ¢) of a fluid point which at time
t=0 is located at the space point x.

While an Eulerian description of turbulence is more accessible
both theoretically and experimentally, a Lagrangian approach is
more natural for problems dealing with turbulent transport and,
as we shall see in the following, of turbulence induced motion of
small particles suspended in the fluid.

The relation between Lagrangian and Eulerian statistics is not
straightforward (for a discussion see, Lumley, 1957, 1964), but,
under certain, quite general conditions, some approximations
(discussed in the following) are justified (Weinstock, 1976;
Lundgreen and Pointin, 1976; Corrsin, 1959; Taylor and
McNamara, 1971) that considerably simplify the problem of
relating the two statistics.

Making use of the above mentioned approximation, we
calculate the average velocity of small particles embedded in a
turbulent fluid. The discussion is based on the works of Pismen
and Nir (1978), Nir and Pismen (1979), and Lundgren and Pointin
(1976). Different, but substantially equivalent approaches are
described in Phytian (1975), Reeks (1977), and Roberts (1961).

Before we proceed, it is important to introduce some basic
quantities. We begin by considering a passive contaminant, i.e. a
scalar quantity, (such as a concentration of chemical species, a
number of solid particles, a concentration of dye, etc.) that does
not affect the motion of the fluid, and is transported along by it.
We shall call x the space coordinate of the contaminant particle
located at the point x at ¢ =0. If so, the quantity

Y(x,6)=X(x,1)—x @)

represents the displacement of the contaminant from the initial
point x. The Lagrangian velocity is defined as

Vix,t)= %X(x,t): UX(x,1), 1), 8)
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where U(x, t) is the Eulerian velocity field. Now, since
X(x,0)=x )
we have, from (7) and (8) that

t
Y(x,0)= [ V(x,1) dt. (10)
0
As customary, we will take all quantities as the sum of an averaged
component plus a fluctuating part, whose ensemble average is
Zero; i.e.

Y(x,)=<Y(x 1)) +y(x1), 1
Vi, t)={V(x, 1))+ v(x,1) (12)
with '

px, 1)) =<v(x,1))=0. (13)

Substituting (11) and (12) in (10), taking the average of the
equation so obtained and subtracting the averaged equation from
the unaveraged one, yields

t

yx, 0= [ v(x, 1) dr.
0

Let us now define the tensor 4;;(¢) (Monin and Yaglom, 1975)

(14)

A () =y (x, 1) y;(x,0)> (15)
or, using (14)
A; ()= E‘;dtl gdtz v (x, ty) v;(x,85)) (16)

From the definition (15), we see that each diagonal element (no
summation over i)

Ay (0) = <yE (x, 1)) (7

has the physical meaning of the particle’s mean square displace-
ment from its initial position along the i direction. Clearly, the sum
of the diagonal terms A; represent the mean square total
displacement. If we consider homogeneous isotropic stationary
turbulence, the x dependence disappears, and time correlations,
that is, correlations between variables at different times, depend
only on the time separation.
Next, we define a Lagrangian velocity correlation tensor

B (1) = v; () v;(t+71)> . (18)
It can be shown that (Monin and Yaglom, 1975; Batchelor, 1949)

t
5O _ 1By (0)+ By () de 19
dt 0
and that the contaminant’s turbulent velocity v and the turbulent
diffusivity tensor D;; [introduced in Eq. (4b)] are given by
(repeated indices are summed over)

2
@y =Bu(t=0)= 5 (<550 | 0)
et 14410

While relations (20) and (21) can be formulated for any passive
contaminant in turbulent motion, in the following we shall
concentrate on the special case in which the contaminant is a set of
solid particles embedded in the fluid and responding through
frictional forces to velocity fluctuations in the surrounding fluid.

315

The particle’s equation of motion is (Volk et al., 1980)

‘% Vix,t) =g(X(x,0)) +n(U(X(x,2), 1) = V(x,1)), (22)
where V(x, t). defined in (8) is the particle’s velocity, U (x, ¢) is the
fluid’s Eulerian velocity field, # =7, ! is the inverse of the
frictional response time of the particles, and g is the acceleration of
gravity. For a detailed discussion of the possible forms of 7, see
Weidenschilling (1977).

Note that in the limit # — oo, Eq. (22) yields

Vix,t)=U(X(x,1), 1), (23)
i.e. the contaminant’s velocity coincides with the Lagrangian
velocity of the fluid. Contrary to its seemingly innocuous form,
Eq. (22) is actually a rather complicated non-linear integro-
differential equation. In fact, the velocity ¥ (x, t) on the left hand
side appears under an integral sign in the argument of both g and
U since, according to (7) and (10)

X(x,1)= } Vix,t)di+x. (24)
0

Substituting now the decomposition (11) into Eq. (22) and taking
an ensemble average gives

% Vx,0)) =g(X(x,0) +1 KUX(x,1), 1)) =<V (x,1))) . (25)

Subtracting (25) from (22), yields the equation for the particle’s
random, i.e. fluctuating, velocity

d

Z; VD= X (x0), )= v(x0)]. (26)
For the specific goal of deriving the diffusion coefficient, we can
consider the case in which the fluid has no mean motion, i.e.
{U)» =0, and the particles frictional response time 7; is much
shorter than the typical turbulence time scale. The latter appro-
ximation is well satisfied for example in a typical primitive solar
nebula (Nakagawa et al., 1981). In such case, the particles can be

considered as always moving with their terminal velocity, given by
[using (25)]

Wy=v,=1% @7)
n

which implies

(Yy=1,t. (28)

Taking v(0) = 0, and using (28), we can rewrite Eq. (26) in integral
form as

t
vi(t)=n [ e """ u;(vos+y(s),5) ds, 29
0
where, as discussed above, we neglected the x dependence in the
argument of v.
We can now calculate the tensor B;; [defined in Eq. (18)]. Since
B,; is defined for steady state turbulence, we have

By(s)= lim <w,.(1) 0;1+5)>. (30)

Using Eq. (29), and calling G;; the Eulerian velocity correlation
along the Lagrangian path of the particle, i.e.

