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Numerical results from a new model of the primordial solar nebula are presented in which 
convection is assumed to be the sole source of turbulence that causes the nebula to evolve. We 
introduce a new model of convective turbulence (described in detail in Paper I of this series) and 
new grain opacities computed from an improved physical model. The nebula is assumed to be in a 
stage prior to planetesimal formation in which gas and dust grains are mixed homogeneously, but in 
a stage after significant infall of matter from the outer cloud. Vertical structures for a thin nebular 
disk are calculated for different radii and accretion rates assuming vertical hydrostatic and thermal 
equilibrium; radial sequences of vertical solutions are constructed for constant accretion rates to 
represent quasistatic disk structures. Some aspects of our results differ markedly from those done 
previously by Lin and co-workers. Our values for the turbulent efficiency c~ (10 -2 to 10 -4) are much 
lower and much more sensitive to opacity and surface density. Our low values of c~ result in (1) 
small turbulent speeds (-< 1% of sound speed), which will alter prior computations of grain coagula- 
tion and sedimentation rates; (2) a more massive disk (>0.1Mo) that becomes gravitationally 
unstable at outer (super-Uranian) orbits; (3) a lower "best value" of the accretion rate ( -10  ~s.5 g 
sec-0; and (4) a longer characteristic dispersal time for the disk (>2 × 106 years), which may 
greatly exceed that inferred from young stellar objects. The high sensitivity of a on surface density 
produces an inverse accretion rate-surface density relationship, which implies that the Lightman- 
Eardley diffusive instability develops throughout a steady disk structure in the radial direction, 
causing the disk, at least at the onset, to separate into rings. Because radial gradients are neglected 
in the base disk structure, the manner in which the instability evolves to finite amplitude is un- 
known, but it could prevent the disk from reaching a quasistatic structure altogether. We conclude 
that convection may not be the dominant source of turbulence needed to evolve young solar/stellar 
nebulae, and may in fact be a disruptive mechanism in disk structure. © 1987 Academic Press. Inc. 

I. INTRODUCTION 

The inner disklike region of the primor- 
dial solar nebula has been modeled and 
studied with respect to protoplanetary for- 
mation by Lin and co-workers (Lin and Pa- 
paloizou, 1980; Lin, 1981; Lin and Bo- 
denheimer, 1982; referred to hereafter as 
LPB) using simplifying assumptions from 
thin accretion disk theory (cf. Pringle, 1981) 
and assuming that the disk is viscously cou- 
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pied by turbulence driven solely by thermal 
convection. LPB used a modified form of 
stellar mixing length theory (MLT) to esti- 
mate convective heat transport, mean 
speeds of convective motions, and turbu- 
lent (Reynolds) stresses. The nebular mate- 
rial was assumed to be a homogeneous mix- 
ture of gas and dust grains, with the latter 
providing virtually all of the material's 
opacity. LPB used grain opacity relations 
published by DeCampli and Cameron 
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(1979). LPB were able with their method to 
construct quasistatic (constant accretion 
rate) models of thin disks (loosely con- 
strained by the distribution of present plan- 
etary debris) which are stable against radial 
disturbances. 

Cabot et al. (1987; hereafter Paper I) re- 
examine this problem in light of a new 
model for large-scale turbulence proposed 
by Canuto et al. (1984) and Canuto and 
Goldman (1985; hereafter CG), which al- 
lows them to include the effects of rotation 
on convective motions. In Paper I the theo- 
retical development of the thin-disk struc- 
ture equations for the solar nebula with 
CG's method is presented and compared 
extensively with that of LPB. In this paper 
we present the numerical results from that 
work, also using the new grain opacities by 
Pollack et al. (1986). We compare these 
results with those of LPB and with still un- 
certain observational constraints. In partic- 
ular, we speculate on the apparently unsta- 
ble nature of our new models. In Section II 
the vertical structure equations for the nu- 
merical analysis are presented. In Section 
III we discuss the new Pollack grain opaci- 
ties. In Section IV the numerical results are 
presented and analyzed with respect to 
constraints similar to those imposed by 
LPB. In Section V we analyze the stability 
of our numerical models, especially with re- 
gard to the radial viscous (Lightman- 
Eardley) instability and gravitational 
(Jean's) instability. In Section VI we inves- 
tigate possible consequences of the gravita- 
tional instability on the disk structure. Fi- 
nally, the implications of our models 
toward the archetypical LPB models and 
toward the nature of young stellar systems 
are examined in Sections VII and VIII. 

