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The theoretical  f r amework  for modeling the  primordial solar nebula  is presented  in which con- 
vect ion is a s s u m e d  to be the sole source of  turbulence that  causes  the nebula  to evolve.  We use  a 
new model  of  convect ive  turbulence  that  takes into account  the important  effects of  radiative 
dissipation,  rotat ion,  and anisot ropy of  convect ive  motions.  This model  is based on a closure for 
the nonl inear  interact ions that  employs  the growth rates of  hydrodynamic  instabilities, a procedure  
that  allows one to compu te  turbulence coefficients for instabilities other  than  convect ion.  The 
vertical s t ructure  equat ions  in the thin-disk approximat ion are developed for this new model,  and  a 
detailed compar i son  and crit ique o f  previous convect ive  models  of  the solar nebula  are presented.  
Numer ica l  resul ts  are presented  in a subsequent  paper.  © 1987 Academic Press, Inc. 

I. I N T R O D U C T I O N  

In recent years, it has become increas- 
ingly clear that the origin, structure, and 
evolution of planetary systems are but the 
last in a sequence of events that are thought 
to begin with the collapse of a molecular 
cloud which fragments to form protostars 
surrounded by nebulae. The latter, due to 
rotation, assumes a disklike structure. 
Since the complete chain of events is 
clearly too complex to handle, one sepa- 
rates it into different parts in the hope that 
the real time sequence of events does not 
make this separation too unrealistic. 

The "solar nebula" represents an inter- 
mediate phase in which the major period of 
infall from the collapsing cloud is over, but 
during which the gas and the grains forming 
the bulk of the nebula are still well mixed. 
The grains will ultimately drift toward mid- 
plane, where, upon becoming Jeans unsta- 
ble, will give rise to the formation of proto- 
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planets. While some insight has been 
recently gained for the latter stage, the evo- 
lution of the solar nebula is far from being 
understood. The basic problem is that of 
finding a process to "clear" the nebula, 
i.e., one that removes the gas by causing it 
to drift outward as well as inward toward 
the Sun. Since it is assumed that the solar 
nebula is not acted upon by external forces, 
one must search for an internally generated 
mechanism capable of initiating the drifting 
process. The problem is not an easy one, 
since the gas is locked in Keplerian orbits, 
which, if undisturbed, would remain so in- 
definitely. 

To break the Keplerian motion, one may 
call upon the presence of large viscosities. 
Since, however, molecular forces are far 
too weak to produce the required effects, 
one usually resorts to "dynamical" pro- 
cesses to obtain an enhanced viscosity. 
This is where turbulence comes into play. It 
is known that if a fluctuating velocity is su- 
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per imposed on a mean flow, the equations 
of  the latter are affected by the former  in a 
way that may be represented by an "en-  
hanced viscos i ty ."  If  U represents the 
mean flow velocity and u the turbulent or 
fluctuating velocity, the equations for Ui 
are (0~ -= O/Oxj) (Hinze, 1959; summation 
over  repeated indices is implied) 

OUi 1 
c?-'--[- + UjOj Ui - OiP + Oj(vSij + Tij ). 

P 
(I) 

Here,  S~j is the ordinary stress tensor,  v is 
the molecular viscosity, and rij (the Rey- 
nolds stress) is an additional stress caused 
by the fluctuating velocities, i.e., 

S i j  "~ O i U j  q- O j U i ,  Tij  : - - U i U j .  (2) 

Only if r~j and Sij have the same sign will 
momentum be transmitted from the faster 
moving parts of  the fluids to the slower 
ones. This can also be seen in a different 
way by considering the equations for the 
energy of  the mean flow U2/2, for the en- 
ergy of  the turbulent flow u2/2, and for the 
total energy flux F. Calling ( . . . )  the 
terms that have no bearing on the present 
argument,  we derive from Monin and 
Yaglom (1971), 

OU 2 
Ot --  TijSij + (" " ")' (3) 

Ou 2 
--  -}-'Fij S i j  -t- ( . . . ) ,  (4) 

Ot 

OF 1 
Oz - 2 OTijSij" (5) 

For  turbulence to act as a source of energy 
(fed by the mean flow), one sees from Eq. 
(5) that one must have 

T i j S i j  > 0, (6) 

i.e., rij and Sij must have the same sign. 
Since for a thin disk St6 is the largest com- 
ponent  of  the tensor  Sij in cylindrical coor- 
dinates (r, 6,  z), 

Sre~ = r ~ < 0  (7) 

for any 1-/ -- r -n (n = ~ for Keplerian mo- 
tion), it follows that condition (6) obtains 

Trtb < 0. i s) 

To make further  progress,  one must supple- 
ment Eq. (5) with independent  information 
about rr6 ; Eqs. (3) and (4) cannot  be solved 
since the number  of  unknowns exceeds the 
number of  equations,  the well known clo- 
sure problem. 

Historically, Boussinesq (1877, 1897) 
was the first to propose that if one assumes 
that turbulence is generated by shear in the 
mean flow, then one may write 

Tij = ld tS i j ,  (9) 

where vt plays the role of a turbulent viscos- 
ity. If  one further  assumes that 

v, > 0, (I0) 

turbulence is fed by the mean flow. The 
original Boussinesq model is, however ,  un- 
able to say anything about  vt; all it does in 
practice is substitute one unknown to', with 
another,  yr. 

The next  step was taken by Prandtl 
(1925; see, however ,  earlier ideas by Tay- 
lor, 1915) who introduced " the  momentum 
transfer t h eo ry , "  whereby an explicit form 
for the viscosity vt was suggested, namely 
Ca, b are two chosen components)  

t,, = 12lS, d, (11) 

where l represents the length traveled by 
an eddy before it releases its momentum to 
the surrounding medium. The relevant new 
aspect of  this model is that fluctuating 
quantities have been substituted by a length 
that character izes the scale of  turbulence. 
Since the Prandtl model does not fix the 
value of  this length, most of  the discussions 
usually concentra te  on ways to determine 
I. From a fundamental  point of view, the 
value of  ! is not the most interesting part. 
The key point in Eq. ( I I )  is that one has 
assumed  the absolute value of  the stress 
tensor  Sij so as to satisfy Eq. (10), instead 
o f  proving it. In fact, contrary to the kine- 
matic viscosity v, v, does not represent  a 
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physical property of the fluid, but rather 
characterizes statistical properties of fluc- 
tuations; it need not be positive (energy 
may be drained from turbulence to the 
mean flow). To postulate a positive vt is 
equivalent to postulating that one (or more) 
process exists that triggers turbulence. This 
basic fact should be proven rather than pos- 
tulated, especially in the case of the solar 
nebula for which we do not have direct (or 
indirect) evidence that turbulence existed. 
Equation ( l l )  is a useful "engineering" 
method to describe a turbulent flow when 
one knows that it exists, as is the case of 
laboratory turbulence, where one can mea- 
sure vt directly. In the case of the solar neb- 
ula, one simply postulates its existence. 
Since turbulence is the putative mechanism 
for clearing the solar nebula, the lack of 
proof of its existence is highly unsatisfac- 
tory. The situation is, perhaps, even worse 
than that. 

Let us go back and inquire whether Eq. 
(9) is justified in the case of rotating disks. 
The doubt arises because one notices that 
the situations for which Eq. (9) was origi- 
nally intended correspond to plane parallel 
flows where the shear S~j = Ui,  j ~- Uj,  i is 
given in terms of the linear momenta in the i 
and j directions. How does one translate 
this to the case of circular motion? One 
may argue that the role played by the linear 
momentum ought to be replaced by the an- 
gular momentum in the circular case, which 
would lead one to propose (Von Karman, 
as cited in Safronov, 1969) 

1 0 
rr6 = vt - (r2~) (12) 

rOrr 

rather than 

"rr4~ = vtr 0--7 (13) 

as dictated by Eq. (9). The implications of 
Eqs. (12) and (13) may be drastically differ- 
ent. In fact, while Eq. (13) always satisfies 
Eq. (8) for l'l - r -n, (12) does so only if 

0 
d--r (r2I~) < 0, (14) 

which is the well-known Rayleigh condition 
for shear instability (Hunter, 1972). Keple- 
rian disks do not satisfy condition (14) 
(Mestel, 1972; Pringle, 1981) and the use of 
Eq. (12) would lead to a violation of condi- 
tion (6); more precisely, one would feed the 
mean motion at the expense of turbulence. 

Ter Haar (1972) suggested that one 
should not actually apply Eq. (14) to disks 
since they do not satisfy the conditions un- 
derlying it, namely that the medium be infi- 
nite and homogeneous. Rather, he sug- 
gested that Rayleigh's criterion for shear 
instability in a plane parallel, inviscid fluid 
would be more appropriate (the velocity 
profile must have a point of inflection). For 
cylindrical geometry, the result is (Spiegel 
and Zahn, 1970) 

d rp(r) d (r2f~) ] 
[ - - 7 - ~  _ = 0 (15)  

or, for Keplerian rotation, (pr-3/2) ' =  O. 
None of the published p(r) vs r relations 
satisfies this condition. 

This situation has however not prevented 
astrophysicists from carrying out extended 
calculations on accretion disks (Pringle, 
1981). Turbulence is assumed to have 
arisen through some unspecified source(s) 
(Eqs. (9) and (6) are assumed to hold), and 
b't is written on purely dimensional grounds 
in terms of the local sound speed cs and a 
vertical scale height h as 

l~ t  = ac~h, (16) 

where a, a s s u m e d  to be positive to satisfy 
Eq. (10), is fitted to the data in analogy with 
laboratory turbulence, in spite of the pro- 
found conceptual differences between the 
two situations. 

In 1969, Cameron first suggested that 
convective instabilities caused by the 
nebula's opacity may have been the source 
of large turbulent viscosities (see also Ca- 
meron, 1978). Lin and Papaloizou (1980) 
carried out disk calculations employing an 
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approximate version of the mixing length 
theory (MLT) to treat convective turbu- 
lence (for a critical analysis of this work, 
see Sect. VII). 

Since the MLT may in principle provide 
a physical model to express properties of 
the turbulent flow in terms of temperature 
gradients, radiative losses, buoyancy, etc., 
one may hope to simultaneously be able to 
quantify both the candidacy of convection 
as a generator of turbulence as well as the 
ensuing disk properties (height, mass, etc.). 
If this process could be implemented, it 
would constitute a considerable improve- 
ment over the ot model, which postulates 
turbulence that it then cannot describe. We 
must stress the " i f , "  for there is no such 
thing as a "ready-made" MLT set of for- 
mulae that can dependably be applied to 
disks. Actually, the solution of the disk 
equations is the easiest part. The really diffi- 
cult part consists of setting up (using the 
general prescription of the MLT philoso- 
phy) a set of formulae that account for all 
the physical effects that characterize the 
disk. 

We shall show in Section VII that the 
straightforward application to disks of the 
MLT formulae used in stellar problems 
leads to conclusions about the role of con- 
vection and the values of disk properties 
significantly different from the ones that we 
have obtained. One of the main reasons will 
be shown to be our proper inclusion of an- 
isotropy effects in the description of the 
large eddies, something missing in the stan- 
dard MLT used in stellar structure calcula- 
tions. 

The main problem in using the MLT 
stems from the fact that, in spite of being 
called a " theory ,"  it has been for many 
years no more than a phenomenological 
method without a derivation from first prin- 
ciples. That made the inclusion of new 
physical effects a difficult process at best, 
and one whose uniqueness is never cer- 
tain. For example, as early as 1950, Opik 
pointed out that radiative losses by travel- 
ing eddies would strongly reduce the effi- 

ciency of heat transport, and yet the phe- 
nomenological nature of the MLT 
formalism did not allow this important ef- 
fect to be incorporated until very recently 
(e.g., Gough, 1976, 1978). Effects due to 
rotation are still largely unaccounted for, a 
problem that while not too serious for stel- 
lar structure computations becomes very 
important when dealing with a disk rotating 
at the Keplerian rate. Finally, anisotropy 
effects in the eddies' sizes, that can signifi- 
cantly reduce the efficiency of convection 
(which may not be very relevant in spheri- 
cal geometries, but is so in disks), have 
been particularly difficult to incorporate 
into the MLT. It was only in 1978 that 
Gough provided the correct expressions. 

While the above list touches upon the 
main effects that must be included (radia- 
tive losses, rotation, and anisotropy), it 
serves the purpose of illustrating a larger 
point: In the absence of an a priori deriva- 
tion of the MLT, one cannot feel confident 
that effects germane to a particular problem 
have all been taken into account. 

In conclusion, if one wants to reliably 
quantify the importance of convection as a 
source of turbulent viscosity, one cannot 
rely on an MLT formalism that, while cor- 
rect for stellar structure, leaves out effects 
that are important in the specific case of 
disks. Moreover, the formalism employed 
should not contain free parameters (the 
model analyzed in Sect. VII contains four) 
because, by fixing them to yield the desired 
results, one defeats the very purpose of 
checking the role of convection as a source 
of viscosity. One actually reduces the prob- 
lem to the level of the a model where one 
forces the strength of turbulence to fit the 
data. Finally, the formalism should contain 
all the effects that may be relevant to disks 
(rotation, radiative losses, eddy anisotro- 
pies, etc.) whose relative importance will 
be determined by the problem itself and not 
by a priori judgement of what is relevant 
and what is not; e.g., we shall show that a 
major role is played by the eddy anisot- 
ropy. It is only by following this protocol 



CONVECTION IN THE NEBULA: I. THEORY 391 

that one can hope to decide whether or not 
convection is an appropriate mechanism for 
generating the needed ut. 

Recently, a model for large-scale turbu- 
lence that satisfies the above requirements 
has been proposed (Canuto and Goldman, 
1985, referred to hereafter as CG). The 
model is based on a new treatment of the 
nonlinear interactions (the closure prob- 
lem) that depend, like the energy source, on 
the specific instability assumed to generate 
the fluctuations. When applied to the case 
of convective instability, the results of the 
CG model were tested against laboratory 
and astrophysical data. In the first instance, 
the model reproduces measured convective 
fluxes (in water) up to a Rayleigh number of 
1012. In the astrophysical case, the CG 
model reproduces, as a particular case, the 
results of the MLT and can therefore be 
considered the first derivation of MLT from 
a model for nonlinear interactions among 
eddies, i.e., a model for large-scale turbu- 
lence that follows and extends the spirit of 
the Kolmogoroff-Heisenberg model (valid 
only for small-scale turbulence). Effects 
due to rotation, magnetic fields, conductive 
and radiative losses, eddy-size anisotropies 
etc., can be included in a natural way. 
While bulk properties (like fluxes) confirm 
the MLT results, the CG model is much 
richer in that it provides the energy spectral 
function that describes how turbulent en- 
ergy is distributed among eddies of differ- 
ent sizes (MLT is a one mode model). 

The availability of a new model of turbu- 
lence (Sect. Ili) and the availability of an 
improved model for grain opacity (Sect. III 
in Cabot et  al. ,  1987, Paper II, hereafter) 
were the basic motivation for the work pre- 
sented in this paper. The construction of 
the disk model and the ensuing results are 
presented in Paper II. The differences be- 
tween our model and results with those of 
Lin, Papaloizou, and Bodenheimer (LPB, 
hereafter) are discussed in Section VII. 

II. THE ENERGY EQUATION FOR THE DISK 

One of the basic equations characterizing 

the structure of a thin disk is the energy 
equation (Pringle, 1981), 

d F  
-~z = r r rSr , ,  

where 

(17) 

dO 
~',6 = ovtSr,~, Sr6 = r--~r.  (18) 

Here, vt is the turbulent viscosity and F the 
total flux. While Eq. (17) is used in all disk 
computations, few state that it is not the 
exact energy equation but rather a particu- 
lar form o f  it. The approximation under 
which Eq. (17) holds consists of having 
changed the "ensemble average" (over the 
turbulent quantities) with a "volume aver- 
age." It follows that once a model for tur- 
bulence has been chosen providing an ex- 
pression for the turbulent viscosity, one 
must still carry out the "volume average" 
so as to obtain an expression for vt that can 
be meaningfully substituted in Eq. (17). 
Only then would one have an expression 
for V t compatible with the constraints under 
which Eq. (17) is valid. For example, the 
well-known a model for vt, 

Pt = OtCsh, (19) 

does  comply with the "volume average" 
requirement although it is incapable of fix- 
ing the value of a. On the other hand, the 
mixing length theory does provide an ex- 
pression for vt that is in principle superior 
to that of the a model, but which is not 
"volume averaged" and therefore cannot 
be directly employed in Eq. (17). 