Gy (t) = <u;(0,0) u;(vy t +y (2), 1)) (31
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we get (Pismen and Nir, 1978)

e

Bi(s)= %;7 JOO e =S G (s) ds'. (32)
If we now Fourier transform the turbulent velocity field

u(x,0) = [ dk u; (k, 1) e~ * (33)
and substitute in Eq. (31), we get

Gij(t)= [ [ dkdk' e=**" (u;(k,0) u;(k',1) e~ %2 34)

In order to render Eq. (34) more manageable, we introduce the
following approximation

Cu; (k,0) u; (K, 1) e O = Cuy(k,0) u;(k', 1)) (e~ *>0% . (35)

The conditions under which this approximation is justified are
thoroughly discussed by Weinstock (1976). It is interesting to
remark that the above approximation was also derived by Roberts
(1961) in the frame of the “Direct Interaction Approximation” to
turbulence (Leslie, 1973). Under the assumption that the random
function v; (¢) is jointly normal, we have (Lundgren and Pointin,
1976; Pismen and Nir, 1977; Lumley, 1970)

(e kDY = o=k Az (O, (36)
with 4;; defined in Eq. (16).

Finally, for homogeneous turbulence, modes k£ and k' are
uncorrelated unless k+ k'=0 (Batchelor, 1982; Monin and
Yaglom, 1975), so that

Cu; (k,0) u;(kK', 1)) =0 (k+k') D;(k, 1) (37
and Eq. (34) can be rewritten as
G (t)= [ dk e™*' @ (k, 1) e~ Dk k; (38)

Substituting Eq. (38) back into Eq. (32), we obtain

Bij(5)= n j‘ ds' e—s=5 j’ dkeikvos’ d;ij(k’s/) e~A(l<,s')’ (39)

N =

where
A(k,s')= Y kik;A;(s'). (40)

Once the tensor B;;(s) is known, Egs. (19)—(21) yield the desired
physical quantities.

2.2. Solution of the equations

In what follows, we shall take the fluid’s turbulent field to be
homogeneous and isotropic. For such field the function @;;(k, 1)
has the form (Batchelor, 1982)

E(k, 1) kik;
@0 = T (6,- 532), @)
where k = | k| and J;; is the Kronecker delta symbol.
From (33), (37), and (41), we can see that
Cu(x,0) uf (x,0)) = (u?) =2 [ E(k,0)dk 42)
0

that is, E (k,0) represents the fluid’s turbulent kinetic energy (per
unit mass per unit wavenumber) associated with the mode k. In the
following, we will use the function F(k, t), defined as

F(k,1)=2E(k,1). 43)

Since solid particles are subject to gravity, the tensor D;; will be
axially symmetric, with the axis of symmetry parallel to the
direction of g. We can therefore write (Buckingham, 1967)

Aijj=A,06;+ (A, — A,) A4
Blsznélj—'_(Bp—Bn) llll
Dlsznéij"_(Dp'_Dn) ’li)“j5 (44)

where the subscripts “p’” and “‘n” represent quantities respectively
parallel and normal to the axis of symmetry and 4 is a unit vector
parallel to the same axis.

As explained in detail in Appendix A, we have constructed a
set of two coupled integro-differential equation for A (¢) and
A,(t) and solve them numerically by an iteration method. We
found that starting with 4’ = 4"’ = 0 as the initial guesses in the
exponential 4, the iterative procedure converges very rapidly, i.e.
the results obtained after one or two iterations do not differ much
from the fully iterated result. This allows an enormous simplifi-
cation since by taking 4—0 in Eq. (39) we can carry out the
calculations analytically.

If we take g along the z-direction, i.e. 4;;= J;3, the only non-
vanishing components of the tensor B;; are

B, (s) = B,,(s) = B,

+ o0 0
= %ry [ ds’ e =<1 [ F(k,s") g(as')dk, (45)
- 0
1 + 0
B..(s)=B,= oK [ ds e=ns=<1 | F(k,s") h(as")dk, (46)
-0 0
where
a=ku,
g(x)=Jjo (x) —h(x)
1.
h(x)=_ j1(x). (47)
Here, j,(x) is the spherical Bessel function
C N , d" [(sinx
= (), 9)
whose limit for x <1 is
xn
i ~ 49
7O E G “49)
Therefore in the limit vy — 0 (7 — ©)
g—3% h-} (50)
and
B,=B,, (51)
i.e. the tensor B;;is diagonal and so will be the turbulent diffusivity
tensor D;;.
From Eq. (20) we finally obtain
Wy =n [ dse ™ | F(k,s) 2 dge (52)
0 o as

which provides the expression for the solid particle’s turbulent
velocity. Note that in the limit # — co, Eq. (52) becomes

@) =<u*> (33)

that is, the fluid’s Lagrangian velocity equals its Eulerian velocity,
a result obtained earlier by Lumley (1964).
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Also, from Eq. (21) we obtain