11. THE L O C A L  VERTICAL STRUCTURE OF 
THE DISK 

(a) The Local  Vertical Structure 
Equations o f  a Thin Disk 

We employ the standard vertical struc- 
ture equation for a stationary, quasi-Keple- 
rian thin disk in which self-gravity is negli- 

gible (Pringle, 1981).  The thin-disk 
approximation is valid when 

z/R ~ 1, (1) 

for all heights above midplane (z = 0) at 
cylindrical radius R. The self-gravity of the 
disk material is considered negligible when 
the vertical gravitational force due to the 
central object GMz/R 3 is much greater than 
that due to the disk material (roughly 
2rrGpz), i.e., 

G M  
R---- T- >> 2~rGp, (2) 

where M is the mass of the central object, 
and p is the density of the disk material. We 
test conditions (1) and (2) a posteriori. We 
limit our considerations to models that are 
optically thick (with the provisions dis- 
cussed in Sect. IVc), since we do not ex- 
pect an optically thin disk to be capable of 
sustaining a superadiabatic temperature 
gradient. 

In the thin-disk approximation, the verti- 
cal structure at a selected radius is com- 
puted neglecting radial derivatives of ther- 
modynamic variables. All thermodynamic 
quantities that appear in the vertical struc- 
ture equations in this section represent 
mean ambient values in the presence of 
convection. 

The vertical 
dition is given 

hydrostatic equilibrium con- 
by 

dp 
-~Z = --Pg' (3) 

where p is the total pressure and g is the 
local effective gravity 

g = ~2z, (4) 

with the rotation rate fZ given by 

G M  
~-~2-  R 3"  (5) 

The presence of turbulence will modify 
the vertical structure (Eq. (3)) through the 
presence of a turbulent pressure, Pt = PVt 2, 
where vt is the turbulent velocity; Pt should 
be added to the gas pressure p on the left- 



CONVECTION IN THE NEBULA: II. RESULTS 425 

hand side of Eq. (3). Using the model of 
turbulence as described in Section IV in Pa- 
per I, we have computed the value of v 2 and 
found a posteriori that pt is less than 0.1% 
of the gas pressure p in all relevant cases. 
We have therefore neglected the turbulent 
component of the pressure in order to sim- 
plify the computation, although it can in 
principle be included (see Sect. IV in Paper 
I). 

The energy equation is 
and (2) (Sect. II in Paper 

given by Eqs. (1) 
I): 

d F  ( dO] 2 9 
~zz = p(vt) R d R /  = 4P(Vt)l)2' (6) 

where (1,'t) is the constant density-averaged 
coefficient of turbulent viscosity. The total 
flux, 

F = Fr + Fc, (7) 

is composed of the radiative flux Fr, which 
is given in optically thick media by the radi- 
ative diffusion equation, 

4 a c t  3 d T  d T  
Fr - 3Or dz - CppX--~z, (8) 

and of the convective flux Fc, evaluated in 
Section III in Paper I. In Eq. (8), T is the 
temperature, r the Rosseland mean opac- 
ity, Cp the specific heat at constant pres- 
sure, X the coefficient of radiative conduc- 
tivity, a the radiation constant, and c the 
speed of light. 

(b) Equa t ion  o f  S ta te  and  Specif ic  H e a t  

The equation of state is assumed to be a 
perfect gas with radiation pressure (see Cox 
and Giuli, 1968; Clayton, 1968). The total 
pressure (neglecting turbulent pressure) is 
given by 

p = R g p T  + ~aT 4 ~ R--goT~fig, (9) 

where fig is the ratio of gas pressure (RgpT) 
to total pressure (p). The effective gas con- 
stant Rg is given by Rg = NAk/-ff, where NA 
is Avogadro's number, k is Boltzmann's 
constant, and ~- i s  the mean molecular 
weight. 

The nondimensional adiabatic tempera- 
ture gradient (Vad) is given in terms of the 
specific heat at constant pressure by 

~7ad = (1/flg)(4/flg -- 3)Rg/cp. (10) 

We assume that the nebula has the solar 
composition (X = 0.73, Y = 0.25) given by 
Allen (1973). In order to compute ~-and cp, 
we further assume that all of the hydrogen 
is molecular (H2) and in its electronic 
ground state, and that the helium and 
metals are atomic and electronically neu- 
tral. At the low temperatures encountered 
in our models, H2 does not dissociate ap- 
preciably, and so we take ~-as a constant 
equaling 2.34. 