We shall now derive Eq. (17). Following 
Stewart (1976), we first write the exact 
equations representing conservation of 
mass, momentum, and energy: 

h + (pvi) , i  = 0, (20) 

(pod  + (pv iv j ) , j  = p ~ , i  - P,i + tij . j ,  (21) 

( P ~ )  + (Pl3Ui),i = - - p u i , i  + ~tijo.ijl - -  --i,iFc°nd, 

(22) 

where we employ the notation A = OA/Ot, 
A , i  = OA/Oxi. In Eqs. (20)-(22), ~ is the 
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gravitational potential,  tij is the molecular 
viscous stress tensor,  o-ij is the strain ten- 
sor, e is the internal energy per unit mass, 
v~ is the total velocity, and F c°"d is the con- 
ductive flux, 

F c°nd = - K T ,  i, (23) 

where K is an effective thermal (including 
radiative) conductivity.  We follow the stan- 
dard procedure  and separate the total ve- 
locity vi into two components ,  

vi = Ui + ui, (24) 

corresponding to the mean flow, U~, and 
the fluctuating or turbulent flow, u~, defined 
by (an overbar  denotes  ensemble average) 

h-E 
pu---~ = 0, U; = _-~-, (25) 

P 

appropriate for a compressible fluid. Taking 
the ensemble average of  Eqs. (20) and (21), 
we obtain 

and 

+ (pUi),i = 0 (26) 

- p D t U i  = ~)xI.r,i - p , i  -~ T i j , j ,  (27) 

where Dt ~- D / D t  = O/Ot + UiO/Oxi, and z U is 
the Reynolds stress tensor,  

"l'ij ~- - - p u  i H j .  (28) 

Next ,  consider  Eq. (22). Separating the 
variables as 

e = e + E ,  
p~ 

E = - - ,  O-ij = S i j  -~- S i j ,  
P 

t~i= t~  + T,.j (29) 

and taking the ensemble average, we obtain 
(we shall take Tij = 0 since it is propor- 
tional to molecular  viscosity) 

p D t E  = - p U i .  i - p h i .  i - -  ( p e u i ) , i  

I t *  ` __ pcond  
+ "2 i . jSi j  - - i , i  • (30) 

Using (26) and E = cvT, we obtain 

~c~(D,T  - - -  
fi 

~2cv O t p )  = - - P ~ i . i  - -  ( p e l l i ) , i  

l , ,  _ Fcon  d 
+ ~ tiisii -;,i - (31) 

Next ,  let us add and subtract the quantity 
uip, i .  Grouping terms, we obtain for the 
right-hand side of  Eq. (31) 

- [ (p  + pe)ui + F c ° n d ] , i  + ~ A- 1 * ~ t i j X i j .  

(32) 

Since 

e, = c v T ,  e = ~ -  E =  c v ( T -  T )  = cvO, 

(33) 

we note that the first term in the square 
bracket  is just  the convect ive flux, 

F~ °"v = CppuiO, (34) 

so that calling F the total flux, F c°nd + 
F . . . .  , Eq. (32) becomes 

p c v ( O t T -  /7 D t ~ )  = _ F i i  + uip,  i 
~2Cv 

I t*s i j .  (35) +~ 

This equation cannot  be further simplified 
unless we use some additional information. 
For  that, we go back to the equation of  mo- 
tion and, using the same general procedure,  
derive the equation satisfied by the turbu- 
lent kinetic energy. Calling 

u '2 =- pu2,  (36) 

the result is 

_ i t ,  1 S PDt(½u '2) = - u i p , i  '2 ijsij -]- =~Tij i j  

- [ ( - t / j  + ½puluflui],i.  (37) 

At this point, one introduces the basic as- 
sumption alluded to earlier, namely one re- 
places the "ensemble  average"  with a 
"vo lume (i.e., a z - q5) average ."  Once the 
divergence theorem is used to eliminate the 
last term in (37), one obtains, for stationary 
homogeneous  turbulence,  

i t *  , 1 ~- 2,'l 'ijaij . l l i P , i  - - 2  i j S i j  q- (38) 

Once this relation is substituted in (35), one 
finally obtains 
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_ _  1 

pcv(DtT-  ~ Dip) = - F i i +  Cv_~2 . ~ rijSij. 
(39) 

For stationary, incompressible, axisym- 
metric turbulence, the left-hand side of Eq. 
(39) vanishes, reducing to Eq. (17) in the 
case of a thin disk. 

In conclusion, the correct way of carry- 
ing out a disk structure computation would 
require the use of the exact energy flux 
equation (35). For that we would need to 
know the turbulence terms appearing on 
the right-hand side of Eq. (35). This in turn 
calls for the solution of the dynamical 
equation for the turbulent kinetic energy 
(Eq. (37); or even more generally the equa- 
tion for the Reynolds tensor, Tij), which is 
equivalent to solving the full pr__oblem of 
turbulence. Infact ,  Eq. (37) for u 2 contain__s 
the nonlinear u 3 term which depends on u 4, 
and so forth. This infinite set of equations is 
the essence of the problem of turbulence 
whose solution calls for a truncation, the 
so-called closure problem. Such a program 
has never been undertaken in connection 
with the physics of disks. One avoids the 
need for a theory of turbulence by artifi- 
cially introducing an average process not 
contained in the original equations. One 
makes use of the fact that the nonlinear 
terms, which determine the spectrum of 
turbulence by their transfer of energy 
among eddies of different sizes, do not con- 
tribute to the total energy budget. Their 
action is strictly that of redistributing en- 
ergy. 

In order to use this property, one forcibly 
alters the exact equation by replacing the 
local terms in Eq. (37) with their volume 
average. This is equivalent to going from a 
local dynamical equation, relating quanti- 
ties at different points, to a relation essen- 
tially between numbers, Eq. (38). Alterna- 
tively, one substitutes a differential 
equation with its first integral, a procedure 
that impoverishes the problem considera- 
bly. Turbulent properties, like the eddy en- 
ergy spectrum, are therefore lost. In practi- 

cal terms, this means that a local l~ t 

provided by a possible theory of turbulence 
(which would also depend on the size of the 
eddy to which it refers, i.e., vt = vt(k)) is not 
to be identified with the vt appearing in Eq. 
(17). The volume average must first be 
carried out on any such local expression. 

While the exact prescription for carrying 
out the averaging process is lacking, we 
shall see (Sect. VI) that a physically reason- 
able procedure can be devised. We shall 
also show (Sect. VII) that the LPB model 
uses an expression for b, t that is not volume 
averaged and which is therefore not consis- 
tent with Eq. (17) in which it is used. 

III. THE MODEL FOR TURBULENCE 

The mathematical structure of the model 
of turbulence that will be used in this paper 
has been presented in detail elsewhere 
(Canuto and Goldman, 1985; referred to as 
CG) and only the main results will be pre- 
sented here. 

The fundamental quantity is the turbulent 
energy spectral function E(k), defined in 
terms of the turbulent velocity vt as 

= f~ E(q)dq. (40) ot2(k) 

E(k)/2 describes how turbulent energy (per 
unit mass) is distributed among eddies of 
different sizes. The size I of an eddy is de- 
fined as zr/k; ko is the smallest wavenumber 
allowed by the system and corresponds to 
the largest eddy. For medium- to small-size 
eddies, the Kolmogoroff spectrum obtains 
E(k) ~ k -5/3, i.e., vt - ll/3. The function E(k) 
satisfies a nonlinear integral equation which 
expresses how the energy from the source 
is distributed, via nonlinear interactions, to 
eddies of different sizes, as well as dissi- 
pated into heat by molecular processes. To 
derive the form of E(k), one must first quan- 
tify the nonlinear transfer process (the so- 
called "closure problem"). The closure 
proposed in the CG model, which applies to 
the large-scale eddies, allows the nonlinear 
integral equation for E(k) to be solved ana- 
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lytically, with the result (' = d/dk) 

-2y ,k2E(k)  = [kn 1/2 f~ knl/Z(nk-2) ' dk]', 

(41) 

where n(k) is the growth rate of the instabil- 
ity that generates turbulence. The parame- 
ter y ,  is given from within the theory as 

_2n(ko)L 2 = -2 ' y,ko(n(k)k )k0 (42a) 

where L p  is the longitudinal integral scale, 

(42b) 

The model predicts an expression for vt in 
terms of the growth rate n(k) calculated at 
the largest eddy, i.e. (see also Canuto et al., 
1984, cited hereafter as CGH), 

vt = n(ko)ko 2. (43) 

Since large-scale turbulence is not ex- 
pected to be isotropic, an anisotropy factor 
x is introduced (Yamaguchi, 1963), 

g + ky2 (44) 
X - -  2 ' 

kz 

which is related to k0 and d (the depth of the 
convective layer) by the expression 

kod = ~-(1 + x) 1/2. (45) 

As discussed in CG, the anisotropy x is de- 
termined by maximizing the growth rate 
computed at k = k0, 

dn( ko) 
- 0. (46) 

(See Appendix A for details.) Finally, the 
convective flux, Fc = cpp(Ow), where 0 is 
the fluctuating temperature and w the z 
component of the turbulent velocity, is 
given by the expression (see Appendix B) 

Fc = Cpp(got) -1 f~ [n(k, f~) + vkE]g(k)dk, 

(47) 

where ot is the coefficient of thermal expan- 

sion, - (0 In p/OT)p, and where v is the mo- 
lecular viscosity. As shown in Appendix B, 
Eq. (47) is valid for any degree of rotation 
whose effects enter through the growth rate 
n(k, f~). 

In summary, once the form of the growth 
rate is known, both vt and Fc are fully deter- 
mined. 

(a) The Growth Rate: No Self-Gravity 

A general treatment of the stability con- 
ditions for a differentially rotating disk has 
been carried out by Goldreich and Schubert 
(1967). In the case of Keplerian rotation, 
and in the absence of self-gravity, n(k) is 
given by (see CGH), with k 2 = k~ + kz 2, 

) n 3 + xk2n z + \k 2 -~ gaff n 

+ xkZfl z = 0, (48) 

where/3 is the superadiabatic temperature 
gradient 

fl --= (d-~--~/) aa - (d----zT) , (49, 

and X is the thermometric conductivity. For 
our purposes, only the radiative conductiv- 
ity is used, as defined in Eq. (8) in Paper II. 
In the case of the solar nebula, one can ne- 
glect the kinematic viscosity v, which is 
typically -10  -8 X (Lang, 1980). 

The cubic equation for n(k) in Eq. (48) 
has two roots with positive real parts, each 
corresponding to unstable modes. To repre- 
sent the total contribution of the convective 
instability, we follow previous authors in 
using the sum of the roots with positive real 
parts in computing Fc and ut. The unstable 
modes (nj and n2) are either real or complex 
conjugates; thus their sum (n = n~ + n2) is 
real and given by the positive root of the 
cubic (see Appendix A) 

n 3 + 2xk2n 2 

- got~3 1 + x 1 + x  X21d n 

x 
- ga/3 ~ x k2 = 0. (50) 
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FIG. 1. The ratio of the convective growth rate n(k) with r o t a t i o n  to  the growth rate without rotation 
as a function of wavenumber for Rossby numbers ranging f r o m  0 to 0.01 for  (a) S = 2.4 x 105 and  (b) 
2.4 x 1010; S is defined in Eq. (52); Ro  is defined in Eq. (55). 

The ratio n(k, l))/n(k, 0) and E(k) are shown 
in Figs. 1 and 2, respectively. In  b o t h  cases, 
we note the stabilizing effect of  Keplerian 
rotation. 

(b) Convect ive  Flax f o r  the 1~ = 0 Case 

In this case, Eq. (48) reduces to the well- 
known expression first derived by Ray- 
leigh, i .e. ,  with k -- koq, 

~ f  x 1 
n(k) -- (1 + or) gotfl ~ (bS)l/2 

x 1 - /.t + (1 + or)-------~ q4 1 q2, (51) 

where o- ( =  u/X) is the Prandtl number,/.~ = 
4o- (1 + or)-2, and 

S = gotfld4x -2, b = 4x(1 + x)-3zr -4. 

(52) 

Here, S = orRa, where Ra is the Rayleigh 
number, which represents the ratio be- 
tween the thermal dissipation time, t x = d2/ 
X, times the viscous dissipation time, tv = 
d2/v, and the free-fall time, tg -= (goq3) -v2, 
i .e. ,  txtJt 2. When Eq. (51) is inserted in 
(41), the integration can be performed ana- 
lytically (see CG). The resulting spectral 
function E(k) =-- E(k, 0) can then be inserted 

in Eqs. (40) and (47). For or ~ 1, the integra- 
tions can again be performed analytically, 
with the results (CG) 

Fc = Cpp S (~v/1 + bS - 1)3fiX, 

vt = cx (V~ + b S -  1)d -1, (53) 

where the coefficients a and c depend on x 
a s  

I.C 

O. c . 

O.E 

0.7 

0£ 
Elk"Q)O~ . . 

0.4 

0.3 

0.2 ~'o 

0.I 
i 

1.0 2.0 3.0 4.0 5,0 

FIG. 2. The spectral function' E(k, ll) in units of  

kox2(bS)/47, for  turbulent convection as a function of  
wavenumber for the case of  no  rotation and different 
Rossby numbers and S = 2.4 x 105. 
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FIG. 3. The turbulent conductivity Xt in units of the 
radiative conductivity X (see Eq. (57)) as a function of 
S for the no rotation case and increasing rotation char- 
acterized by Rossby numbers 10 -°.5, 10 t, 10-2, and 
!0 3. 

a = a0(1 + x) 2, c = c0(1 + x) 1/2. (54) 

As discussed previously ,  Eqs. (53) have the 
same structure as the expressions derived 
from the mixing length theory (see (h) be- 
low). 

(c) The fl --k 0 Case: Convective Fluxes 
and Velocities 

In this case,  n(k, el) is given by  Eq. (50). 
Since one can no longer solve Eqs.  (41) and 
(47) analytically,  numerical  integrations are 
necessary .  In Figs. 3 and 4, we present  Fc 
and v t vs S for different values of  the 
Rossby  number  Ro, defined as 

( R a ~  1'2 X/~g~fl 
Ro = \~- -~ /  - ~ , (55) 

where  Ta  is the Taylor  number ,  

Ta  = d4~'~2/v 2, (56) 

(Ta) v2 is the ratio of  the dissipational t ime 
scale dZ/v to the rotational t ime scale I I  -]. 

The effect  of  rotat ion in reducing Fc and vt 
is clearly seen in Figs. 3 and 4. These gen- 
eral results,  valid for arbi trary values of  S 
and Ro, will be used in the disk calculations 
in Paper  I I  where  the values of  S and Ro 
will be determined self-consistently. 

(d) Turbulent Viscosity for the ~1 ~ 0 
Case 

The turbulent viscosi ty vt vs S is pre- 
sented in Fig. 5 and Table I in units of  the 
thermometr ic  conduct ivi ty  X. 

(e) Turbulent Prandtl Number for the 1) :~ 
0 Case 

Equat ion (47) can be written in analogy 
w i t h  F r a o  ~ xdT/dz as 

Fc = Cppflxt =-- CppBX(~, (57) 

where  Xt represents  a " turbulen t  conductiv- 
i ty . "  The " turbu len t  Prandtl n u m b e r , "  

O" t = 1 ) t / X t  , ( 5 8 )  

is presented in Fig. 6 vs S for different val- 
ues of  Ro. The quanti ty Xt/X is presented in 
Fig. 3 and Table II.  