[ee] + o0 ©
D,= %17 fds | ds e =51 [ F(k,s') dkg(as'), (54)
0 —© 0
1 © + <)
D,= 31 [ds [ ds" e~ [ F(k,s') dk h(as). (55)
0 —© 0
Using the condition
F(k,t)=F(k,—1), (56)
we can integrate Eqs. (54) and (55) to get
. [ dk [ ds F(k,s) g(as) (57)
25 0
= [ dk | ds F(k,s) h(as). (38)
o 0

At this point, we must specify the spectral function F(k,s). As
explained in Appendix B, the results of the numerical solution of
the DIA model of turbulence (Kraichnan, 1964), can be para-

meterized in the form
F(k,t)= e~ ® F(k) (59)

where the function o (k) will be discussed in Sect. 3 below.
Inserting (59) into (57) and (58) and performing the integral
over the time variable s, yields (D;; =2D,+D,)

=2 f de =~ F(k) <2”2‘;(k)>’

AR F(k) 15 a?
3”"‘@ [ 5 (305~ 5rm)
Here the error function & (x) and the confluent hypergeometric
function 1F1 are defined as (Abramowitz and Stegun, 1972)

(60)

(61)

b (x) = r Je“adr. (62)
0
15, 2y 3
i (E’ 7 )"w
When the contaminant’s velocity equals the fluid velocity, which,
by Eq. (23) is attained by putting # — oo [i.e. vy —0 by Eq. 27)],
the tensor D;; has only diagonal elements, and thus

1/2
[e—x’ - %x— a —2x2)cl'>(x)]. (63)

Dy=D,=D,=3D; (64)
which, using Eq. (60), yields

1 12 % F(k)
pi=3(3) | 7@ ©)

which is our final formula for the fluid’s turbulent diffusivity.
Except for the factor (r/2)'/2, originating from the gaussian from
(59), Eq. (65) is of the same form as Eq. (8.69) of Leslie (1972),
since F (k) = 2 E (k). Our D is also equivalent to D,, of Eq. (2.1) in
Moffat (1981).

3. How to compute D

Equation (65) for Dy requires the knowledge of two quantities that
must be derived from a model for turbulence, i.e. F (k) and o (k).
Since a model has already been presented in Paper I, we shall
quote here only the results.

317

The function F (k) is obtained from
1 d
F) = 1z 5 v ®), (66)

where the function y (k) (which physically represents the vorticity
squared) is given by

y(k)y=Vk)—3ynlk). (67)
The auxiliary function V' (k) is solution of the equation
av (k) 2V 2

T 2 (k) (68)
with
3y n (k) = ny (k) + (7 (k) + 6y V (k)'/2, (69)

where ng (k) is the growth rate of the underlying instability
generating turbulence. Finally (see Appendix B)

o (k) =2y n (k) — ny(k). (70)

The procedure is therefore as follows: chosen an instability, the
growth rate is known (e.g., from linear stability analysis).
Equations (68) and (69) yield V (k), n. (k) is derived from (69), y (k)
from (67) and o (k) from (70); F(k) is then derived from (66).
Although the equation for V(k) is non-linear, its numerical
solution presents no problems. The integral in (65) begins
ostensibly at k£ =0; however, one should actually begin the
integration where n, (k) is non-zero, i.e. when there is a growth
function; such minimum value is, say, k, . It can be shown that &,
can be determined by the relation

a(m®)  _,
dk \ k* k=k0_

that is, ko, corresponds to the point where n,(k)/k* has an
extremum. At k =k, we also have

(70

V (ko) = 51; n? (ko) (72)

which must therefore be considered the initial condition as-
sociated with Eq. (68).

Finally, the value of the constant y is determined to be (see
Paper I)

2 3
r= (3 Ko> ’
where Ko is the Kolmogoroff constant whose values is (Monin and

Yaglom, 1975)
Ko=1.5+20%

(73)

(74)

4. The growth rate n, (k)

The specific form of n, (k) clearly depends on the specific problem
at hand. A variety of forms of n; can found in the book by
Chandrasekhar (1960), where a large variety of flows is considered
and the stability analysis carried out in detail in each case.

For differentially rotating stars, Goldreich and Schubert
(1967) derived a general expression for n,(k), their Eqs. (32) or
(39). One could therefore carry out a detailed analysis of the
turbulent diffusion coefficient Dy for example in the convective
region of the sun. We shall however not perform such an analysis
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here since the main purpose of this paper was to derive the general

formalism to be used for the evaluation of D;. We shall
nevertheless work out two examples of interest.

5. First example: n,= ny = const

Using Egs. (66)—(70) and the fact that

y (k) =yn (k) — ny (k) n, (k) (75)
one can in this case transform (65) to the form

1 /a\'2 % 1
D;= 3 <5) g =l dn, (k). (76)

Consider now Eq. (16) of Paper 1. Divide by k2, differentiate with
respect to k and use the definition for y (k); the result is
2y oy 2y _

;l—ck_z +y (Fh—c—) + (n,/k*)Y =0 ()
where the symbol ' represents differentiation with respect to k.
Substitute now Eq. (75) above for y(k), the result is

¢ (nc ns)l _
3 yn:

(78)

Equations (77) and (78) are still general. For a constant n, =n,,
Eq. (78) can be integrated to yield
3 Doy
(ko) = (L) & 19)
)
which can be substituted into Eq. (76). Carrying out the inte-
gration gives

1 (m\Y? (ng) (e—2)
23 (5) () 0
or, using Eq. (73)
Dr= (i3) Ko°, (81)
ks

At this point we notice that in Paper I, it was shown that the ratio

ng(k
a2 (82)

is the “‘eddy viscosity”, v,, i.e., the viscosity exerted by all the
eddies on the largest ones. Using Eq. (82), we thus have
D;=v,Ko>. (83)
It may be of interest to note that Eq. (145) of Paper I, reproduced
here as Eq. (88), expresses v, in terms of other quantities
characteristic of a turbulent flow, e. g. the turbulent kinetic energy
and the energy input rate, thus allowing Dy to be expressed in
terms of the same quantities.