The specific heat of H2 has a strong tem- 
perature dependence for T < 300°K due to 
rotational-vibrational transitions. There 
may also be departures from thermal equi- 
librium between ortho and para  modifica- 
tions (cf. Herzberg, 1950; Osterbrock, 
1962; DeCampli et al.,  1978). The conver- 
sion rate between ortho (parallel nuclear 
spins) and para  (antiparallel nuclear spins) 
modifications is forbidden, and therefore 
very slow, unless catalysts (such as grains) 
are present in sufficient quantity to speed 
the conversion. The relative population of 
the modifications in the solar nebula de- 
pends on the rather uncertain thermal his- 
tory of the material and the amount of catal- 
ysis that occurred. 

We concern ourselves with three possi- 
ble mixtures of para  and ortho modifica- 
tions in H2. At STP the normal mixture is 
3 : 1 ortho to para ,  corresponding to ther- 
mal equilibrium between modifications. 
The 3 : 1 ratio of ortho to para  for general 
thermodynamic conditions is known as the 
"statistical mixture." An H2 gas may be 
frozen in the statistical mixture at low tem- 
peratures and densities by the very slow 
conversion rates, even though the ortho 
and para  modifications are not in thermal 
equilibrium. Given sufficient time the ortho 
modification will become almost com- 
pletely depopulated at low temperatures, 
resulting in almost pure para  H2; upon re- 
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heating, the para  modification may remain 
dominant for slow conversion rates. If ca- 
talysis occurs in an amount sufficient to 
produce almost free conversion between 
modifications, thermal equilibrium would 
occur between modifications at all tempera- 
tures and densities, giving an "equilibrium 
mixture." Because we are uncertain about 
the conversion rates between modifications 
in the solar nebula, we compute models 
with specific heats corresponding to all 
three mixtures (statistical mixture, equilib- 
rium mixture, and pure para modification) 
at low temperatures where they differ 
greatly. 

The temperature range where rotational- 
vibrational transitions and the p a r a - o r t h o  
modifications are important is coinciden- 
tally where the opacities from water-ice 
grains are important. For low-temperature 
models with midplane convection driven by 
water-ice opacities, we compute cp for H2 in 
its electronic ground state from the molecu- 
lar constants given in Herzberg (1950) and 
Allen (1973) for the three p a r a - o r t h o  mix- 
tures of interest. In the statistical mixture Cp 
rises smoothly from 2.5 (in units of Rg) at T 
-< 50°K to about 3.1 at T = 150°K and levels 
off to 3.5 at T = 300°K. In the equilibrium 
mixture Cp rises rapidly from 2.5 at T --- 
15OK to a peak value of about 4.8 near 
50°K, drops rapidly to about 3.2 at 140°K, 
and rises slowly toward 3.5, asymptotically 
merging with values of the statistical mix- 
ture. In the para  modification cp rises rap- 
idly from 2.5 for T -< 40°K to a peak of 4.0 
at about 170°K and falls to 3.6 at 300°K. All 
mixtures give virtually the same specific 
heat for T >- 300°K. For T > 700°K, Cp rises 
slowly from about 3.5 to 3.8 at T = 1400°K 
(cf. Fig. 1 in DeCampli et al. ,  1978). In all 
models, we assume for simplicity that the 
helium and metals have 3 degrees of ther- 
modynamic freedom such that their specific 
heats are a constant 2.5. In reality, phase 
transitions of the grain material will cause 
variations in the specific heats of the 
metals. However, we suspect that this vari- 
ation will be small in the aggregate Cp since 

the grains/metals represent only about 2% 
of the solar composition by mass. 

The radiation pressure is much smaller 
than the gas pressure in all models com- 
puted, so that fig = 1 in Eq. (10). At very 
low temperatures Cp ~ 2.5Rg and ~Tad ~ 0.40. 
For high temperatures, with c p ( n 2 )  --- 3.5Rg, 
the solar composition gives Cp = 3.35Rg and 
~7ad ~" 0 . 3 0 .  

(c) Opt ica l  Sur face  B o u n d a r y  Condi t ions  

The numerical integrator begins at height 
z = H and a temperature equal to the effec- 
tive temperature Te defined in terms of the 
surface flux F(H), 

ac T4 _ F(H), (11) 
4 

at an optical depth r of §. The density and 
pressure near the optical surface decrease 
with increasing z roughly as 

exp(-  z2/2hZ), (12) 

where h is the isothermal pressure scale 
height, 

h 2 = RgT/~'~ 2. (13) 

Therefore the atmosphere is assumed to be 
confined for the most part to a narrow spa- 
tial region in which the gravity g can be 
assumed to be almost constant. The gray 
atmosphere boundary condition is given 
from hydrostatic equilibrium by 

p(r)  = g K-ld~ " (14) 

evaluated at r = -~. The integration over the 
inverse opacity is accomplished by assum- 
ing a standard gray atmosphere tempera- 
ture distribution: 

T 4 = T4(3~'/4 + ½). (15) 

The opacity depends almost solely on tem- 
perature, depending only on density (or 
pressure) to the extent of determining con- 
densation boundaries of the various types 
of grains (Sects. IV and V). 