( f )  The Growth Rate for the Solar 
Nebula 

In most  computa t ions  of  the structure of  
the solar nebula,  it is assumed that self- 

. .  /2~o 

log v t 

-3 

log Ro=-2 

-4  i I i i I i I i 0 i 111 
0 I 2 3 4 5 6 7 8 I 12 

log S 

FIG. 4. The turbulent velocity vt in units of X/~-/3d, 
where d is the size of the convective layer as a function 
of S for the same rotation parameters as in Fig. 3. 
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T A B L E  I 

L O G  (vt/X) 

Io 8 R o ~ o g  h0 -4 .5  -4 .0  -3 .5  - 3 . 0  -2 .5  -2 .0  - 1.5 -1 .0  -0 .5  0.0 

397 

0.5 

0.5 2.0733 1.8191 1.5614 1.2976 1.0225 0.7259 0.3866 -0.0426 -0.6600 -1.5275 
0.25 2.0339 1.7792 1.5209 1.2559 0.9788 0.6791 0.3365 -0.0911 -0.6892 -1.5338 
0.0 1.9416 1.6859 1.4257 1.1576 0.8753 0.5681 0.2180 -0.2044 -0.7623 - 1.5525 

-0.25 1.7793 1.5211 1.2567 0.9814 0.6879 0.3662 0.0065 -0.4033 -0.9046 -1.6019 
-0 .5  1.5617 1.2987 1.0259 0.7373 0.4254 0.0860 -0.2778 -0.6684 - 1.1163 - 1.7071 
-0.75 1.3136 1.0417 0.7547 0.4460 0.1132 -0.2365 -0.5952 -0.9674 - 1.3760 - 1.8797 
-1 .0  1.0469 0.7604 0.4527 0.1220 -0.2233 -0.5723 -0.9228 - 1.2814 - 1.6640 -2.1080 
-1.25 0.7622 0.4548 0.1248 -0.2191 -0.5651 -0.9090 - 1.2530 - 1.6027 - 1.9685 -2.3740 

1.5 0.4555 0.1257 -0.2177 -0.5628 0.9047 -1.2442 -1.5841 1.9280 -2.2830 -2.6639 
1.75 0.1260 -0.2173 -0.5621 -0.9033 - 1.2415 1.5783 -1.9156 2.2559 -2.6037 -2.9687 

-2 .0  -0.2172 -0.5619 -0.9029 - 1.2406 - 1.5764 -1.9117 -2.2476 -2.5856 -2.9286 -3.2832 
-2.25 -0.5618 -0.9028 -1.2403 -1.5759 -1.9105 -2.2449 -2.5799 -2.9163 -3.2563 -3.6039 
-2 .5  -0.9027 -1.2402 -1.5757 -1.9101 -2.2441 -2.5781 -2.9125 -3.2479 -3.5857 
-2.75 -1.2402 - 1.5756 -1.9100 -2.2438 -2.5775 -2.9113 -3.2453 -3.5801 
-3 .0  -1.5756 -1.9099 -2.2438 -2.5774 -2.9109 -3.2445 -3.5783 

-2.5075 
-2.5082 
-2.5105 
-2.5175 
-2.5379 
-2.5909 
-2.7010 
-2.8771 

3.1{)72 

Note. For ease of numerical calculations, we present here the numerical values for the turbulent viscosity vt and turbulent conductivity Xt (both in 
units of the thermometric conductivity X)- The defining Eqs. are (43) and (57). The independent variables are chosen to be the degree of rotation, via 
the Rossby number, Ro (Eq. (55)) and the degree of turbulence, via the Rayleigh number Ra: the quantity h0 is defined as kg = ~414S, where S = trRa 
(Eq. (52)). 

gravity effects are negligible (however, see 
Cameron, 1978). In the first part we adopt 
the same assumption and make use of Eqs. 
(48) and (50) for the growth rate n(k). We 
shall then check a posteriori that the as- 

sumption is indeed satisfied. On the other 
hand, we shall also show that in the outer 
Solar System, self-gravity becomes impor- 
tant. A full discussion of  the results will be 
presented in Paper II, Section VI. 

2 ~,*0 

log - ~ -  ,,o~ 

-I 

-2 

I I I I I I I I ! 
"40  2 4 6 8 I v 

log S 

F I G .  5 .  T h e  t u r b u l e n t  v i s c o s i t y  v t n o r m a l i z e d  t o  t h e  

r a d i a t i v e  c o n d u c t i v i t y ,  X, a s  a f u n c t i o n  o f  S f o r  t h e  

s a m e  r o t a t i o n  p a r a m e t e r s  a s  i n  F i g .  3 .  

5 

log ~r t 

2 

I 

0 I I I I I I I I i i 
2 4 6 8 I0 

log S 

F I G .  6 .  T h e  t u r b u l e n t  P r a n d t l  n u m b e r ,  (Jr t = /.,t/Xt, a s  

a f u n c t i o n  o f  S f o r  t h e  s a m e  r o t a t i o n  p a r a m e t e r s  a s  i n  

F i g .  3 .  
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TABLE 11 

LOG (Xt/X) 

log RoX~og h0 - 4 . 5  - 4 . 0  - 3 . 5  - 3 . 0  - 2 . 5  - 2 . 0  1.5 1.0 - 0 . 5  0.0 0.5 

0.5 1.7521 1.4439 1.1165 0.7620 0.3672 -0 .0910  0.6572 -1 .4243  -2 .5827  4.2764 

0.25 1.7053 1.3946 1.0639 0.7050 0.3044 - 0 A 6 1 2  0.7351 -1 .5022  -2 .6332  4.2881 
0.0 1.5946 1.2778 0.9389 0.5688 0.1532 0.3315 -0 .9239  -1 .6900  -2 .7615  - 4 . 3 2 3 0  
0.25 1.3956 1.0662 0.7103 0.3170 0.1300 0.6521 -1 .2764  -2 .0369  3.0194 -4 .4152  

- 0 . 5  1.1196 0.7692 0.3845 -0 .0480  0.5450 1.1202 -1 .7769  -2 .5234  3.4156 -4 .6134  
- 0 . 7 5  0.7900 0.4082 -0 .0194  0.5079 1.0669 1.6907 -2 .3652  --3.0929 3.9140 -4 .9421 

1.0 0.4160 -0 .0101  -0 .4958  1.0496 1.6630 -2 .3152  -2 .9941 3.7047 -4 .4758  -5 .3826  
- 1 . 2 5  -0 .0071 -0 .491 9  -1 .0441 1.6541 2.2995 -2 .9633 -3 .6409  4.3383 -5 .0754  -5 .9015  

- 1 . 5  - 0 . 4 9 0 7  -1 .042 4  -1 .6513  -2 .2945  -2 .9535  3.6209 -4 .2960  -4 .9840  -5 .6983  -6 .4713  
1.75 - 1.0418 - 1.6505 -2 .2 9 2 9  2.9505 3.6147 -4 .2828  -4 .9557  5.6370 -6 .3360  -7 .0741 

- 2 . 0  - 1 . 6 5 0 2  - 2 . 2 9 2 4  -2 .9495  -3 .6127  -4 .2787  -4 .9468  -5 .6178  6.2946 -6 .9833  -7 .6983  
- 2 . 2 5  2.2922 -2 .949 2  3.6120 -4 .2773  --4.9440 -5 .6118  6.2816 6.9553 -7 .6371 8.3368 

- 2 . 5  2.9491 -3 .611 9  4.2769 -4 .9431 -5 .6099 -6 .2775  6.9465 7.6181 -8 .2954  

- 2 . 7 5  -3 .6118  -4 .276 8  -4 .9428  -5 .6093  -6 .2763  6.9437 7.6121 -8 .2824  
- 3 . 0  -4 .2767  -4 .942 7  5.6091 -6 .2758 --6.9428 - 7.6102 8.2784 

-6 .2287  
6.2301 

- 6 . 2 3 4 4  
-6 .2476  
-6 .2864  

- 6 . 3 8 6 9  
-6 .5964  

6.9341 

7.3797 

Note .  See Table  1 Note .  

(g) The Eddington Factor 

Perturbations with dimensions much less 
than the mean free path of the photons (i.e., 
which are optically thin) diffuse radiatively 
at rates independent of size rather than at 
the "optically thick" rate X k2. Spiegel 
(1964) showed that the diffusion rate for 
both optically thick and thin perturbations 
can be represented by a renormalized "op- 
tically thick" case as 

xk2fE(k), (59) 

where the "Eddington factor" fE(k) is given 
by 

(KP]2 [ 1 - - ~  tan-I k 1 fE(k) = 3 \ k /  ~p . (60) 

This expression is derived from the gray 
radiative transfer equations in the Ed- 
dington approximation. We have incorpo- 
rated the Eddington factor by renormaliz- 
ing X with the function fE(k) computed at 
the largest scale k0. While this procedure is 
valid for the computation of vt (see Eq. 
(43)), it is not entirely valid for the convec- 
tive flux Fc which, as shown in Eq. (47), 
depends on the integration over a spectrum 

of wavelengths. However, the spectral 
function E(k) is typically strongly peaked 
toward midplane of the largest scale (see 
Fig. 2) such that Fc depends mostly on the 
values of k near k0. Thus, we believe that 
the renormalization of X viafE(k0) is an ade- 
quate approximation for computing Fc. 

The effect of the Eddington factor is to 
limit the rate of radiative losses by convec- 
tive fluid elements and increase the growth 
rates over the ones computed without it. It 
is found to be important in models in which 
a predominant part of the midplane convec- 
tion zone has optically thin perturbations. 

(h) Assessment o f  the Turbulence Model 

The above model of turbulence was 
tested against laboratory and astrophysical 
data (CG) and a brief summary of the 
results is presented here. 

(1) In the case of laboratory turbulent 
convection, the quantity of direct experi- 
mental interest is the measured heat flux, 
i.e., the Nusselt number, N = Fc/Frad + I. 
Recent experimental data for convection in 
water, at a Rayleigh number up to 10 I1, and 
for f~ = 0, have confirmed the long-sus- 
pected relation 

N = No Ra 1/3. (61) 
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The CG model reproduces the Ra ~/3 depen- 
dence and predicts the coefficient No to an 
accuracy of 20%; i.e., the model repro- 
duces 80% of the measured energy flux. 

(2) In the context of as trophys ical  turbu- 
lent convection, i.e., when one can take 
zero Prandtl number, the expressions for Fc 
and vt derived from the model (Eq. (53)) 
coincide  with the ones  o f  the mix ing  length 
theory  (see Cox and Giuli, 1968, Eqs. 
(14.108) and (14.110)). Moreover, the pa- 
rameters a and b in Eq. (53) (which 
MLT does not determine and which had to 
be calibrated using stellar models; Gough 
and Weiss, 1976) are reproduced satisfacto- 
rily by the model. Moreover, the depen- 
dence of the convective flux F~ on the an- 
isotropy parameter x, a problem that within 
the MLT context has only recently been 
solved by Gough (1978), is correctly repro- 
duced by the CG model (see Sect. VII). 

IV. THE PARAMETER a AND TURBULENT 
VELOCITIES 

One of the advantages of the CG model 
of turbulence is that it no longer relies on 
empirical relations which introduce free pa- 
rameters. In particular, since the CG model 
provides a well-defined expression for the 
turbulent viscosity, empirical relations like 

lit = Oqcsh = ot2vch, (62) 

where v~ is the turbulent convective veloc- 
ity, which have served a useful purpose but 
which have exhausted their fruitfulness, 
will hopefully be abandoned from here on.1 

Due to the different notation used by dif- 
ferent authors, we have found it useful to 
recast the "a-model"  expression for F t in 
two forms. For example, Cameron (1977) 
has 

al = 2/9 = (1/3)az, (63) 

while LPB introduced a parameter ot re- 
lated to oq and a2 by 

In Tables I and II, we present the values of the 
convective flux and of ut/X in a way that is suitable for 
numerical calculations. 

al =- a(vc/cs) 2, az =- a (vJcO;  (64) 

a is then taken to be of order unity (see, 
however, the discussion in Sect. VII). 

Let us now discuss the ratio vt/c~. For 
that, let us recall that the z component of 
the Navier-Stokes equation for the mean 
flow is 

1 
Uz,t Jr- UrUz,r "q" UzUz,z  "}- -p (P,z - Tzz,z) 

1 ('rzr,r + 1 ' r z r ) ( 6 5 )  = - q , , z  + 

where 

T~ = --OUi~j (66) 

is the generalized Reynolds stress gener- 
ated by the turbulent velocities, U is the 
mean flow velocity, and ~b is the gravita- 
tional potential. In the thin-disk approxima- 
tion, commonly used in disk calculations, 
Eq. (65) reduces to 

d 
dzz (p  + Pt)  = - g P ,  (67) 

where Pt is the pressure contributed by the 
turbulent motion. In all disk calculations, it 
is further assumed that (67) simplifies to 

dp 
= - g p ,  (68) 

which obtains only ifpt < p or equivalently 
if 

v2t < c 2 =- p/p.  (69) 

The adoption of (68) is therefore inconsis- 
tent with a disk calculation where vt ap- 
proaches cs (see Eq. (141)). 

In spite of this consistency argument, the 
relation 

vt = ~cs (70) 

has been widely used in the literature. Is 
expression (70) correct for disks? 

The general procedure for calculating 
turbulent velocities has been presented ear- 
lier: One must solve (50) to obtain n(k); the 
result is then substituted in (41) and then in 
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(40) to obtain vt. Since in general Eq. (50) is 
a cubic equation, numerical integrations 
have to be carried out. The resulting veloci- 
ties are presented in Fig. 4. 

To gain physical insight, we shall carry 
out a single-mode calculation which, while 
preserving the main functional dependence 
on all quantities of  interest,  lends itself to 
an analytical treatment.  (We recall that a 
single-mode computat ion is the basic as- 
sumption of  the Mixing Length Theory.  
However ,  one cannot  use the MLT expres- 
sions employed in stellar physics since they 
do not contain the anisotropy factor  x, 
which plays a basic role in determining the 
value of  the turbulent velocities.) 

First, take the k ~ k0 limit of Eq. (41). 
The result is 

2 ! -2~/.E(k0) = n(ko)(n(k)/k )k0. (71) 

Taking the same limit in Eq. (42), we obtain 
Lp = 3~-/4k0 which, together with the defini- 
tion 4T./37r --~ 1, gives 

nZ(ko) 
E ( k 0 ) -  2 ~" (72) 

T,  k0 

From (40) we can now define the one-mode 
velocity as v 2 = koE(ko), so that, finally, 

1 n ( k o ,  fI) 
v, - , (73) 

T,  k0 

where we have explicitly written the possi- 
ble dependence  of n on f~ to stress that (73) 
is valid for a general n(k). Solving (50), one 
obtains n(ko, f t)  and, finally, yr. For  the 
purpose of  establishing an upper limit to vt, 
we recall that since rotation has a stabiliz- 
ing effect, i.e., for any k (see Fig. 1), 

n(k, 1~) < n(k, 0), 

thus the use of  n(k, 0) in Eq. (73) will yield 
an upper  limit to vt. Using (51), we have,  
for o- ---~ 0, 

X ] I/2 
n(ko, O) - n(ko) = gaff ]----~x/ f (S), 

(74) 

where 

f ( S )  =- (bS) -I/2 (X/1 + bS - 1). 

Since f ( S )  -< 1, taking f ( S )  = 1 maximizes 
yr. Using 

kod = 7r(1 + x) 1/2, Ro = gX/~afl , (75) 

where Ro is the Rossby number,  we have 
from (73) and (75) 

d12 x n/2 
vt < - -  Ro. 