6. Second example: convection with and without rotation
In the case of a thermally driven convective layer of thickness L

rotating at a rate 2, the growth rate is given by the cubic equation
(Cabot et al., 1987)

(1, + V) (ny + 1K) = E2P% [1

Prong+yk?
1+x ’

~ 7 Rx ng+vk? (34)

where v and y are the kinematic viscosity and thermometric
conductivity, g = g, is the z-component of gravity, « the coefficient
of thermal expansion, and f the temperature gradient excess over
the adiabatic gradient. Furthermore, the Taylor number 7, the
Rayleigh number R and the Prandtl number Pr are defined by:

T=4L4Q2v™2 Q2=Q*[1+ (r/2)dQ/dr),

R=gaf L*/xv, Pr=v]y.

The parameter x represents the degree of anisotropy of the eddies
sizes: x = (k2 + k})/kZ . A proper combination of the roots of Eq.
(84), useful in numerical studies, has been worked out be Cabot et
al. (1987). In the case of zero rotation, Eq. (84) reduces to Eq. (67)
of Paper I, the well known form of n first derived by Rayleigh. As
expected, rotation is seen to stabilize the problem. We have solved
Eq. (84) for ny and used the result in Eq. (69). The F (k), n. (k) and
g (k) so derived were then used to compute the integral in Eq. (65).
The resulting Dy is presented in Fig. 1, where we plot D in units of
x(1+0)/2 vs. $= R Pr, a quantity frequently used to express the
convective flux [see Eq. (86) of Paper I, which, once multiplied by
¢, 0 x coincides with Eq. (14.108) of Cox and Giuli (1968). In Cox
and Giuli’s notation, S = 160 A2 (V — V,4), where the coefficient 4
is given by Eq. (14.99) of the same authors; A (V — V) is called
the convective efficiency.]

From recent work on rotating disks (Cabot et al., 1987), one
deduces typical values of Q% ~ 10 gafand S =~ 10°-107. In Fig. 2,
we show Dy in units of n, (ko )/k3 = v,, Eq. (82), vs. S for different
values of the parameter 22/ga 8, which is just the inverse of the
square of the Rossby number. We note that Dy is constant and
equal to about 3v,, in agreement with Eq. (83).

7. A simplified expression for D

The fact that the previous cases have yielded the same result,
namely the constancy of the ratio Dr/v, and that the constant is

— 1 1 1
10° 10° 107 108 10° S
Fig. 1. Plot of the turbulent diffusivity Dy, solution of Eq. (65), in units of
(x+v)/2, vs. S=PrR (see Sect.6), for different values of the parameter
t = Q2%/gaf. The growth rate n, (k) is solution of Eq. (84). As expected, the effect
of rotation is that of hindering turbulence and thus producing a lower Dy
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Fig. 2. Plot of the turbulent diffusivity D, solution of Eq. (65), for the same set
of parameters as in Fig. 1, but normalized to the eddy viscosity v, defined by Eq.
(82). As one can see, the ratio is constant and equal to approximately 3 [see Eq.

87

virtually identical suggests that one may try to get a simplified
form of the general expression (65). Using simple algebraic
manipulations, one can rewrite Eq. (65) in the following form

1 (m\'2 % F(R)
DT‘@(E) L m?® &

1 y®R\T!
2w [1-3(- 7))
a form that is particularly useful for our purposes. In fact, in the
low k part of the spectrum, k = k,, y (k,) = 0 and so Z (k) = 2; at
larger k, the universal Heisenberg-Kolmogoroff inertial region
sets in, see Figs. 1 of Paper I. Since this region is characterized by
the inequality y (k) > |n, (k) |n. (k), it follows that there Z (k) ~ 1.
We therefore conclude that 1 < Z (k) < 2. As an example, we shall
take Z (k) = 3/2. Equation (85a) then becomes

1 (2\'2 % Fk)
DT=Z¥<5) S

At this point, we recall Eq. (2) of Paper I, i.e., the definition of
the “eddy viscosity” at an arbitrary k

© F(k)

(85a)

(85b)

v (k)= { ) dk. (86)
Using Eq. (73), we finally obtain from (85b)
Dy=vKo*, v,=v(ko) 37

which confirms Eq. (83) and the result of Fig. (2). Recalling
Eq. (145) of Paper I, (¢, =0.05, £,=0.09)

V, = I (kO)

1/3 44/3
R V=¢8P 443,
0

vw=E{Ke71, (88)
where ¢ is the rate of energy input, X the turbulent kinetic energy
and 4 the size of the largest eddy, we conclude that Eq. (87) allows
us to express Dr in terms of other quantities characterizing
turbulence.
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8. Comparison with laboratory and numerical simulation data

Since both the constant n, (k) as well as the case of convective
instability seem to indicate that ratio of Dy to the “eddy viscosity”
v, is constant, it is important to assess the validity of this result on
independent grounds.

Fortunately, both experimental data by Tavoularis and
Corrsin (1981, 1985) as well as extensive numerical simulations
by Rogers et al. (1986) have recently become available regarding
the tensor D;; in turbulent shear flows.