Integrating from ~- = -~ precludes the com- 
putation of optically thin models (r ~< 1); 
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the use of the diffusion approximation for 
the flux (Eq. (8)) is inappropriate anyway 
for ~" ~< 10. More accurate atmosphere 
equations for thin slabs are required for the 
modeling of such optically thin disks. 

(d) Midplane Boundary Conditions 

At z = 0, one physically requires that the 
radiation and convection components of 
the flux vanish. Concomitant with this is 
the requirement that the temperature, den- 
sity, and other thermodynamic quantities 
reach asymptotically constant values, i.e., 
their first derivative in z vanishes at z = 0. 
Furthermore, the energy generation rate, 
equivalently the turbulent viscosity, should 
be physically well behaved at midplane. 

(e) Convective Fluxes and Viscosities 
Tables 

The dimensionless function, ~ = Xt/X, 
representing the convective flux and the 
function, vt/X, representing the turbulent 
viscosity are read from Tables I and II in 
Paper I in log Ro and log S using a bicubic 
spline interpolation, This expedites the nu- 
merical computations in avoiding computa- 
tion of the spectral function E(k) and the 
sum of the growth rates n(k) for each con- 
vective zone. At the edge of the convective 
regions and near midplane, the convective 
buoyancy is small enough that values of Ro 
and S are encountered that are off the ta- 
bles, typically when • < 10 -7. In this case, 
the flux is taken as zero and the values of vt/ 
X are estimated from an asymptotic analyti- 
cal expression for the growth rates in rela- 
tion (1 I) (Sect. III in Paper I). 

Unlike the MLT, we have no explicit an- 
alytical expression to compute the true am- 
bient temperature gradient consistently in 
the presence of a convective flux. There- 
fore, the radiative and convective compo- 
nents of the flux are iterated numerically to 
a consistent solution at each zone, for 
which the "radiative" temperature gradient 
from the total flux and the adiabatic temper- 
ature gradient from thermodynamic condi- 
tions are known. 

( f )  Grain Opacity Functions 

The opacity (discussed in detail in Sect. 
III) has no density dependence in the range 
of densities and temperatures that we en- 
counter in the solar nebula models, other 
than delineating condensation boundaries 
in temperature. In nature, the width in tem- 
perature of condensation boundaries is nar- 
row but finite. However,  the grid spacing of 
the opacity tables by Pollack et al. (1986) is 
too coarse to resolve the precise width and 
shape of the rapid declines in opacity at 
evaporation boundaries. In order to sim- 
plify the numerical procedure and avoid 
spurious results that can arise from two- 
dimensional interpolations, we assume that 
the transition in opacity across a condensa- 
tion boundary is abrupt. The opacity is 
computed as several one-dimensional func- 
tions of temperature only fitted with a La- 
grangian third-order polynomial interpola- 
tion; the appropriate function is determined 
by the species of grains present at the par- 
ticular density and temperature, which is 
encoded separately. 

Finite-step numerical integrations some- 
times oscillate on the discontinuous con- 
densation boundary, especially, we find, 
near the optical surface. When this problem 
is encountered, we introduce a finite transi- 
tion region in the condensation boundary 
with a width of 1% of the grid spacing in 
temperature. This allows the numerical in- 
tegration to proceed smoothly. We have 
also performed some numerical integra- 
tions with linear interpolations in the Pol- 
lack opacity grid across condensation 
boundaries, in which the opacity declines 
100 times slower than in the previous 
scheme. We find no qualitative difference, 
other than allowing convection driven by 
opacity peaks to extend to temperatures a 
few degrees higher, since the decline in 
opacity is still quite steep. 

(g) Numerical Procedure 

The structure Eqs. (3), (6), and (8) were 
integrated with a fifth-order Runge-Kutta 
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predictor-corrector integrator. The inde- 
pendent variable is the vertical coordinate 
z. The stepsize in z is varied accordingly to 
the predicted accuracy of the solutions. 
This automatically aligns the vertical zones 
with rapidly varying or discontinuous phys- 
ical features, such as opacity edges and ra- 
diative-convective boundaries. 