7,~" (1 + x) 

Dividing by cs, we finally obtain, with l~d 
Cs , 

Even 

vt  R o  x ~/z 
- -  ~ - -  - -  ( 7 6 )  
c~ y.zr  (1 + x)" 

x -~  1, (77) 

Eq. (70) would still overest imate vt. (The 
Rossby number  is less than unity; see Fig. 
3g in Paper  II.) However ,  since a consistent 
t reatment  of  the anisotropy factor x indi- 
cates that in disks 

x -> 1, (78) 

it follows from (76) that 

vt R o  1 
Xl/2 ~ 1. (79) Cs T,Tr 

In conclusion, while the first consistency 
argument shows that assuming Eq. (68) is 
equivalent to assuming vt < Cs, this does 
not imply that turbulent velocities ought to 
be in general smaller than cs : in principle vt 
can have any relation with cs. In particular, 
there may be physical situations when Eq. 
(70) holds true. For  the specific case of thin 
disks we have,  however ,  shown that the 
large value of  the eddy anisotropy causes Vt 

to be indeed much smaller than cs. (The 
same conclusion holds true for the z com- 
ponent  of  vt, called v¢ in LPB, where v~ = 
v~(1 + x)x J ~ v2c, since x ~> 1.) 

Having presented the mathematical ori- 
gin of  the anisotropy factor  x in the ratio vt/ 
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cs, let us discuss the validity of Eq. (70). As 
explicitly stated by many authors (Ca- 
meron, 1977; Lin, 1981), the assumption 
underlying the use of Eq. (70) is the kinetic 
theory of gases, in analogy with molecular 
viscosity. Unfortunately, the molecular 
analogy fails when applied to large eddies 
since molecules are by definition isotropic 
(x ~ 1), while large eddies are by definition 
highly anisotropic (x -> 1). To illustrate the 
limitations of the molecular analogy, con- 
sider a turbulent medium composed of ed- 
dies of widely different sizes. 

The smallest  eddies can be thought of as 
large molecules and therefore the above 
analogy is a useful guide. Next, consider 
the medium to small-size eddies, the 
Heisenberg-Kolmogoroff (HK) eddies, 
that populate the inertial part of the energy 
spectrum. By definition, the HK eddies 
have undergone sufficient interactions to 
have lost all of the stirring mechanism. The 
same interactions have homogenized and 
isotropized the system. Anisotropy effects 
are still unimportant. (This is borne out by 
the comparison of the isotropic HK model 
with the data.) Last, consider the large, en- 
ergy-containing eddies, whose dynamics 
are largely dictated by the stirring mecha- 
nism. It is a general result of the theory of 
turbulence that unless large-scale turbu- 
lence is initially isotropic, it will remain an- 
isotropic. For the large eddies, anisotropy 
is important and molecular analogies fail. 2 

Almost all theories that try to model tur- 
bulence from first principles have used 
some kind of molecular viscosity analogy 
(first suggested by Heisenberg) to describe 
the nonlinear interactions. These are 
thought to act as an enhanced (turbulent) 
viscosity generated by the eddies in the in- 

2 The difference between small and large eddies can 
also be seen in the following way. Small eddies have 
characteristic lifetimes much shorter than the decay 
time of turbulence: consequently, they have ample 
time to reach some form of statistical equilibrium. On 
the other hand, large eddies have lifetimes of the same 
order as the decay time of turbulence itself, and there- 
fore cannot reach equilibrium. 

terval k2 - 0% and acting on the eddies 
in the interval k~ - k2. Whether this en- 
hanced viscosity is affected by x depends 
on which part of the k spectrum one is con- 
sidering. For example, if one is interested 
in medium- to small-size eddies, the inter- 
val kl - k2 (the HK inertial regime) is suffi- 
ciently removed from the region of the larg- 
est eddies to be immune from x. Indeed, 
Heisenberg and Kolmogoroff constructed 
an expression for the turbulent viscosity 
that depends only on local properties, i.e., 
which is isotropic. The resulting HK spec- 
trum has been amply confirmed by experi- 
ments. 

However,  the HK expression for b' t can- 
not be extrapolated to low k's where the 
largest eddies reside (Canuto et al., 1985). 
A new model is needed. For example, the 
CG model for large-scale eddies, while re- 
taining Heisenberg's physical picture about 
the nonlinear interactions acting as an en- 
hanced viscosity, abandons the HK local 
description and explicitly introduces an- 
isotropy effects, vt = ot(x) and //t  = 1/t(X ) .  

In conclusion, models for /-'t that bodily 
extrapolate the molecular viscosity analogy 
all the way to the largest eddies completely 
miss what is perhaps the main feature of the 
large eddies, their anisotropy. These 
models overestimate vt and ot by large fac- 
tors. 

V. MIDPLANE (z = 0) BEHAVIOR OF 
CONVECTIVE FLUXES AND TURBULENT 

VISCOSITIES: PHYSICAL, UNPHYSICAL, AND 
DEGENERATE SOLUTIONS 

In this section, we discuss three models 
that provide expressions for Fc and vt. 
They are 

LPB:I-I = 0 ,  X = 0, v t - v t  2, 
MLT: fl = 0, X :~ 0 ,  /It ~ ~)~, 

CG" ~~ 4= 0, X :~ 0, b't -- n(ko) 

(8o) 

(A rederivation of the LPB and MLT 
models is presented in Sect. VII). Introduc- 
ing the standard notation 



402 CABOT ET AL. 

V =- HpT -~ dT  p 
d--z' H p = - - ,  (81) 

Pg 

where H o is the pressure  scale height, the z 
dependence  of  Fc and vt in the three cases 
above  as z ~ 0 is 

LPB: Fc - z2(V - ~Tad) 3/2, 

/2 t ~ (~7 --  ~Tad), (82)  

MLT:  Fc - zs+88(V - ~Tad) 3, 

b' t ~ Z4+68(V --  ~Tad) 2, (83)  

C G :  F c - -  z5+86/3(~ 7 - Vad) 3, 

/"t ~ Z2+48/3( v --  Vad), (84)  

T A B L E  III 

SUMMARY OF THE RESULTS OF APPENDIX C 

a/b <0  0 >0  
0 U U or ND U 

O < a  < 1 U o r D  U , D ,  o r N D  U 

1 D D U 
>1 D D U 

N o t e .  The LPB model ,  using Eqs.  (1)-(4) of  Lin 
(1981) (see Eq. (90) above),  is character ized by a = I 
and b = 0, cor responding  to a degenerate  situation in 
which F(0) = 0 for any  value of  height  H. We have 
verified numerical ly  that  this is indeed the case.  The 
method  by which  LPB ult imately chose  H is d iscussed 
in Section VII. 

where in the M L T  and in the CG models the 
"sca le  length"  has been taken to have a 
possible z dependence  of  the form z 8. 

We can therefore  conclude that in gen- 
eral Eq. (17) can be rewrit ten near  the mid- 
plane as 

dF 
7 z  - vt - z~(V - Vad) °. (85) 

Moreover ,  since f rom Eq. (8) (in Paper  II), 
Fr -- zV, we see that Fc goes to zero faster  
than Fr provided V does not blow up as z -~ 
0; thus F = Fr + Fc = F~, and we can re- 
write Eq. (85) as 

-~z = e°zb foz Vad , (86) 

where  e0, f0, and Va0 are constant  near  mid- 
plane (they are in fact the rmodynamic  
quantities). The integration of  the full-disk 
equations (see Sect. I I  in Paper  II) is car- 
ried out f rom z = H (H  = photospher ic  
height of  the disk) downward  toward mid- 
plane z = 0; a physically consistent  solution 
is defined as an integration resulting in 

F(0) = 0 (by symmetry) ,  and 

vt(0) is well behaved.  (87) 

Clearly,  whether  these requirements  are 
satisfied depends  on the specific values of  
the pa ramete r s  a and b entering Eq. 
(86) and in some cases on the thermody-  
namic constants  as well. We have  made a 
s tudy of  Eq. (86) and the analysis is pre- 

sented in Appendix  C and Table III .  It  is 
convenient  to classify the solutions into 
three categories:  unphysical ,  U; physical 
but degenerate ,  D; and physical  and nonde- 
generate ,  ND.  They  are defined as follows: 

Unphysical  solutions, U: either of  con- 
ditions (87) is not satisfied. 

Physical  but degenerate ,  D: conditions 
(87) are satisfied for arbitrary values 
of  the disk height, H.  A unique solu- 
tion of  the disk is therefore impos- 
sible since one cannot  define surface 
density,  total mass  of  the nebula, 
etc. 

Physical and nondegenerate ,  ND: con- 
ditions (87) are satisfied for  a unique 
value of  the disk height, H.  A com- 
plete s tructure of  the disk can be ob- 
tained. 

VI. G L O B A L  VS L O C A L  V A L U E S  OF 
T U R B U L E N T  VISCOSITY 

The M L T  and CG models of  convect ive  
turbulence are both  formulated for  global 
convect ive  proper t ies  averaged over  a 
"mixing  length ."  The use of  local distribu- 
tions of  convect ive  propert ies  is not strictly 
valid within these models.  Nonl inear  trans- 
port  te rms have been globally averaged 
away in the turbulent  energy equation, 
while, in fact,  vertical redistribution of  en- 
ergy and m o m e n t u m  probably  occurs  to 
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some degree within the vertical structure 
due to large-scale turbulent motions. We 
unfortunately cannot determine the extent 
to which the distribution of, say, turbulent 
heat dissipation is smoothed out in a realis- 
tic situation without detailed hydrodynami- 
cal studies. Though the structure equations 
are not valid for determining local vertical 
structure, some knowledge of the mean 
thermal structure is required to specify self- 
consistently the strength of the convective 
motions and amount of turbulent heat depo- 
sition in the convective region. We there- 
fore make two important assumptions: 

(1) The form of the globally averaged en- 
ergy equation (17) specifies (in some mean 
sense) the local thermal structure due to 
turbulent heat dissipation, with the provi- 
sion that 

(2) the turbulent heat dissipation (mea- 
sured by the turbulent viscosity vt) is redis- 
tributed evenly throughout the convective 
region by large-scale motions (i.e.,/"t is con- 
stant). The convective flux, however, is 
computed and incorporated locally in the 
vertical structure. 

The thermodynamic structure that 
results from this is used to compute local 
values of b' t from local convective growth 
rates (Eq. (50)). A numerical solution is 
deemed consistent when constant vt equals 
the density average of locally computed 
values of vt over the convective region. 
Note that our method seeks in a sense to 
preserve the net amount of heat deposition 
expected from the entire convective region 
while merely redistributing it in a somewhat 
ad hoc manner. 

The method that we employ uses locally 
computed convective growth rates (in the 
Boussinesq approximation) to determine 
the mean turbulent viscosity by means of 
vertical averages. A computationally more 
time-consuming method, but a perhaps 
more consistent one, would be to use the 
local structure from the computation with a 
trial constant vt to estimate the growth rate 
of the lowest order (longest wavelength) 
mode in a boundary value problem of the 

linearized perturbation equations. This 
growth rate could then be used to calculate 
a global value of vt, which would then be 
compared to the trial vt in a consistency 
check. Such a method would automatically 
take into account the effects of compress- 
ibility, being an integration of eigenvalues 
over a few pressure scale heights. The more 
expedient method actually employed in this 
paper hopefully approximates the global 
growth rate by use of the vertically aver- 
aged local growth rate. 

VII. ANALYSIS OF THE 
LIN-PAPALOIZOU-BODENHEIMER (LPB) 

MODEL 

In this section, we discuss three topics: 
(1) the validity of the LPB expressions for 
turbulent fluxes and velocities, (2) the LPB 
treatment of the turbulent viscosity, and (3) 
the nature of the LPB disk solutions. 

(a) The M L T  Expressions for  Turbulent 
Fluxes and Velocities 

The two basic ingredients needed to 
quantify turbulent convection are the con- 
vective flux Fc and the turbulent viscosity 
/ ) t ,  

Fc ~ (wO), vt ~ (w2), (88) 

where w is the z component of the turbulent 
velocity (called vc in LPB) and 0 the fluctu- 
ating temperature. The MLT formalism 
does provide expressions for Fc and w (see 
Cox and Giuli, 1%8, Eqs. (14.108) and 
(14.110)), which, however, do not contain 
the anisotropy factor x, which, as we shall 
see, plays a fundamental role in our analy- 
sis. Furthermore, since MLT expressions 
for arbitrary x and S (= gotfld4x -2 the "con- 
vective efficiency" Eq. (52)) are not avail- 
able in the literature, we shall derive them 
first and then compare them with the ex- 
pression used in LPB. We must note that 
Gough's (1976, 1977) expressions have the 
correct S dependence but an incorrect x de- 
pendence; Gough (1978) has the correct x 
dependence but the expressions are only 
valid in the S >> 1 regime, which is mani- 
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festly invalid at the disk's midplane where 
g ----~ 0. 

We shall employ the MLT formalism 
(Spiegel and Veronis, 1960; Spiegel, 1963, 
1966) and in particular the kinetic theory of 
accelerating fluid elements. For  a detailed 
review, see Gough (1978). 

Consider the Navier-Stokes equations 
for the velocity field. Eliminating the pres- 
sure terms, making use of the compressibil- 
ity relation, and, finally, taking the z com- 
ponent of the resulting equation, we obtain 
for w the equation 

OW X 

Ot 1 + x  
- -  gaO. (89) 

The fluctuation temperature 0 is defined in 
terms of  the " total  temperature"  T ' (xyz )  
and the "average temperature"  T(z) as 
(Spiegel, 1963) 

T ' (xyz )  = T(z) + O(xyz). (90) 

(We have changed Spiegel's notation to 
conform to the LPB definition of T as the 
average temperature.) Taking O/Ot = wO/ 
0A¢, where A¢ is the eddy displacement, 
integrating (89), and assuming that the fluc- 
tuations at the point (xyz) are caused by the 
arrival of a convective element from the 
point (xyzo), one can show that (Spiegel, 
1963) 

0 = A.  dz . , A: =- z -  zo. (91) 

We then obtain from (89), 

w \ dz dz , /  (92) 

and from (88), in units of Cpp, 

Fc = wA~ ~ dz dz. (93) 

(cf. Cox and Giuli, 1968, Eqs. (14.16) and 
(14.2)). 

Next,  we must eliminate dT ' /d z .  This is 
done using the MLT equation for 0 
(Spiegel, 1966), 

O0 
Ot xV20 - f lw = 0, (94) 

where 13 is defined in Eq. (49). Proceeding 
as above and further taking - V  2 = k 2 ~- 
A -z, where, using (44) and kzAa = zr, 

erA = Az(1 + x) -1/2, (95) 

we obtain from (94) and (91) the desired 
result, 

dT'  d T _  [(~__~ dT]  wA2A~ I 

dz dz aa - -~z X + wA2A~ j" 
(96) 

Since LPB introduced two length scales A~ 
and A2 which were taken to behave very 
differently, we have purposely left the three 
length scales Az, A t , and A different so as 
to check whether the LPB A~ and A2 are 
compatible with the basic formulation of 
the MLT. Substituting (92) into (96) and 
solving for d T ' / d z  yields 

dT'  d T  

dz dz 
A~ d _ ..~_ ] 2~ - 1 

× (~1 + Y - !) 2 (97) 

with 

X = 8x(1 + x)- lec f lgx-2A 4 ~-- bS.  (98) 

Substituting (97) into (92) and (93), we ob- 
tain 

1 ( - ~ ) 2 E - I ( ' ~ / T - I -  E - 1)3Cpp, Fc = ~ fln 

1 A¢ 
w = ~ x ~ ( x / $  + y, - 1). (99) 

The above procedure does not determine 
the correct x dependence,  a problem that is 
by no means trivial within MLT. For exam- 
ple, Gough's  (1976, 1977) expressions still 
contained an incorrect x dependence, that 
only later Gough (1978) was able to correct. 
The Canuto-Goldman (CG) model for 
large-scale turbulence (Canuto and Gold- 
man, 1985) provides the correct x depen- 
dence, as one can see by comparing with 
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Gough's (1978) expressions. Since this is 
not the place to discuss this topic, it suffices 
to say that Eqs. (99) can be made to have 
the correct x dependence provided one 
takes 

A t = Azxl/2(1 + x) -1. (100) 

Using (95) and (100), we finally obtain 

7'g 2 X 
F~ - 2 l+x-- E-J(V'I + E - l)3cppflX, 

(lO1) 

(102) 
71-2 

w = -~- X I/2 (V'I + E - 1)xAf j, 

together with 

vt = w %/(I + x)/x.  (103) 

Equations (101)-(103) yield the general 
MLT expressions for F~ and Vt for arbitrary 
E and x; to the best of our knowledge, this 
is the first such derivation of F¢ and vt for 
arbitrary x and E. Gough's (1976; 1977) 
work is valid for arbitrary E but has an in- 
correct x dependence. Gough's (1978) pa- 
per has the correct x dependence but is 
valid only for Y, -> 1. Cox and Giuli's (1968) 
Eqs. (14.108) and (14.111) are a particular 
case of (101)-(103) for x ~ 1. The CG model 
reproduces exactly the above MLT expres- 
sions (Eq. (53)). 