In the case of isotropic turbulence, Rogers et al. (1986) were
able to parameterize their numerical results by the relation [see Eq.
(5.4.1) of their work].

q4
i.e.,
q4
pi=c, L. 90)

Here, ¢>=2K is twice the turbulent kinetic energy, and &
(ergg~!s™1)isthe rate of energy input or, equivalently, the energy
dissipation rate. Finally, C, is a numerical constant plotted in
their figure (5.9b) and whose value is between 0.05 and 0.07.
Equation (90) can thus be written as

Dy=4C, K*e. 91)
Using the third expression for v, given in Eq. (88), we also have
D;= 4G, 12 (92)
¢s
which is precisely of the form (83) derived earlier, provided that
4G _ ko 93)
&

which we see is indeed satisfied.

We may therefore conclude that our expression for Dy, Eq.
(83), is not only in agreement with laboratory and simulation data,
but it also expresses Dy in terms of v, for which there exist relation
like Eq. (88) expressing it in terms of other quantities character-
istic of turbulence and with perhaps a more direct physical
interpretation.

9. Astrophysics: the work of Schatzman and Maeder

For many years the school of Schatzman (for a recent review, see
Schatzman, 1987) has stressed the importance of turbulent
diffusion in a large variety of astrophysical scenarios varying from
stellar evolution to the chemical evolution of the Galaxy. In
particular, Schatzman and Maeder (1981), Schatzman et al.
(1981), and Schatzman (1987) have recently analyzed the impli-
cations of a putative Dt on stellar evolution and in particular on
the neutrino problem and on the determination of the primordial
3He abundance. They find that even a relatively moderate value of
Dy may have major implications. Several comments are in order:

1) By their own admission, the above authors did not attempt
to show that an instability with the right properties exists to
generate a D of the desired strength. In the terminology of the
present paper, the growth rate of the underlying instability, g (k),
is therefore not known.
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2) Even if an ny(k) could be derived, i.e., a particular
instability singled out as the dominant one (a choice that may be
impossible to make a priori), the formalism needed to translate
that information into a Dy, Eq. (65), was not available to these
authors.

The situation confronted by Schatzman and collaborators is
thus similar to the one confronted by the accretion disks
modellers: not only they had to assume that turbulence exists but,
lacking a formalism to translate an n (k) into a v, they had to
adopt an empirical expression of the form (6) and then use
astrophysical data to put limits on the parameter o.

Schatzman et al. (1981) proceeded in a similar manner.
Following early suggestions by Schatzman (1969, 1977), Dy was
written on dimensional grounds as

Dy =vRe*, 94)

where v is the kinematic viscosity and Re* is an “effective”
Reynolds number, encompassing the effect of turbulence. The

latest value of Re* was found to be (Schatzman, 1987)
30 < Re* < 40. 99%)

If we now combine (94) and (95) with Eq. (65), we obtain the
condition

1 (a\'? % F(k) N
or, if we use the simplyfied form, Eq. (87)
% Ko® = Re* ©7)

two constraints that may be useful in the following sense. Since it is
likely that there is more than one type of physically plausible
mechanisms leading to instabilities, one may have to consider a
variety of n, (k). The implementation of the program to calculate
D7 outlines in Sects. 3 or 7 above would thus yield a set of values of
Dy. The constraint represented by (96) and/or (97) may help to
isolate a small subset of the most probable #, (k), ideally one. The
retrieval of “the” n (k) is ultimately the quantity of real physical
interest for through it, one can learn about the underlying physics.
In that spirit, the empirical determination of Re* represents a
useful complement, i.e., a constraint, to our model to calculate
Dr.

Given the variety of astrophysical phenomena affected by D,
it seems that the “retrieval” program of #, (k) just outlined could
lead to important information about the physics in the deep
interior of the sun that would otherwise be unaccessible. [The
retrieval of n, (k) from Egs. (96) and/or (97) can be likened in spirit
to the retrieval of say the nucleon-nucleon potential from the
Schroedinger equation from the measured phase-shifts or/and
cross sections.] An example of this retrieval process has been
recently carried out to extract information about the nature of the
physics underlying the turbulence observed in molecular clouds
(Canuto and Battaglia, 1986).

While we believe that there is no substitute for a detailed
analysis of Dp, using for example the n,(k) of Goldreich and
Schubert (1967) or other forms of ng if one wants to study the
central region of the sun, it is nevertheless intriguing that the
empirical value of Re* is relatively low, Eq. (95). This makes one
suspect that it may be related to the “turbulence Reynolds
number” Ry or to the “microscale Reynolds number” R, (Kraich-
nan, 1964)

>~

-4 =14
RT_&‘V, Rl v s

98)

where ¢? is twice the kinetic energy, 2K and A is the Taylor
microscale

q2 1/2 1/2
i=<5v—> = <10v5> . 99)
& €
Clearly
KZ
R:2=5R;, R:=20 pen (100)
Let us analyze R;. Using the third of Egs. (88), we derive
4\ v
Ri=(—)=2 101
! (fs) 4 (o
Eliminating v, via Eq. (83) we have
Dr=%1¢,Ko®Ryv. (102)

Consistency with Schatzman’s Eq. (94) demands that Re* be
identified with

Re* =1 &5 Ko® Ry (103)
Because of the values of &5 (=0.09) and of Ko (=1.5).
Re* = 5 R;. (104)

and thus Re* cannot be identified with Rr.
Next, consider R;. Using the first of Egs. (100) in (104), we
obtain

* . _1 2
Re* = ¢+ R;

(105)

Clearly, Egs. (104) and (105) do not yield the value of Re*: they
only relate Re* to two other quantities commonly used in the
theory of turbulence, i.e. a model of turbulence is still needed to
compute Ry (or R;). We may however note that if we adopt the
“experimental” value of Re*, Eq. (95), relation (105) yields

Re*~ R, (106)

thus allowing us to conclude that the phenomenological Re*
introduced by Schatzman et al. is rather closely related to the
“microscale Reynolds number”. Other relations of interest may
also be derived. Using Eq. (88) and the combination of (83) with
%94), i.e.