(b) The L P B  Expressions f o r  Fc and vt 

LPB expressions for Fc and w (called v~) 
do not contain X; i.e., it is assumed that 
throughout the entire nebula the eddies do 
not lose energy via radiative processes. 3 To 
obtain X independent expressions, one 
must take the limit 

E ~> 1, (104) 

3 It may be recalled that Opik's (1950) suggestion 
that radiative losses may significantly reduce the con- 
vective efficiency was the major motivation for the 
work on MLT in the late sixties and seventies that 
finally led to the general expressions (101) and (102). 
Without X, the MLT expressions used by LPB reduce 
to the ones by Prandtl (1925) that were criticized by 
Opik as inadequate for astrophysical purposes. 

in which case Eqs. (I01) and (102) become 
(neglecting factors of order unity) 

X 3/2 
Fc - (1 + x) 5/2 ( ° t g ) l / z f l 3 /2A2zcpp '  (105) 

x 
vc - (i + x) 3/z (°tgfl)VZAz" (106) 

Let us now compare (105) and (106) with 
the LPB expressions (Lin, 1981, Eqs. (2) 
and (3)), 

F c = O t l ( o t g ) l / 2 f l 3 / 2 A i A 2 c p p  , (107) 

Vc = ( o t g f l ) l / 2 A 2 .  (108) 

This implies that 

X I/2 X 

Ai - (1 +x~Az '  A 2 -  (1 + x )  3/zAz" 

(109) 

The adoption of (107) and (108) forced LPB 
to assume two independent forms for A I 
and A2 (if AI = A2, there is no solution for 
the disk equations), namely 

Z > Hp, A1 = A2 = Hp -= p/pg,  (ll0a) 

z < Hp, A~A2 = constant, 

i . e . , A i - z ,  Az = H p - z  i. (ll0b) 

Inspection shows that LPB's choices (110a) 
and (110b) cannot be made compatible with 
the general MLT expressions (109). 

The X ~ 0 limit and the midplane behav- 
ior. The "high-efficiency limit" (104) is of- 
ten used in the application of MLT to prob- 
lems of stellar structure, where it is valid 
because the ingredients of E do not vanish 
within the convective regions of stars. This 
is, however, no longer true in the solar neb- 
ula where at midplane 

g = z f ~  2 ~ 0 ,  i . e . , E ~ 0 ,  (111) 

in contradiction to (104). The proper proce- 
dure consists of taking the limit (111) first in 
the general expressions (101)-(103). This 
results in 

Fc ~ g 2 x - 3 ,  Vt ~ gx  - l ,  (112) 

which shows that the X ~ 0 limit can no 
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longer be taken. We conclude that Eqs. 
(107) and (108) are not compatible with the 
correct  M L T  expessions at midplane where 
the major contribution to convect ion arises 
in LPB ' s  model. 

Rotat ional  effects: The x ~ o0 limit. The 
LPB expressions for Fc and U t do not con- 
tain rotation, whose effect is to lower both 
Fc and yr. To see under  which conditions 
this approximation holds, we use a general 
result of  the MLT formalism (Spiegel, 1963; 
Gough, 1978), namely that 4 

F c ~ n3(k0) ,  W ~ n(ko), (113) 

where n(ko) is the growth rate computed for 
the largest eddy,  k = k0. Since n(k) depends 
on the rotat ion f~ (Eq. (50)), the only way to 
have Fc and w independent o f f l  is by taking 

x---~ ~, (114) 

in which case Eq. (50) shows that rotational 
effects become unimportant.  Since the LPB  
expressions for  F,. and w do not contain ~,  
we must  conclude that the limit (114) is im- 
plicitly built into their formalism. As a con- 
sequence of  (114), it follows from (109) that 

A1 = A 2 .  (115) 

This shows again that assumptions (110) are 
not internally consistent  with (114). Fur- 
thermore,  even if (115) was adopted,  Eqs. 
(107) and (108) would not be compatible 
with MLT Eqs. (105) and (106) unless the 
coefficient aj is chosen to be 

x 3/2 1 
i (116a) oq (1 + x) 5/2 x 

instead of  

aj ~ 1 (l16b) 

4 Equat ions  (113) can easily be derived using the CG 
model  for turbulence.  Since the M L T  is by definition a 
one-mode  theory ,  one can  take the limit k ~ k0 in Eq. 
(41) and  derive the funct ion E(k )  for a general  n(k). 
When  this is subst i tu ted in (40) and (47), one obtains 

n3(ko) d 2 xV2 
F¢ I + x g a '  w - ~ n(ko)d, 

i.e., Eqs.  (113) above.  We have  used Eqs.  (44) and 
(103) above.  

as in LPB. This implies that the LPB 
strength of  the convect ive  flux Fc has been 
overest imated by a factor  x >> 1. 

(c) The LPB Treatment o f  vt : The Effect 
o f  Anisotropy 

LPB adopted the expression 

of 
vt -- ~ .  (117a) 

It may appear  that the presence of  II in Eq. 
( l l7a)  represents,  or at least partially ac- 
counts for,  the effects of  rotation on the 
turbulent eddy viscosity vt. This is, how- 
ever,  not the case as we shall now show. 

If  one adopts the line of  reasoning out- 
lined in the Introduction,  the proper  and 
only way to interpret (117a) is to recognize 
that it defines 

'7"r* ~ PtSrda ~ /-'t~-~; (l17b) 

i.e., ( l l7a)  is not an equation for vt, which 
is an artificial auxiliary quantity. The strata- 
gem of  not solving the full equations for the 
Reynolds stress tensor  zij but of  guessing 
the solution written in the form ( l l7b)  has 
meaning only if one can provide indepen- 
dent  ways to compute  both vt and Sr,. The 
lq appearing in (117b) comes from Sr¢,, but 
nothing yet  has been said about the func- 
tion vt, which remains an unknown. 

No further progress can be made unless 
one adopts a model for turbulence. One 
cannot  hope to make real progress unless 
one says something concrete  about how the 
non-linear interactions should be treated. 
As discussed in Section III, a model for 
large scale turbulence has recently been 
proposed.  If we restrict ourselves to a one- 
mode analysis, which for the present pur- 
pose is sufficient, the expression for vt is 
given by (CGH, 1984) 

n(ko) nvet 
Pt --  k2 - k 3 E ( k o  ) , (118)  

where all quantities are evaluated at k = k0. 
This same model also provides a way to 
compute  the spectral function E(k). It can 
be seen from Eq. (72) that 
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E(ko) = n 2 ( k o ) k o  3 (119) 

so that, finally, 

where 

vt = - - ,  (120) 
n 

Vt ~ vt(k0,~'~), n ~ n(ko, fl); (121) 

i.e., both vt and n depend on rotation. Since 
n is obtained by solving Eq. (50), we shall 
write 

n(ko, l~) = "~gg~[3 f(ko,  I~), (122) 

where all the rotational effects are included 
in the function f. The factor in front is the 
natural frequency of convection. When ro- 
tational effects are absent, the function 
f(ko) is given by Eq. (51). 

Suppose now that we purposely  neglect 
all rotational effects on the previous formu- 
lae. We obtain 

v2(ko) 1 v2(ko) 
l " t -  gV'-~fl f(ko) f~ (123) 

since 

g = zl-I 2. (124) 

Equation (123) is exactly Eq. (117a) above. 
We therefore see that the l-I in (117a) is not 
due to rotational effects on the turbulent 
eddies, i.e., the 1"/in f (ko,  l~), but rather to 
the f~ dependence of the local gravity g. 

Having clarified the meaning of (117a), 
let us study the effects of anisotropy. To be 
consistent with MLT, one must use the full 
MLT expression for Vc, Eq. (102). Because 
we need to compare the final result with the 
LPB expression that does not contain X, we 
use the limit (106). The result is 

1 x 2 
vt uLT 0/flgA 2, (125a) 

f~ (1 + x) 3 

to be compared with the LPB expression 

0/2 
V LPB = " ~  0/flgA 2. ( 1 2 5 b )  

Expression (125b) is consistent with MLT 
only if Ct 2 is taken to be 

x 2 

0/2 (1 + x) 3 

while LPB chose 

1 
1, (126a) 

x 

0/2 - -  1. (126b) 

We conclude that the LPB treatment over- 
estimates vt by a large factor (x -> I), and it 
overestimates the amount of heat generated 
at the nebula's midplane since 

dF  I 
"~Z ~ 7rtbSrtb ~ vt~'~2 ~ X - /]LPB~'~2. 

From a qualitative point of view, Eq. (126b) 
may lead one to conclude that "convec- 
tion" alone is sufficient to generate all the 
viscosity that is required for the dynamical 
evolution of nebula, while in reality that 
may not be the case. From a quantitative 
point of view, it is known that the larger the 
turbulent viscosity, the thinner and less 
massive the resulting nebula for a given/f/  
or Te. To get a feeling of how the LPB 
results ought to be correctd to account for 
at least  the anisotropy factor x, one may 
use Eqs. (16) of Lin (1981) 5 with the results 

(H, Tc, Pc, Re) - -  (x  1/6, x I/3, x I/2, x 2/3) 

× (LPB results) (127) 

for the nebula's height, central tempera- 
ture, central density, and Reynolds num- 
ber, respectively. The renormalization 
shows that x - 1, giving a smaller viscosity, 
leads to a thicker and hotter nebula. For the 
mass of the nebula, MN, we can use a result 
of Lin and Papaloizou (1980, Eq. (31)) 
whereby 

M N  ~ v c 4 R e  -3/2. (128) 

Since, from Eqs. (106) and (I08), 

Vc ~ x-V2v¢ (LPB), (129) 

we conclude that 

MN ~ xMr~ (LPB), (130) 

thus resulting in a more massive nebula. 

5 In  t h a t  pape r ,  the  t w o  s t r e n g t h  p a r a m e t e r s  a~ and  
a2 i n t r o d u c e d  a b o v e  a re  ca l l ed  a t  = az -= a .  



408 CABOT ET AL. 

(d)  The  L P B  T r e a t m e n t  o f  the  S c a l e  

H e i g h t s  

Next ,  we shall analyze the LPB choice of 
scale heights. For  that, we first introduce 
the definitions (81) and 

2 P ( O l n p ]  
Cs = FI - Q = - = - a T .  

p '  \O In T I p  

(131) 

The convect ive  flux Fc and the turbulent 
velocity in the LPB treatment,  given by 
Eqs. (107) and (108), are then written as 

f ¢ = -~ OqCppT vc(V - -  V a d ) ,  (132) 

2 (A2 2 
Vc 2 = c~ \Hp /  (V - Vaa). (133) 

The turbulent viscosity and the energy 
equation are written as 

d F  9 
~' u - pvt~Q2. (134) vt = o ~ 2 v ~  , dz  4 

Let  us now consider the behavior  at small z 
of  the three quantities d F / d z ,  Fc,  and yr. 
We have 

-~z ~ \ H p !  (V - Vad), 

AIA2 
Fc H2 (V - Vad) 3/2, 

P 

Vt ~ \ H p /  (V - Vad). (135) 

Consider d F / d z  first. If  we write in general 

Hp/  ~ zb '  (136) 

then Eqs. (135) acquire the form (86) with a 
= 1. We then see from Table III that the best 
one can hope for is a physical but degener- 
ate solution. Since a negative value of  the 
parameter  b is hard to visualize, the best 
available alternative is b = 0, which implies 
that one must choose 

p 1 
A2 = Hp z '  (137) 

Pg 

which is precisely LPB ' s  choice. With this, 
the third of  (135) yields 

vt(0) = constant,  (138) 

while the second of  (135) gives 

A1 
Fc - - -  - zAl.  (139) Hp 

Since a physical solution is defined as one 
with F(0) = 0, LPB could not choose A1 = 
A2 near midplane. They chose instead 

A1 = z, f o r z <  H o. (140) 

How acceptable are these choices of A1 and 
A2? We note that: 

(1) The MLT,  even in its general form 
does not allow A~ 4: A2, as we have shown 
above.  

(2) The scale height A2 diverges at mid- 
plane, which is unphysical.  

(3) LPB ' s  choice of  a A2 is physically 
equivalent to creating an artificial energy 
source. This is illustrated in Figs. 7a and 
7b. Figure 7a shows vt(z) from Eqs. (133) 
and (134) with A2 = constant,  as it would 
follow from local MLT.  One sees that vt(z) 
vanishes at z = 0, which is a reasonable 
behavior  since the convect ive  buoyancy 
vanishes there. A similar behavior of  vt(z) 
near midplane occurs  in the CG model, as 
discussed in Section V. The type of  distri- 
bution of  turbulent viscosity in the disk 
shown in Fig. 7a does not, however,  pro- 
vide physical solutions when employed in 
the energy generation equation. As we have 
discussed in section VI, one can remedy 
the situation by spreading the available vt(z) 
under the area in Fig. 7a uniformally 
throughout  the nebula. This procedure con- 
serves the total amount  of  turbulence. 

On the other  hand, rather than redistrib- 
ute/"t, LPB artificially enhanced Vt by a sub- 
stantial amount  near midplane by their 
choice (137). The net result is shown in Fig. 
7b, where it is seen that LPB ' s  procedure 
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FIG. 7. (a) The local turbulent viscosity (normalized to 1016 cm 2 sec -~) as from the application of 
MLT with A2 = constant  near midplane. To obtain solutions to the disk equations, one must average 
the area under the vt curve in the midplane convection zone. (b) The turbulent viscosity vt vs z as from 
the choice of A~ and A2 made by LPB. This corresponds to introducing a large artificial contribution 
near midplane. Same normalization as in (a). 

"creates"  an energy source near midplane 
over and above that prescribed by MLT. 

(4) Even with the above choices of A1 
and A2 to get F(0) = 0, the best LPB can 
achieve are degenerate solutions, since 
they do not allow the determination of the 
nebula's height. How H, the height of the 
nebula, was chosen by LPB is discussed 
below. 

(5) The choice (137) causes the convec- 
tive velocity vc (Eq. (133)) to exceed the 
sound speed cs at midplane. Since a theory 
of supersonic turbulence does not exist, 
LPB were forced to introduce an ad hoc 
prescription, which we shall discuss below. 

(e) The Nature o f  the L P B  Solutions for  
the Disk 

When vc becomes equal to Cs, LPB re- 
place "v~" with "c~",  so that the energy 
equation is now written as 

dF 9 
dz - 4 a2pI~ min{v~, c2}. (141) 

Although the study of the most general 
equation has been presented in Appendix 
C, here we shall solve Eq. (141) in the 

neighborhood of midplane 6 to show explic- 
itly the appearance of degenerate solutions 
and the manner in which LPB chose a value 
of the nebula's height out of the degenerate 
set. 

Explicitly, we shall show that Eq. (141) 
gives 

F ( 0 ) = 0 ,  for any H,  if vc < Cs, 

F(0) :~ 0, for any H,  if vc > Cs. (142) 

In the first case, the desired zero flux condi- 
tion at midplane is fulfilled but at the ex- 
pense of obtaining degenerate solutions, 
since in fact the nebula's height H is unde- 
termined. In the second case, one is left 
with a nonzero residual flux and the solu- 
tions are clearly unphysical. We shall deal 
with the subsonic and supersonic cases sep- 
arately. 

(i) Subsonic convection: vc < cs. In this 
case, Eq. (141) has the solutions 

6 By which we mean the region near z = 0 where 
thermodynamic quantities (p, T, p, cv, etc.) are effec- 
tively constant and where the convective flux is negli- 
gible compared with the radiative flux; in practice, the 
solutions discussed are valid for z -< 10-2h, where h 2 = 
zHp. 
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( ,) F = C j z  °o + J~VadZ, 00 4: 1, 

= --~7~dZ ln(zlCz),  00 = 1, (143) 

where C~ and Cz are integration constants 
depending on matching conditions with so- 
lutions beyond the neighborhood of  the 
midplane and where 

9Qot2 3p2K 4 a c T 4 ~  2 
Oo ~ 32 4acT4O " f o -  3 K ~  

(144) 

The convect ive  velocity given by 

2 2 vc/cs = (Q/8FI fo )[Gz  °° t + fotTad/(Oo _ I)], 

004: ! 

= -(Q/SF1)Vad[1 + ln(z/C2)], 

00 = 1 (145) 

must be less than unity. Both the integra- 
tion constants and the thermodynamic 
quantities depend on H. Since the thermo- 
dynamic constant  00 is positive definite, it 
follows that 

F(0) = 0 (146) 

for all values of  H that generate midplane 
conditions satisfying (145). The above con- 
dition is always satisfied at a point arbitrar- 
ily close to midplane, if 

00 > 0~ r ---= 1 + 17adQ/8Fl. (147) 

The case 00 = 0~ r belongs to the supersonic 
case if the convect ion entering the neigh- 
borhood of  the midplane is supersonic, i.e., 
C~ > 0, since 2 vc/Cs < 1 everywhere  near 
midplane; 00 = 0~ r belongs to the subsonic 
case if the convect ion entering midplane is 
subsonic, i.e., Cl < 0, since VZc/C 2 < 1 eve- 
rywhere  near midplane. In order  that con- 
vection be supersonic entering midplane, 
condition (145) requires that V - Vad > 8F~/ 
Q = 0(10);  however ,  the requirement that 
00 be 08 r -~ 1 in practice constrains 7 - 7~d 
to be O(1) entering the neighborhood of  the 
midplane. We therefore  conclude that 

00 -~ 0~ r ( 148 )  

is the general criterion in practice for satis- 
fying condition (145) at points arbitrarily 
close to midplane and guarantee solutions 
with F(0) = 0. 

(ii) Superson ic  convec t ion:  vc > cs. For  

00 < 0~ r, (149) 

condition (145) is violated at some positive 
z < z ,  in the upper plane and convect ion is 
supersonic at midplane. As stated above,  
we find in practice that the convect ion is 
subsonic entering the neighborhood of  the 
midplane. Thus the solution switches at z = 
z ,  from Eq. (135) for z > z , ,  to the super- 
sonic solution 

F = Fo + Oofo(8FJQ)z,  z < z , ,  (150) 

where F0 is an integration constant which is 
determined by matching the fluxes at z = z ,  
and eliminating CI or C2 via Eq. (145) for v~/ 

9 c~ = 1. The result is 

bo = (8F~/Q)foz,(O~ r -  00).  (151) 

Because of  condition (149), F0 > 0. Since 
the residual flux at midplane given by Eq. 
(150) is F(0) = F0, we find for values of H 
satisfying condition (149) that 

F(0) > 0, (152) 

and so no phys ica l  solution can be ob- 
tained.  

The solutions to LPB ' s  structure equa- 
tions thus fall into two categories (see Figs. 
8a-8c):  

(1) When Vc -< cs at midplane, F(0) = 0 
and the solution is physically consistent;  

(2) When vc > cs, F(0) > 0 and the solu- 
tion is physically inconsistent. 

However ,  even in the first case, there is 
still in general a cont inuum of  values of  H 
able to satisfy F(0) = 0. The solutions de- 
pend on H only to the extent  that the boun- 
dary(ies) where 00 = 08 r is (are) a function 
of  H.  Figures 8a-8c  show 00 are F(0) plot- 
ted against H for three values of  Te using 
the same opacities employed by LPB. Be- 
cause 00 depends linearly on opacity,  the 00 
curves reflect peaks in midplane opacities 
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that determine,  along with Te, where and 
how many 00 = 0 ~  r boundaries occur.  For  
sufficiently large H,  00 always becomes 
greater  than 08 r. At smaller H,  the peak in 00 
(due to water-ice grain opacities) surpasses 
0~ r provided T~ is less than some critical 
value (in the case of  Figs. 8, the critical 
value is seen to be 77°K). 

For  T~ < T~ r, there is a continuous,  
bounded  range of  H with solutions satisfy- 
ing F(0) = 0 and, at larger values of  H,  
another  such continuous,  but unbounded  
range exists; for  T~ > T cr, only the latter 
range exists. Any value of H in these two 
ranges has solutions satisfying the midplane 
boundary condition of  vanishing flux. 
These solutions are "degene ra t e "  with re- 
spect to boundary  conditions at the optical 
surface (see Appendix C). 

One can force a " u n i q u e "  solution by re- 
quiring that 

T~ = T c~ (153) 

at each value of  R, the distance from the 
Sun. We have found numerically that the 
values of  T~ so obtained depend on R as 

Te ~ R -I/6, (154) 

whereas for a quasistatic disk, one has 
(Pringle, 1981) 

T~ ~ R -3/4. (155) 

Therefore  condition (153) cannot be im- 
posed, or conversely  (153) holds at only one 
value of  R. 

We surmise that LPB have chosen H as 
the point where 00 first becomes 08 ~ 
1.03 with increasing H for a fixed T~. The 
point where T~ = TCe r defines where LPB 
switch between solutions with small and 
large H. We must stress, however ,  that 
there is nothing inherent in the LPB formu- 
lation to constrain the value of  00 to 0~ r or 
any larger value. 

The solution 00 = 08 r above is equivalent 
to having the turbulent viscosity parameter  

ct = a2 _-5, (156) 
Cs 

with OL 2 ~ 1, be locally equal to unity at 
midplane. Since a - vt is strongly peaked 
toward midplane (Fig. 7a), the vertically 
averaged value of  a is somewhat  less than 
unity (typically about 10-1.5). 

What size of  a would LPB have ob- 
tained, however ,  had they used a consist- 
ently vertically averaged vt to determine the 
vertical structure? The largest value of  V - 
Vad in Eq. (133) is Vr - Vaa for a negligible 
convect ive  flux7; here Vr is the tempera- 
ture gradient if all the flux were radiative, 

I p F 
Vr - (157) 

OX cppT g " 

If vt is replaced in the second of  Eqs. (134) 
by a constant  averaged (vt), and because 
the density does not vary drastically near 
midplane, we estimate 

9 9 
F ~ ~ p(~'t)~2Z = ~ p(ut)g. (158) 

Also using p / c p p T  = Rg/y.Cp ~ Vad , w e  find 

(9 (vt) 1) Vad. (159) 
Vr -- Vad ~ 4 X 

For  a consistent solution, we require (vt) 
in the midplane region; thus V~ - Va0 -~ 

Vad. Equation (156) becomes 

QVad ( A  2 ~2 
o~ ~ ot 2 ~ \ H p  / " (160)  

Since Q ~ 1 and F11 ~ 1 - Vaj, Q Vad -< 
¼Fj. Using LPB ' s  choice of  A2 = Hp  and a2 
= 1, we find a maximal local value of 

1 
~< ~ .  (161) 

We expect  the vertically averaged values of 
et to be somewhat  lower, suggesting a maxi- 
mal global value o f ac  ~ O(10-2"5), which is 
consistent with our numerical results. 

7 When radiative dissipation is correctly taken into 
account, as in Cox and Giuli (1968), the maximal su- 
peradiabatic temperature gradient experienced by con- 
vecting elements is ¼ (Vr - Vad). 
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( f)  Summary  

(1) The L P B  model  contains four  free pa- 
rameters (two lengths A1 and A2 and two 
strengths oq and a2), which were assumed 
to be 

A1 4: A2, (162) 

al = a2 = 1. (163) 

(2) Radiative losses by the eddies were 
assumed to be zero: LPB ' s  convect ive  for- 
mulae do not contain X- This overestimates 
the convect ive  efficiency. At midplane, 
where gravity goes to zero,  F¢ - X -3 and v¢ 

X -~ and the X "-~ 0 limit leads to diver- 
gences. 

(3) Coriolis forces were neglected in LPB  
convective formulae  in spite of  the 1~ ap- 
pearing in yr. This holds only i fx  >> l, which 
must therefore be considered implicitly as- 
sumed in the LPB treatment.  

(4) Eddy anisotropy effects were ne- 
glected. LPB ' s  convect ive  formulae do not 
depend on x, or equivalently,  they are valid 
for the x ~ 1 case. Fur thermore:  

(5) When (2) and (3) are assumed, the 
MLT formalism implies that 

Ai = A2, (164) 

in disagreement with (162). On the other  
hand, if (164) is accepted,  no physical solu- 
tions of  the disk equations can be found. 

(6) The parameters  al and a2 can be 
shown to satisfy 

1 
al ~ az ~ - ~ 1, (165) 

x 

in disagreement with (163). 
(7) Points (3) and (4) above are not mutu- 

ally compatible.  
(8) The choice A2 - z -~ (which diverges 

at z --* 0) and a2 - I imply that artificial 
turbulent viscosity is being created at mid- 
plane, thus resulting in an unphysical 
source of  heat (Figs. 7). 

(9) With (1)-(4), the solutions for the disk 
height H are degenerate,  i.e., the model 
cannot  provide a unique solution for the 
nebula 's  height, allowing for an infinite set 
of  values of  H. LPB chose the smallest 

value of  this degenerate  set. The arbitrari- 
ness in the choice of  H is reflected in the 
value of  the nebula 's  surface density (E) 
and mass (M). 

(10) The use of  a local vt is not compatible 
with the general energy equation. To be 
consistent with Eq. (39), one must use an 
averaged vt. I f  so, we find that even without 
the effects of  eddy anisotropy,  radiative 
losses, and rotation, the resulting ac would 
be about  10 -2.5 rather than about 10 -1"5 a s  in 
LPB. 

VIII. CONCLUSIONS 

In this paper  we develop a new approach 
to constructing turbulent  disk models of  the 
inner solar nebula in which turbulence is 
driven by thermal convection.  We assume a 
thin-disk geometry,  as is done in the semi- 
nal work by LPB,  with which we make ex- 
tensive comparisons.  We use the CG 
method to specify the relations needed to 
describe convect ive  turbulence; one advan- 
tage of  the model is its flexibility in allowing 
us to include rotational effects on convec- 
tive motions. The way in which we propose 
to implement our turbulence model in nu- 
merical modeling of  the vertical disk struc- 
ture differs markedly from LPB in some re- 
spects. The main difference is that 
convec t ive- turbulen t  propert ies in LPB ' s  
models are wholly local in application and 
feature a turbulent viscosity that is strongly 
peaked at midplane. In the method devel- 
oped in this paper,  the turbulent viscosity is 
created predominantly in regions above and 
below midplane, but it is assumed to be re- 
distributed evenly in the convect ive  region 
by nonlinear transport;  it is this smoothed 
turbulent viscosity and heat dissipation that 
is used to determine the vertical thermal 
structure of  the disk. 

The numerical results of  the model devel- 
oped herein are presented in Paper  II of  this 
work (Cabot et al., 1987). Similarities and 
differences in approach between ourselves 
and LPB lead to results that are both simi- 
lar and different. Unexpectedly ,  the differ- 
ences prove to be especially striking with 
respect  to the stability of  the models. 
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APPENDIX A 

MAXIMIZATION OF THE SUM OF GROWTH 
RATES WITH POSITIVE REAL PARTS 

The cubic that governs the growth rates 
with zero kinematic viscosity (Eq. (70)) is 

C(n)  = n 3 + xk2n 2 

- ( g a f f  1 + x  1 n 
fF 

+ ~ xk  2 = O. (AI) 

For g a f f  > 0, Eq. (A1) has two roots with 
positive real parts (nl and n2, say) satisfying 
C(nl)  = C(n2) = 0; nl and nz can both be real 
or a complex conjugate pair, such that their 
sum is always real and positive. From Eq. 
(A1), we can write 

C(n2) - C(nO = (n2 - nl) ](nl + n2) 2 

+ xk2(nl  + n 2 ) -  g a f f  1 + x  1 T x  

- n l n z l  = 0. (A2) 

Since n2 :~ nl in general, Eq. (A2) gives 

nln2 = (nj + n2) 2 + xk2(nl + n2) 

- g a f f  1 + x  1 + x " (A3) 

We also have 

C(n2) + C(n l )  = (nl  + r/z) 3 + xkZ(n! + n2) 2 

X ~'~2 ) 
- g a f f  1 + x 1 + x (nl + nz) 

~2  
- -  - nln2[3(n~ + n2) - 2 x k 2  1 + x 

+ 2xk 2] = 0. (A4) 

Eliminating nln2 from Eq. (A4) by (A3), we 
arrive at 

Cy.(n] + /'/2) = (nl  + n2) 3 + 2xk2(nl + n2) 2 

- ga/~ 1 + - x  1 + x x2k 4 (nl + n2) 

x 
- g a f f ~ X  k2 = 0, (A5) 

the cubic governing the s u m  of the growth 

rates with positive real parts (Eq. (72)). 
C~(n~ + n2) has either three real roots or 
one real and one pair of complex conjugate 
roots. Only one root has a positive real 
part. Ergo, the root with the positive real 
part is always a real root. This is the root of 
interest in Eq. (A5). 

The maximization of the sum of the 
growth rates at the largest scale is deter- 
mined implicitly from Eq. (A5) by 

OC,=(nj + n2) 

Ox 
- 0 ,  ( A 6 )  

with 

k 2 = ~0(1 + x ) ,  

ko = constant, 
(A7) 

and the condition 

O(n] + n2) 
ax 

- o .  ( A 8 )  

Equations (A6)-(A8) yield 

[ga j~  q- ~2 ] 
2x~(n, + nz) 2 - [ ~-~x~y 2xZk4(1 + x)] 

(hI + n2) -- goq~xk~o = 0. (A9) 

Through a series of algebraic manipula- 
tions, the (rt I + r/2) 3 and (nl +/' /2) 2 terms can 
be eliminated from Eqs. (A5) and (A9), 
leaving 

nl + n2 B 
x k  2 - ~4' ~A10) 

where 

1 F2 (1 + r) 2 1 + r 1 
A ~ (1 + x) - - - - - -~  + 2 1 +-----'-~- ' 

1F2 l + r  
B = - x -  1 - ~  (1 + x )  --------5' 

and 

F 
~2 F2 _= ga/3 

gap' x~eo" 
Using Eq. (A10) to eliminate (r/1 + n2) from 
Eqs. (A5) and (A9) gives the equation gov- 



CONVECTION IN THE NEBULA: I. THEORY 415 

erning the value of  x that maximizes the 
sum of  the growth rates: 

f ( x )  = B2(1 + A )  + 2BA - ½F2A 2 = 0. 