Re*
W=V F (107)
we obtain:
a) Typical turbulent velocity u (K = 1u?)
4Re*\'*
b) Typical size 4 of a large eddy
_ Re* \¥* 34~ 1/4

¢) Typical size /and lifetime ¢, of a small eddy (Kolmogoroff eddy)

v 1/2
[=y34e~14 = <E) (110)
d) Typical time scale for the instability ¢, = n, (ko) ™!,
4 Re* \'2 [W\1/2
v=(omgs) () - ()
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e) Reynolds number Re for the large scale eddies

Re—.lﬂ— ._:4_1/4561
Ty \&E Ko3"

As an example, let us consider the physical conditions characteris-
tic of the interior of the sun,

T=1510"K, ¢=150gem™3, v=2210"3cm?s™!. (113)

Using &, =0.05, ¢5 =0.09, Ko = 1.5 and Re* = 40, we derive from
Egs. (108)—(112):

(112)

u =1.04g14

4 =0.61¢"14

I =4/130

1, =097 12 (114)
t, =51072g712

Re =7.23 Re*

where u is in cms ™!, 4 and [/ in cm, ¢, and ¢, in seconds and ¢ in
ergg™ st As discussed earlier, ¢ represents the energy pumped
into the system to generate turbulence or, equivalently, the energy
dissipated by visous forces at the smallest scales, i.e., (see Paper I),

e= | F(k) [n,(k)+vk*1 dk=v | F(k)k*dk. 115)
ko ko

Both expressions require the knowledge of the turbulence spectral

function F (k) unless, of course, one can make a reliable estimate of

¢ based on other physical arguments.

10. Primitive solar nebula: the grains

One of the major problems in trying to construct a reliable
scenario for the formation of planets concerns the sedimentation
process of the (heavy) grains embedded in the nebula’s turbulent
gas (of solar composition). Weidenschilling (1984) has recently
shown that a particular model of turbulence would not allow the
sedimentation process to proceed past the first stage because even
~km size “protoplanetesimals” would collide so disruptively as
to keep the nebula consistently opaque, and therefore turbulent.
Since this difficulty can now be avoided with an improved model
of turbulence (Cabot et al., 1987), that predicts lower turbulent
velocities, the grain sedimentation process must be reinvestigated.
In such an analysis, two important ingredients are the grain’s
turbulent velocity, Eq. (52), and the diffusivity tensor, Egs. (60)
and (61). Both quantities depend on the turbulence spectral
function F (k) of the gas (see Sect. 3), as well as on the quantities

n=1", (116)

where v, is the grain’s terminal velocity and 7, the grain’s frictional
response time, which can be expressed in terms of other physical
properties of the grain, e. g., mass and size (Wiedenschilling, 1977).

The grain’s turbulent velocity v and the gas turbulent velocity u
are given by ‘

a=kv,,

= (I) F(k) I(k,n) dk

@ty = [ F(k) dk, 117)
0
where
I)=n | e-m-ir®s sin(as) 118)
S as
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with I (k, c0) = 1. While the integral in Eq. (118) can in principle be
performed analytically, the result is given in terms of parabolic
cylinder functions of complex arguments, which are not easy to
handle numerically. Rather, we transform (118) in such a way as to
express it in a numerically more convenient way. Some algebraic
manipulations lead to

}77.51/2 t(k)
I(k,n)= p £ [1—®(2)] e dx, (119)
where
_ a _ nx
t(k)_zl/zo_(k)’ z= (az__zxzo_z(k))”z. (120)

We have computed Egs. (117) using the F (k) that corresponds to a
convective instability, Eq. (84), with and without rotation. The
results are presented in Figs. 6-9, where one sees that for zero
response time, 7; — 0, the grain’s turbulent velocity coincides with
that of the gas, while it goes to zero for 7 — oo, which physically
reflects the fact that very massive grains are unaffected by the
turbulent medium.

The two normal and parallel components of the diffusivity
tensor, D, and D, Egs. (60) and (61), were also computed for the
same type of instability. The results are presented in Figs. 10-12
for the case of zero rotation and for the case 2%/g o = 10. As one
can see, the tensor D;; becomes diagonal when v, goes to zero.

11. Conclusions

To describe the behavior of a passive scalar embedded in a
turbulent fluid, one needs to know the turbulent diffusivity tensor
D;;. We have derived expressions for D;; in two cases: a) the
contaminant’s velocity coincides with that of the fluid, and b) the
contaminant velocity does not coincide with that of the fluid.

Case a) In this case D;;=D;J;;, where Dy is called the
coefficient of turbulent diffusivity. We have derived a general
expression for Dr, Eq. (65), in terms of the turbulence energy
spectral function F (k) and of the eddy decorrelation rate o (k).
Together with the model of turbulence described in Paper I, and
summarized here in Sect. 3, Eq. (65) allows the explicit calculation
of D once the growth rate of the instability generating turbulence
has been identified.

We also derived a simplified expression for Dy and express
the result in terms of the “eddy viscosity” v,, Eq. (87). One of the
advantages of Eq. (87) is that it allows Dy to be expressed, using
Eq. (88), in terms of other quantities characteristic of a turbulent
medium.

Finally, using the empirical determination of D1 by Schatzman
and Maeder (1981), we show that our formalism to calculate Dy
provides a method to gain useful insight on the mechanism
(instabilities) that generate turbulence for example in the interior
of the sun. The results for this case are shown in Figs. 1 and 2.

Case b) In this case the grain’s turbulent velocity v is given by
Eq. (117), and the diffusivity tensor by Egs. (60) and (61). We have
computed (v*», D, and D, for the case of a convective instability
which is believed to have been one of the likely sources of
turbulence in the primitive solar nebula. The result for this case,
for a wide range of parameters characteristic of the primitive solar
nebula (see Cabot et al., 1987), are presented in Figs. 6-11. With
the help of these results, one can now carry out a detailed

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1988A%26A...193..313C

[I98BAGA - 193 Z313TT

322

calculation of the coagulation and sedimentation of grains in the
primitive solar nebula.

Appendix A: numerical solution of the equations for A; and 4,

Using Eq. (19), the fact that B;; (¢) = B;;(¢), and that the imaginary
part of the right hand side of Eq. (39) integrates to zero, we can
rewrite Eq. (39) as

d? ° ,
d—tzAij(t) =¥ —I dt’ e*""" I

[ dk cos(kvyt') @;;(k,1") e~ U2 kAsOk; (A1)
The initial conditions associated with (A1) are
4,(0)=0, (A2)
d
EA”(O):O (A3)

which can be derived from (16) and (19).

In general, (A1) represents a system of 9 coupled integro-
differential equations; by use of Eq. (41) and the first of (44), we
can reduce this system to the following set of two equations for the
two independent quantities 4; and 4,

© © 1
5722/1.-1-(0=77 [ emmi=rldr [ F(k,t')dk | cos(wokt'x)  (A4)
— 00 0 0
sexp{—(1/Hk* [(1=x*) 4;() — (1 =3x%) A, ()]} dx,

2 © © 1
d—2 A ()= 1 [ emmt=tde | F(k,t")dk | (1—x*) cos (v, kt'x)
dt i 2 — 0 0

cexp {—(1/k* [(1—=x7) 4; (1) — (1 =3x%) 4, ()]} dx,
where x =k, /k.
It is convenient to put Egs. (A4) and (A S) in non-dimensional
form. We introduce the following variables

q=kL
fg, 1) =F(k,t)[Fy
J’(F) =y (t)/LZ
z(f)= A, (1)/L*

(A3)

f=ut/L

A=nLlu

B=ulvy, (A6)
where L was defined in Eq. (84) and we have called
u=(u*))'* (A7)
and
Fo=u®L. (A8)
Equations (A4) and (AS) can then be rewritten as
j—; y()y=42 _}; e Hi=rigy fo(q, t’)dqj;' cos <%>

cexp{—(1/4) ¢ [1—x*) y(t)—(1=3x%) z ()]} dx,  (A9)

L=t [ ertar | 1) dg [ (1—x*) cos ‘1’—")
ar’* _z—coe 0 ks qo B

cexp{—(1/4) ¢ [(1—x*) y(t) — (1 =3x*) ()]} dx, (A10)

where, to simplify the notation, we omitted the tilde in the non-
dimensional time variables.

Equations (A9) and (A10) contain two independent para-
meters, A and f. As can be seen from (A 6), A is equal to the ratio of
the time scale of the largest turbulent eddies to the frictional
timescale, while § is the ratio of sedimentation velocity to
turbulent velocity.

Assuming the function F(k, ¢) to be known, Eqgs. (A9) and
(A 10) can be solved iteratively, i.e. by guessing an expression for
A;; (1) and A4, (¢), substituting it in the right hand side, integrating
in time twice, and substituting the new expression for 4, (¢) and
A, (¢) in the right hand side again, until convergence is achieved.

We found that, using 4; = 4, = 0 as initial starting values for
the iteration, the iterative procedure converges very rapidly, the
result obtained after one or two iterations does not differ much
from the fully iterated result.

Pithian (1975) and Reeks (1977) used this property of Egs.
(A9) and (A 10) to justify stopping the iteration scheme after two
iterations, and provided expressions for A4;;(¢) corresponding to
this case. Such expressions still involve complicate integrations
over the time variable, and are not very easy to use.

In order to simplify the calculation of A4;;(¢), we propose to
stop the iteration scheme after just one iteration, that is to use for
A;(t) and 4,(¢) the expressions obtained by substituting
A4;;(¢) =0 on the right hand side of Egs. (A9) and (A 10), which
allows us to express the grain’s velocity and coefficient of diffusion
in an analytical form. Comparison of the solution so obtained
with the fully iterated solution shows an agreement within a few
percent for the quantities of interest to the present work, namely
(Egs. (20 and (21) of the main text)

@ =3 (5a0) .

. (1d
D; = ,li.n; (5 a A (t)>

In Table 1 we show the results for 4” (0) and A’ (*), where 4 = 4;;
and the prime indicates derivative with respect to time, for the trial
function

(A12)

(A13)

3 2 242
f(q,t)':W gte Te T, (A14)

Note that in all cases the iteration scheme converged to 1073
accuracy within 3 iterations (' = d/dt; " = d?/dt?).