(A11) 

We solve Eq. (Al 1) numerically through a 
Newton 's  iteration with a reasonable guess 
for x. The correction to trial values of  x is 

8x = - f (x)/  f ' (x), 

where 

f ' ( x )  = 2 [B(1 + A) + A 

l + r  ] 
+ (1 + x) - - - - - - -~ (F2A - 2B - B z) B ' ,  

l + r  
B ' ~ I + F  2 - -  

(1 + x) 3" 

APPENDIX B 

The spectral functions E(k) ,  G(k) ,  and 
H(k)  are defined in terms of  ensemble aver- 
ages of  the square of the velocity, square of 
the temperature,  and of the velocity-tem- 
perature correlation by 

f2 (v 2) = E(k )dk ,  (B1) 

f2 (o 2) = G(k)dk,  (B2) 

f2 (v30} = H(k )dk ,  (B3) 

where vi is the ith component  of the veloc- 
ity v, 0 is the fluctuating part of  the temper- 
ature field, and k0 is the wavenumber corre- 
sponding to the largest eddy available to the 
system. It is desired to express the spectral 
functions G(k)  and H(k)  in terms of the ve- 
locity spectral function E(k) .  

Expanding v 2 in terms of  its components,  
Eq. (B 1) can be written 

(v])(1 + ~) = f~ E(k)  dk,  (B4) 

where 2 - (0 2 + v2)/(v2). In the usual fash- 
ion, ratios of  Eqs. (B3) and (B2), and of  
(B3) and (B4) are formed, giving 

<o> - "(*' O(k--5 6(k), (as) 

(0} l H ( k ) _  1 , 
l + ~ - E ( k )  ~(k) l + ~ '  (B6) 

hence, solving for G(k)  and H ( k ) ,  

1 E(k) 
G(k)  - 62(k ) 1 + $ '  (B7) 

1 E(k) 
H ( k )  - ~b(k) 1 + ~f" (B8) 

The approximation used to effect a solution 
is that the rat ios  $ and 4) are given by the 
linear analysis. This assumption allows a 
complete solution to be developed. 

Consider an infinite horizontal layer of 
fluid. The components of the velocity in the 
horizontal plane can be written quite gener- 
ally in terms of u3 and the z component of 
vorticity ~ by 

vl = a--Tl OxOz + d , (B9) 

v2 = a"~ OyOz - d , (B10) 

in which all distances are measured in units 
of the depth of  the convective layer d and a[  
= a2 + a~ = kZd 2 = (k2 + ~ ) d  2. Since the 
geometry is plane parallel, the appropriate 
forms for v3 and g are 

v3 = W(z)  cos a l x  cos azy ,  (Bl l )  

~ = Z(z )  cos a l x  cos a2y. (B12) 

Using (Bl l )  and (B12) in (B9) and (B10), 
squaring the velocity components,  and av- 
eraging, one finds 

1 
(v 2 + v22) = 4a 2 

[((DW) 2) + dE(Z2)], (B13) 

where D -= d/dz.  For  this geometry, assume 
W(z) = Wo cos a3z, where Wo is a constant 
amplitude and a3 = k3d. Calculating 
((DW)2), it is easily seen that ( ( D W )  2) = 
4aE(v32). Substituting this expression in Eq. 
(BI3), dividing by (v32), and adding 1, one 
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finds from the definition of  $ that (a 2 = a 2 + 
ab 

a2 [ a2 d2 ( z 2 )  ] 
1 + 2 = a--~ 1 + ~-~ ((DW)2)]. (B14) 

Using the expressions for Z and W pro- 
vided by the linear analysis, we have 

(Z 2) T 
((DW)2) 2 ~' n,,  =-- a 2 + n , ,  (BI5) d n;, 

where the symbols T and n ,  stand for 

T = n .  = nd2/v .  (BI6) 
\ /~ / ' 

Here  T is the Taylor  number  and n(k)  the 
growth rate. Finally, 

a 2 (  a2~2) 
1 + 2 = a-(] 1 + ~-5 - (B17) 

Next ,  let us estimate tb. From the equation 
relating W(z )  and O, and the use of the dis- 
persion relation 

(D e - a~ - trn,)[(D ~- - a~ - n,)2(D 2 - a~) 

+ T D z ] W  = - R a ~ ( D  2 - a~ - n , ) W ,  

(B18) 

where D ~ a~, o- = v / x  is the Prandtl num- 
ber,  and R is the Rayleigh number  g~f ld4 /  

v x ,  we obtain after some algebra 

1 1 l 
- (n + vk2), (B19) 

I + 2 6  g ~  

which together  with (B8) and (B3) gives the 
desired result (Eq. (69) of the text), since Fc 
= Cpp(V30). Let  us note that Eq. (B19) is 
valid for  any degree of  rotation. 

APPENDIX C 

MIDPLANE SOLUTIONS OF THE ENERGY 
EQUATION: GENERAL CASE 

Introducing the dimensionless variables 

x =- z /h ,  

f - =  F(j~hVad) 1, (CI) 

O0 = eohbf  olV~d l, 

Eq. (86) can be written as 

d f  = Ooxb_a(f  _ X)% (C2) 
dx  

where f is the radiative flux and where e0, 
F0, and Vad are thermodynamic quantities 
taken to be constant  near midplane (x = 0). 

Alternatively ,  one  can write Eq. (C2) in 
terms o f  the superadiabatic temperature 
gradient y, 

y =- f / x  - l ,  (C3a) 

dy 
x--d~ x + y + 1 = Ooxby ~. (C3b) 

Solutions are sought for  small positive x in 
the limit x ~ 0. P h y s i c a l l y  rea l i s t i c  so lu-  

t ions  h a v e  f > - O f o r  x > 0 a n d  f = 0 a t  x = 
O; in order  to have convect ion to midplane, 
one requires y > 0 for x > 0; the energy 
generation rate should be zero or finite eve- 
rywhere ,  so x b y  a should be zero or finite for 
x - 0. The superadiabatic temperature gra- 
dient in dimensional form, - d T / d z  + (dT /  
dz)ad, should vanish at midplane, thus x y  
should vanish at x = 0; this is equivalent to 
f = 0 a t x = 0 .  

In the following an " inward integration" 
will refer to an integration from x = xi > 0, 
with a corresponding initial value of y = yz 
> 0, toward x = 0 (i.e., with decreasing 
values of  x). 

(a) S p e c i a l  C a s e :  b = 0 

Equation (C3) becomes 

dy 
X-~x  = Ooy a -  ( y  + 1)--=g(y), (C4) 

which is separable. The points satisfying 
g ( y )  = 0 are special solutions of Eq. (C4) 
defining neutral equilibria, g ( y )  has an ex- 
t remum at 

Ym = (aOo) j/a "), (C5) 

with 

(-v-)-, g(Ym) = (aOo)  I/f l -a )  1 - a 

(i) a > 1. For  large y ,  g ( y )  ~- y a  > 0; for 



CONVECTION IN THE NEBULA: I. THEORY 417 

small y, g(y)  ~- - 1 ;  g(Ym) < 0, for a > 1; 
therefore, g(y) decreases from positive val- 
ues at large y, through zero at y = Y0, de- 
creases to a minimum at y = ym, and in- 
creases to a value of  - 1  at y = 0. For  an 
inward integration with yi ~> y0, g(Y) > 0 
and y decreases toward y0. 

For  yi < yo, g(Y) < 0 and y increases 
toward Y0. Thus Y0 is an attracting point of  
neutral equilibrium for inward integrations 
(i.e., asymptotically stable); for any initial 
y / >  0, y tends asymptotically to Y0 at x = 0. 
As a consequence the flux, f = (y + l)x, 
tends to (Y0 + 1)x ----> 0. One can therefore 
f ind  a physical  solut ion-- in  fac t ,  a whole 
fami ly  o f  physical  solut ions--regardless  o f  
the initial integration point.  

(ii) a = 1. Equation (C4) has an attracting 
point of  neutral equilibrium at y0 = (00 - 
1) -I. If00 > 1, y---~ Y0 as x---> 0. For  00 < I, 
y0 < 0, such that y becomes negative for 
some x > 0, which is not a physical solu- 
tion. The exact solution is 

y = Cx °°-1 + (0o - 1) -j ,  Oo =# 1, 

= C -  lnx ,  00=  1, 

f =  Cx °° + xOo(Oo- 1) -l, 00:~ 1, 

= ( C +  1 ) x - x l n x ,  00=  1, 

where C is the integration constant.  For  00 
= 1, y blows up at x = 0, which causes the 
energy generation rate to blow up unphysi- 
cally. Note that all solutions for 00 -> 0, 
physical or not, h a v e f  = 0 at x = 0. As for a 
> I, all inward integrations lead to f = 0. 
The physical  solutions are degenerate  in 
the sense  that physical  constraints at x = 0 
( f =  0, etc.) cannot  distinguish between ini- 
tial integration points.  

(iff) 0 < a < 1. For  large values of  y, g(y) 
- y  < 0. For  small values of  y, g(y) ~ - 1. 

At an intermediate value, Ym, given by Eq. 
(C5), g(y) has a maximum, g(Ym), given by 
Eq. (C6). For  

l ( a "~'-,, 
Oo < 0o~ - a \ l  ----S-d/ ' (C7) 

g(Ym) < O, such that g(y) < 0 for all y -> O, 
and all inward integrations result in ever- 

increasing values of  y. Since g(y) -~ - y  for 
large enough values of  y, y will have the 
approximate solution o f y  ~ C/x near x = 0, 
where C is the integration constant.  The 
flux, f = (y + 1)x, goes to x + C; thus the 
flux goes to a finite positive constant at mid- 
plane. 

For  00 > 00c, g(Ym) > 0, and so g(y) has 
two zeros at, say, yl and Yz, with Y2 defined 
as the greater of  the zeros. If  Yi > y2 in an 
inward integration, then g(y) < 0, and y 
increases without bound, going as C/x as x 
----> 0. If  y <- yi < Yz, then g(y) > 0, and y 
decreases asymptotically toward y~ as x 
0. I f  0 < yi -< yl ,  then g(y) < 0, and y 
increases asymptotically toward y~ as x 
0. Thus for 0 < yi < Y2, inward integrations 
are attracted to the neutral equilibrium y~; 
for Yi > y2, they are repelled by the neutral 
equilibrium y2. For  00 = 00c, yl collapses 
onto y2 = Ym = a/(1 -- a). Values of  yi > Ym 
are repelled, giving y ---> C/x as x ~ 0; val- 
ues of  y; -< Ym are attracted, giving y ----> Ym 
as x ---~ 0. 

In summary,  unphysical  solutions of the 
form y --~ C/x and f---~ C as x --~ 0 occur  for 
all values of  0o < 00c, for 00 = 00~ when yi > 
y2 = y~, and for 00 > 00c when yi > YE. 
Physical,  but indistinguishable (degener- 
ate) solutions of  the form y --~ yl = constant 
andf---~ 0 as x --~ 0 occur  for 00 -> O0~ when yi 
< Y2. A physical  solution that is "un ique"  
(nondegenerate)  in the sense that the mid- 
plane conditions are peculiar to one partic- 
ular initial condition occurs for yi = Y2, 
which is one of  the special solutions to Eq. 
(C4). In this case y = Y2 a n d f  = (1 + yE)x = 
0 a t x  -- 0. 

(iv) a = 0. The one point of  neutral equi- 
librium, YE = 00 - 1, is repelling, and the 
special solution y = yz is physically unique 
(nondegenerate) .  The exact solution is 

y = 0 o -  1 + C/x, 

f = Oox + C, 

with C = 0 corresponding to the special so- 
lution. Values of  00 -< 1 give unphysical val- 
ues of  y(-< 0) for x > 0. 
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In  s u m m a r y  fo r  b = 0, t h e r e  a re  a va r i e t y  
o f  t y p e s  o f  so lu t ions  d e p e n d i n g  on  the  val-  
ues  o f  a a n d  00. The  on l y  p h y s i c a l l y  n o n d e -  
g e n e r a t e  so lu t i ons  o c c u r  for  0 --- a < 1. 

I t  is n o w  p o s s i b l e  to  s t u d y  s o m e  m o r e  
gene ra l  c a s e s  wi th  b 4 : 0  us ing  the  fo rego ing  
t e c h n i q u e s  in this  sec t ion .  

(b) G e n e r a l  C a s e s  

F o r  b 4 : 0  and  a -> 1, c o n s i d e r  Eq .  (C3) in 
the  fo rm 

dy 
x -~x = G ( x ,  y )  =-- O(x)y  a - ( y  + 1), 

(C8) 
O(x) =- Oox b. 

T h e r e  will  be  no neu t r a l  equ i l i b r i a  for  Eq.  
(C8), bu t  it will  be  i n s t r u c t i v e  to  c o n s i d e r  
l ines  in (x, y) c o r r e s p o n d i n g  to  G(x ,  y)  = O. 

(i)  b > 0, a > 1. C o n s i d e r  the  func t ion  
yo(x) w h i c h  is de f ined  b y  G(x ,  Y0) = 0. W h e n  
x is v e r y  la rge ,  O(x) is v e r y  la rge ,  and  y0 
O(x) -l/a ~ X b/a w h i c h  is v e r y  smal l .  F o r  x 
v e r y  smal l ,  Yo ~- O(x) -v~a-j) ~ x -b/~a-~, 
w h i c h  b e c o m e s  v e r y  la rge  as  x ~ 0, and  
b l o w s  up  at  x = 0. F o r  y (x )  > yo(x),  G(x ,  y)  
> 0; for  y (x )  < yo(x),  G ( x ,  y) < 0. I f  Yi > 
yo(X~), an i n w a r d  i n t eg ra t i on  c a u s e s  y to de-  
c r e a s e  t h r o u g h  s o m e  yo(x) in to  the  reg ion  
y (x )  < yo(x),  w h e r e  y will i n c r e a s e  t o w a r d  
yo(x), w h i c h  is b l o w i n g  up.  I f  Yi < yO(Xi), y 
i n c r e a s e s  t o w a r d  yo(x),  as  in the  p r e v i o u s  
case .  S ince  all  i n t eg r a t i ons  l ead  to  la rge  val-  
ues  o f y  at  smal l  x,  c o n s i d e r  the  l imit  y >> 1, 
in w h i c h  c a s e  Eq.  (C8) is a p p r o x i m a t e l y  

dy 
X ~X  "~- Ooxby a -- y ,  

with  so lu t ions  

[ -- a ) xb+l ", ( y x )  I-a -~ C + Oo b + I - a 

b +  1 4 - a ,  

C -  ( a -  1)001nx,  b + 1 = a ,  

w h e r e  C is the  i n t eg ra t i on  c o n s t a n t .  I f  b + 1 
> a ,  t hen  y ~ Cl/(l-a)/x as x ~ 0, and  f---~ 
C ~/(l-a). I f  b + 1 < a ,  t hen  

y- ->  [Oo(a - 1)/(a - 1 - b)]-l/~a-1)x -b/~a-~), 

f---> (y  + 1)x = x 

+ [Oo(a - l ) / (a  - 1 - b)]-l/<a-I)xl-b/<a-l); 

s ince  b/(a - 1) < 1, y b l o w s  up ,  bu t  f - ->  0 as  
x--->O. I f b  + 1 = a ,  t h e n  

1 

Y --> x [ - ( a  - 1)00 In x] l/~a-1)' 

f---~ x + [ - ( a  - 1)00 In x]-J/~a-I); 

thus  y b l o w s  up  as  x ~ O, bu t  f---> O. In  
s u m m a r y ,  f - - >  0 for  all  i n w a r d  in t eg ra t ions  
w h e n  b + I -< a ,  and  f - ->  c o n s t a n t  for  b + 1 
> a.  In  all  c a s e s ,  y b l o w s  up  at  x = O; for  b 
+ 1 -< a ,  the  e n e r g y  g e n e r a t i o n  ra te  goes  as  

xby  a ~ x -bin-a), b + 1 < a,  

x - l (  - In X) -a/(a-l), b + 1 = a,  

w h i c h  b l o w s  up at  x = 0. T h e r e f o r e  no  
s t r i c t l y  p h y s i c a l  s o l u t i o n s  e x i s t  f o r  b > O, a 
> 1 .  