Appendix B: derivation of Eq. (59)

Kraichnan’s Direct Interaction Approximation (DIA, Leslie,
1973) has been used for many years as a theoretical tool to study

Table 1
7)) Iteration 1 Iteration 2 Iteration 3
4;11.5) A"(0) =1.66 1.64 1.64

A’ (00)=1.33 1.27 1.27
(1.5;2.33) A"(0) =1.11 1.09 1.09

A" (00) =1.31 1.27 1.27
(0.25; 1) A"(0) =0.253 0.249 0.25

A" (00)=1.23 1.22 1.22
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unforced turbulence. In order to include forcing, we first extended
the DIA equations in the following way:

(§-n®) 0k1-9)

a4 s
=2n([dpdrkprb(k,p,r) [ [ ds Gk,s—5') - Q(r,t—5")

— I ds' G(p,s—s') Q(r,t—s") Q(k,s—s’):|, (B1)
(%—ns(k)) Gk, i—s)
=2z jAj dpdrkprb(k,p,r) [jt‘ ds' G(p,t—s")
- Q(r,t—s") G(k,s—s')+5(t—s):|, (B2)

where the function E (k) of Eq. (43) of the text is related to Q (k, 0)

by the relation

%<u2>=4n [ k* Q(k,0)dk= | E(k)dk. (B3)
0 0

Equations (B1) and (B2) were solved numerically with ng (k) given

by Eq. (84) with Q = 0. Since the technical details of the work will

be presented elsewhere (Hartke et al., 1987), we limit our

discussion here to mention the fact that the numerical results for
E (k, t) were first fitted to a function of the type (Volk et al., 1981)

E(k,t)=e~"®! E(k,0). (B4)

The resulting fit was however not satisfactory. We then tried to fit
the results with a function of the type (Leslie, 1973)

E(k,1)= e~ DO E (k. 0). (BS)

The fit was by far superior. The resulting function o (k) is plotted
in Figs. 3 and 4 for the cases S=10% and 107, and a Prandtl
number of 0.7.

Having derived a o (k) vs k from the full DIA model, we must
now ask whether the turbulence model presented in Paper I and
whose main results are presented in Sect. 3 of this paper, can
provide the same function ¢ (k) in terms of its main ingredients,
namely n, (k) and n, (k). Physically, the quantity o (k) represents
the decay rate of an arbitrary eddy of wavenumber k. Consider
now Fig. (5): ng(k) is the rate at which energy is supplied to the
eddy by the external sources and y n, (k) (see Paper I) is the rate at
which non linear interactions drain energy out of it. We should
therefore write for o (k),

0 (k) moder = 7 e (k) +y 1 (k) —ns (k) = 2yn (k) —ng(k).  (B6)

The quantity n, (k) comes from solving the set of equations
described in Sect. 3. For the case of the n (k) given by Eq. (84)
(with Q = 0), the resulting o (k) ,,.4¢ 15 also plotted in Figs. (3) and
(4). As one can see, Eq. (A6) represents an excellent approxi-
mation to the o (k) obtained from the full DIA model (Hartke et
al., 1987). Equation (B6), which can be constructed entirely with
the ingredients discussed in Sect. 3, is therefore the form of o (k)
that we propose to use in Eq. (65). We may note that a formula
similar to (B6) but with n, (k) treated as a local function, i.e., only
a function of k£ and F(k), was proposed by Leith (1971).
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o (k)
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|05 - S=10
10% - oa A
!
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q

Fig. 3. Decorrelation rate o (k) defined in Eq. (BS) vs. ¢ (= k L, see Sect. 6) for
S=107 and Pr =0.7. The units of o (k) are (v+x)/2 L?. The quantity o (k) p;a is
obtained solving the full DIA set of equations described in Appendix B, while the
0 (k) moder 1s Obtained using Eq. (B6). The growth rate n, (k) is solution of Eq. (84)
for the case of no rotation. As one can see, the agreement between the two ¢’s is
good

o (k)
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3
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v
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q

Fig. 4. The same as Fig. 3, but for §=10°
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ng(k)

Fig. 5. The diagram represents the separate contributions to the decorrelation
rate o (k), using the ingredients of the model of turbulence described in Paper I;
ng (k) represents the rate at which energy is being pumped into an eddy of
arbitary wavenumber k, while yn, (k) represents the decay rate caused by the
non-linear interactions. The model gives rise to Eq. (B6)
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Fig. 6. The square of the grain’s turbulent velocity v2, Eq. (117) vs. the frictional
response time 7¢, defined in Eq. (22). For the relation of 7, to the mass and radius
of the grain, see Weidenschilling (1977). The velocity v is normalized to the gas
turbulent velocity , Eq. (117): the value of the latter is given in the figure in units
of (y+v)/2 L, where the thickness of the convective layer, L, is introduced in Eq.
(84). The time 7 is given in units of L/u, which can be interpreted as the turnover
time of the largest eddies. Values of .S for the solar nebula can be found in Cabot
et al. (1987), part I, Table 1. The quantity 2?/gaf = Ro~2, where Ro is the
Rossby number; values of Ro can be found in Cabot et al. The different curves
correspond to different values of the ratio u/v,, where v, is the grain’s terminal
velocity, v, =g, Eq. (27)
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Fig. 7. Same as Fig. 6 for 2 =0
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Fig. 8. Same as Fig. 6 for S=10*
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Fig. 9. Same as Fig. 7 for S=10*
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Fig. 10. The normal and perpendicular components of the diffusivity tensor D,
and D, vs. S for different values of the ratio u/v,, where  is the gas turbulent
velocity and v, is the grain’s terminal velocity. For u/v, greater than 100, the
curves coincide with the last one. Typical values of S corresponding to the solar
nebula can be found in Table 1, part IT of Cabot et al. (1987). The units of D, and
D, are (x+v)/2 L. We have considered the case of zero kinematic viscosity v, as
appropriate for the solar nebula. As expected, the degree of anisotropy vanishes
as v, goes to zero, i.e., when the contaminant’s velocity coincides with that of the
gas. In this figure, Q=0
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Fig. 11. Same as Fig. 10 for 2%/gaf =10
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