( i i)  b < O, a > 1. F o r  x v e r y  la rge ,  yo(x) -~ 
0 -~/~a-~) ~ x -b/ca ~), and  for  x v e r y  smal l ,  
yo(x) ~ O(x) -v~ ~ x-b/a; thus  yo(x) d e c r e a s e s  
f rom large  va lue s  at  large  x t o w a r d  ze ro  at  
smal l  x. F o r  y > yo(x),  G(x ,  y) > 0; for  y < 
yo(x),  G(x ,  y) < 0. I f  Yi > yO(Xi), t hen  y de-  
c r e a s e s  in an i n w a r d  in teg ra t ion  t o w a r d  
yo(x) ~ O. I f  yi <~ yo(Xi), then  y i n c r e a s e s  
t h r o u g h  y0 at  s o m e  x,  and  then  d e c r e a s e s  
t o w a r d  yo(x) ~ O. Since  y a l w a y s  t ends  to 
smal l  va lue s  as  x ~ 0, c o n s i d e r  the  l imit  
w h e r e  y ~ I : y (x )  c lea r ly  has  a spec ia l  solu-  
t ion o f  O(x) -j/a as  x ~ 0 s ince  y and  x d y / d x  
will van i sh  for  this  so lu t ion  at  x = 0. L e t t i ng  
y = O(x) -t/a + v ,  one  has  

dv  
X ~ x  x = - v  - (1 - b/a)O(x) -va  + avO(x)J/% 

w h i c h  has  the  so lu t i on  

v = Cv*(x )  - (1 - b / a ) f x  

[O(x) - l /a /v*(x)]dx ,  

v* =- x - l  exp[(a2/b)O(x)l/"].  

In a set  o f  m a n i p u l a t i o n s ,  tha t  wil l  not  be  
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s h o w n  here  (but see case  b (iii) following),  it 
can  be s h o w n  that  

1 
lim v = - (1 - b/a)O(x) -~/~ ---> 0, 
x~0 a 

i ndependen t  o f  the in tegrat ion cons tan t ,  
s ince v*(x) goes  to ze ro  more  rapidly  as x -l  
e x p [ -  cons t an t  xb/~]. In  s u m m a r y ,  all in- 
ward  in tegrat ions  f o r  b < O, a > 1 give  y --> 
0 a n d  f---> 0 as x ~ O, correspond ing  to 
phys ica l ,  " d e g e n e r a t e "  solut ions .  

(iii) a = 1, b 4= O. Equa t ion  (C8) is l inear 
in y and has  the exac t  solut ion 

Y = x e°°Xh/b e-O~rh/b 

Evalua t ing  C at xi whe re  y = yi,  one  has 

Y = Yi  e °~x~-x~) + -- e °°/b~xb-x'b) d x ' .  
x 

F o r  b > 0, the integral  t e rm is posi t ive  defi- 
nite, the re fore  y ~ cons tan t /x  as x --> 0 un- 
less the cons tan t  is ze ro ;  fo r  that  to happen ,  
yi must  be negat ive ,  which  is not  phys ica l ly  
a l lowed.  Thus,  f o r  b > O, the f l ux  f ---> con- 
s tan t  as x ---> O. F o r  b < 0, the first t e rm 
vanishes  for  x = 0; one  mus t  n o w  evaluate  
the integral  t e rm for  small x. L e t  u(x')  = 
exp Oo/b(x b - x'b), then 

l l i eu(x , )dx '  1 (,,,,,, x x ~,,,~ O°lx '"-b)  du(x ' ) ,  

where  u(x) = 1 and  u(xi) ~ 0 as x ---> 0. Thus  

l u(x,) d x, x-b 
x Oo 

b In U],-o~/b 
1 -0--~ / du. 

Since x -b ---> 0 for  x ~ 0 fas ter  than In u 
b lows  up for  u ---> 0, x -b In u --~ 0 for  all u E 
[0, 1 ] as x ---> 0, and  

1 x~ e °°/b(xb-x'b) d x '  -----> - - ,  
x - b  

Y x 0o 

f = (y  + 1)x---> xl-b/o o. 

Thus f o r  all b < O, y vanishes  a n d f v a n i s h e s  

at x = 0 in a family  o f  phys ica l ,  bu t  degen-  
erate  solut ions .  

(iv) 0 < a < 1, b > 0. This case  superfi- 
cially r esembles  case  a(iii) for  b = 0. Fo r  
sufficiently large values  o f  x,  O(x) = Oox b > 
00~ and G(x,  y)  has two  zeros ,  yz(x) and 
yl(x),  with yz(x) > yl(x); howeve r ,  O(x) de- 
c reases  with dec reas ing  x th rough  00~ at x¢, 
where  y2(x) = yl(x) ,  and to values less than 
00¢ for  x < x~, whe re  G(x,  y) has no zeros .  
F o r  y > y2(x) and y < yl(x)  when  x > Xc, and 
for  all y w h e n  x < x~, G(x,  y) < 0; fo r  y~(x) 
< y < yz(x) w h e n  x > x~, G(x,  y) > 0. Con-  
sider in tegrat ion paths  with xi > Xc: W h e n  yi 
> y2(xi), y increases  wi thou t  bound  for  an 
inward  integrat ion,  such  that  G(x,  y) ---> - y  
and y ---> C/x. F o r  yi < yz(i),  y tends  toward  
yl(x)  with dec reas ing  x; but  when  x is less 
than xc, yl (and yz) cease  to exist ,  and since 
G(x,  y)  < O, y again increases  wi thout  
b o u n d  with y ---> C/x. In  this case  all inward 
integrat ions lead to y ~ C/x and f---~ C as 
x ~ O, leading to unphys ica l  solut ions.  

(v) 0 < a < 1, b < 0. F o r  sufficiently large 
values  o f  x,  O(x) < 00~ and  G(x,  y) has no 
zeros ;  in fact ,  G(x,  y)  is negat ive  for  all x > 
x¢. At  x = xc, there  is one  value o f  y where  
G(x,  y) = 0, i .e. ,  O(x) = 00~. Fo r  x < x¢, G(x,  
y) has two  zeros ,  y2(x) and  y~(x), with yz(x) 
> y~(x). F o r y  > y 2 ( x ) o r y  < y~(x), G(x,  y) < 
0; for  Yl < y < y2, G(x,  y) > 0. As  x ap- 
p r o a c h e s  0, yz(x) -~ O(x) ira-a) ~ x b / ( l - a ) ,  

which  b lows up at x = 0; y~(x) ~- O(x) -1/" 
x -b/a, which  goes  to ze ro  at x = 0. The  value 
o f  Xc is given by  Eq.  (C7): 

Xc : " 

G(xc,  Ym) = 0 fo rym = a/(1 - a). The behav-  
ior o f  solut ions on  an inward  integrat ion is 
de t e rmined  by  the value  o f  y at xc; there-  
fore,  cons ide r  Yi at xi = x¢. F o r  yi <- Ym, Y 
will increase  t h rough  yl(x) ,  and then de- 
c rease  and  be  a t t rac ted  to yi(x)  as x ~ 0. 
The  behav io r  o f y  is m o r e  compl ica ted  for  Yi 
> Ym at X i = X c . G ( x c ,  y) is initially less than 
zero ,  but  it is poss ib le  for  y to  increase  
s lower  than y2(x) increases ,  m o v e  th rough  
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Y2 at  s o m e  x, and  d e c r e a s e  a s y m p t o t i c a l l y  
to  the  y l ( x )  so lu t ion .  In  o t h e r  c a s e s  y m a y  
i n c r e a s e ,  a b o v e  the  yz(x) l ine,  and  b l o w  up 
as  x ~ 0 wi th  s o m e  n e g a t i v e  p o w e r  o f x  less  
t han  o r  e q u a l  to b/(1 - a).  To e x p l o r e  this  
a s y m p t o t i c  b e h a v i o r ,  c o n s i d e r  y >> 1, w h e r e  
Eq.  (C8) has  the  a p p r o x i m a t e  so lu t ion  

( I - a  )Oox,,+, , ( y x )  I-"  = C + b + I - a 

b + I :/= a ,  

= C +  (I - a ) 0 0 1 n x ,  

b + i = a .  

I f  y has  the  va lue  YA >~ I at s o m e  XA "~ Xc,,, 
then  

( 1 - a  ) O o x ~ ,  <,. vx I - ,  b + 1 a C =. ( .  ) a  - -  

b +  1 4 : a ,  

= (yX)JA -" + (1 -- a)Oo In XA, 

b + l = a .  

F o r  b < - (1 - a) ,  x b+ 1 - a  b l o w s  up  wi th  x --> 

0. T h e  c o n s t a n t  (1 - a)/ (b  + l - a) is nega-  
t ive ,  so C > 0 and  

y i - a  = C x - ( I  a) ~- (1 - a) l (b  + 1 - a)Oo xb, 

which  will  a s y m p t o t i c a l l y  d e c r e a s e  as x --~ 
0. L e t  y =- - ( 1  - a)/ (b  + 1 - a ) ; t h e n y  = Y2 
~- (OoXb) ~1~-~) at  

(xlxA) h - ~ l - , , i -  Y + I 
y + (yly~)~A ,," 

O n c e  y has  d e c r e a s e d  to  va lue s  less  than  y2, 
it wil l  c o n t i n u e  d e c r e a s i n g  t o w a r d  y j (x ) .  F o r  
b + l = a ,  

( y x )  l -a  = (yx)la -~ 

+ (1 - a)Oo In(X/XA), 

w h e r e  c l ea r l y  the  l o g a r i t h m i c  t e rm  will 
c a u s e  y to  go t h r o u g h  y2 for  s o m e  va lue  o f  x; 
y then  d e c r e a s e s  t o w a r d  y~(x). 

F o r  b > - (1 - a) ,  x b+~-~ goes  to ze ro  as  
x---~ 0 and  the  c o n s t a n t  y - (a - 1)/(b + 1 - 
a) > 0, so C can  have  p o s i t i v e ,  nega t i ve ,  o r  
z e ro  va lues .  I f  C < 0, y will  pas s  t h rough  y2 
at  

t I x | tl 

( X / X A ) b + l  t,  - -  ")1 - -  tY/Y2)A , 

y - I  

- -  "V/ .1 <~ w h e r e  (y/y2)  1-" < y .  I f  C > 0, i .e . ,  t ,  Y2)A 
> y ,  then  y i n c r e a s e s  a w a y  f rom y2(x),  go- 
ing a s y m p t o t i c a l l y  as  y -~ Ct/~l-")/x as x --~ 0. 

( , ~ / . .  %1 - o  I f C = O , i . e . ,  :,Y21A = y ,  t h e n  

Y = T I I I '  mY~=I(- b + l - a l - a  )Ooxb] ' / " . '  

(C9) 

I t  is t h e r e f o r e  p o s s i b l e  to have  a p h y s i c a l l y  
un ique  so lu t i on  (C = 0), for  w h i c h  y b l o w s  
up as  x bin-')  and  f v a n i s h e s  as  x ~/~'. H o w -  
eve r ,  the  e n e r g y  g e n e r a t i o n  ra te ,  p r o p o r -  
t iona l  to yaxb, goes  as  x bm-a), which  b l o w s  
up  u n p h y s i c a l l y  as  x ~ 0. The  va lue  o f y i  at 
xc for  y ( C  = 0) is less  than  tha t  p r e d i c t e d  by  
the  a s y m p t o t i c  f o rm  in Eq.  (C9) due  to  
t e r m s  n e g l e c t e d  in i ts a p p r o x i m a t i o n .  Le t -  
t ing 

y =- yo(x)o~(x), 

w h e r e  y0(x) is the  so lu t ion  y in Eq.  (C9), Eq.  
(C8) b e c o m e s  

d o  
X ~ x  x = y q t o " -  t o ) -  y01(x). 

A s s u m e  that  to = ! + e w h e r e  lel ~ i ;  then  

de  
X ~ x  x = - y  q i  - a)e  - yl/l(x),  

wi th  so lu t ion  

l i  a ) / y  - -  X I I  ally f' YO IX I + ( i  r e l y  d x .  C x  E 

S i n c e e  = 0 a t x =  0, C = 0 ,  hence  

e = - l ( 1  - a) / y  - b / ( l  - a)] - iyo(x) ,  

= - [ 1  - a/y] I['YOoxb]-II(I-"), 

and  

y -~ yo(x) - (1 - a/y )  i 

were  I~(x<)l < i. 
(v i )  a = O, b 4: O. Eq. (C3) b e c o m e s  

dy 
X-~x = Oox h -  ( y  + 1) 

wi th  e x a c t  so lu t ion  
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C 1 
Y =-x  + ~ O ° x  b -  1, b :b - 1 ,  

provide a unique boundary value problem 
in the vicinity o f  the midplane. 

C 1 
- - + - 0 0 1 n x -  1, b = - 1 .  
x x 

F o r b  > O , y ~  C/x - 1 a s x ~  0, so all  
so lu t ions  wi th  p o s i t i v e  (phys ica l )  va lue s  o f  
y go  to  y = C/x (C > 0) a t  x ~ 0. Th is  is an  
e x t e n s i o n  o f  c a s e  b(iv)  a b o v e .  F o r  b < 0, 
b o t h  the  x -~ and  x b or  x -~ In x t e r m s  b l o w  up 
as  x ~ 0. I f  b -< - 1, the  x b or  x -~ In x t e rm  
d o m i n a t e s ,  s end ing  y to  n e g a t i v e  va lues  for  
s o m e  x > 0. T h e r e f o r e  t h e r e  a re  no physical 
solutions for  b <- - 1 .  F o r  - 1  < b < 0, the  
1/x t e r m  will  d o m i n a t e  as  x--> 0 un le s s  C = 0. 
I f  C < 0, y will  go  to  n e g a t i v e  va lue s  for  
s o m e  x > 0, w h i c h  is p h y s i c a l l y  d i s a l l o w e d ;  
if  C > 0, y will  go  as  C/x, b l o w i n g  up  wi th  
p o s i t i v e  v a l u e s  as  x - *  0, and  the  f l u x f  = (y  
+ 1)x --~ C,  i f  C -- 0, y b l o w s  up  as  x b, b u t f  
--> 0 a s x  b÷l. The  c a s e a  -- 0, b < 0 i s  an  
e x t e n s i o n  o f  c a s e  (v) a b o v e ,  e x c e p t  tha t  
yE(X) e x t e n d s  d o w n  to Ym = 0, and  the  yj(x) 
b r a n c h  (and  a s y m p t o t i c  so lu t ion)  no  longe r  
ex i s t s .  In  s u m m a r y ,  on ly  - 1 < b < 0 in this  
c a se  a l l ows  so lu t ions  wi th  f = 0 at  x = 0; 
h o w e v e r ,  the  e n e r g y  g e n e r a t i o n  ra te ,  p ro -  
p o r t i o n a l  to  x b, b l o w s  up at  x = 0, so  there 
are no strictly physical solutions. 

(c) Summary 

P h y s i c a l  so lu t i ons  a r e  t h o s e  wi th  mid-  
p l a n e  flux f ( 0 )  = 0 and midplane  supera-  
diabatic  t e m p e r a t u r e  gradient  y(0)  = 0 or  a 
finite p o s i t i v e  va lue .  

Phys i ca l  so lu t ions  do not  ex i s t  for b > 0 
and a -> 0; for b < 0 and a = 0, and for s o m e  
c a s e s  w i t h 0 < a _ <  l and - ( 1 -  a) < b -< 0. 

Phys ica l  so lu t ions  e x i s t  for a > 0 and b -< 
min  (0, a - 1) e x c l u d i n g  a = 1; b = 0; and 
for s o m e  c a s e s  wi th  0 < a -< 1 and - ( 1  - a) 
< b --- 0; h o w e v e r ,  on ly  the phys ica l  solu-  
t ions  wi th  b = 0 and 0 -< a < 1 are nonde-  
generate  in the s e n s e  that o n e  and on ly  one  
initial integrat ion point  in an inward inte- 
gration wil l  g ive  the va lue  y(0)  = Y2, a ther- 
m o d y n a m i c  cons tant .  I t  is there fore  the  so-  
lut ions  wi th  b = 0 a n d  0 <- a < 1 that  
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