The vertical integrations are performed 
for an annulus at a given radius R and effec- 
tive temperature Te. A trial height H0 is 
chosen to be the height of the optical sur- 
face at an optical depth ~" of ~. The structure 
equations are integrated inward toward 
midplane, z = 0, with a trial value for the 
constant, averaged turbulent viscosity, u*, 
in the energy equation (6). The integration 
proceeds to z = 10 -5 H0, where physical 
quantities are linearly extrapolated to z = 0, 
in order to limit the number of vertical 
zones. If v* is too large, then the flux be- 
comes negative for some positive value of 
z, at which point the integration is stopped 
and v* is decreased; if the chosen initial v* 
is too small, then the flux has a positive 
residual value at z = 0, and v* is increased. 
The value of v* consistent with H0 is 
trapped and adjusted iteratively until the re- 
sidual flux vanishes to sufficient accuracy. 
Once v*(Ho) satisfies F(0) = 0, v* is com- 
pared with the density-averaged value of 
(ut) (see Sect. VI in Paper I) a posteriori 
from the local thermodynamic structure. If 
(ut) < u*, then H0 is decreased; if (u)t >> u*, 
then H0 is increased and the u* satisfying 
F(0) = 0 is again sought. The values of H0 
are iterated until 

(lit) ~--- l-'t*. (16) 

The vertical scale, d, that appears in Eq. (6) 
(Sect. III in Paper I) is chosen as constant 
throughout a convective region and equal 
to the vertical size of the convective region. 
(This is in fact the very definition under 
which the local growth rates are derived 
from the linear analysis.) When convection 
reaches midplane, d is chosen as the to- 
tal vertical extent of the convective region 
above and below midplane; in this case, 

d is determined simply by height at which 
midplane convection sets in during the in- 
ward integration. When a convective layer 
does not extend to midplane, its extent is 
determined a posteriori and adjusted itera- 
tively in subsequent integrations. The aver- 
aging process over the turbulent viscosity is 
not carried out for convective layers that do 
not extend to midplane; rather, the local 
value of ut is employed in the energy equa- 
tion, since it is only the midplane solution 
that runs afoul mathematically with locally 
computed ut. 

III. T H E  MODEL FOR THE GRAIN OPACITY 

In order to evaluate radiative heating 
rates and radiative equilibrium temperature 
gradients, we have used the standard "dif- 
fusion" approximation to the equation of 
radiative transfer (Clayton, 1968). Within 
the context of this approximation, the key 
measure of the radiative opacity of the so- 
lar nebula is the Rosseland mean opacity, a 
wavelength weighted mean of the inverse of 
the monochromatic opacity and the temper- 
ature derivative of the monochromatic 
Planck function. Since at the temperatures 
of interest (<1500°K) small grains are the 
dominant source of opacity, we neglected 
the very small contribution due to gases. 
Values for the Rosseland mean opacity, K, 
of the dust grains were obtained from the 
calculations of Pollack et al. (1986). Pio- 
neering calculations of K for a variety of 
grain species were made by Knacke (1968), 
Kellman and Gaustad (1969), and Cameron 
and Pine (1973). The new calculations of 
Pollack et al. (1986) represent a significant 
improvement over the earlier calculations 
by considering a more complete ensemble 
of grain species, by using better sets of opti- 
cal constants, by using optical constants 
over a more complete range of wave- 
lengths, and by averaging the opacity of 
various grain species on a monochromatic 
level. 

Some recent models of the solar nebula 
(e.g., Lin and Papaloizou, 1980) have em- 
ployed values of K given by DeCampli and 
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Cameron (1979). At low temperatures 
(~<200°K), these values were based on the 
early, unpublished results of Pollack et  al. 
(1986), while at higher temperatures, they 
were derived in an independent, approxi- 
mate fashion. The new results of Pollack et  
al. (1986) differ significantly from the latter 
values of DeCampli and Cameron both with 
respect to their absolute values and their 
dependence on temperature. In particular, 
K is found by Pollack et  al. (1986) to have 
only very weak dependence on temperature 
above the sublimation temperature for wa- 
ter ice, a result that has important implica- 
tions for the extent of the thermal convec- 
tive zone in the solar nebula. Pollack et  al. 
(1986) also explored the dependence of K on 
the particle size distribution for a very large 
range of sizes. Their procedure for deter- 
mining K is briefly summarized below. 

Since grains scatter as well as absorb 
thermal radiation, one cannot use the tradi- 
tional formula for the Rosseland mean 
opacity (e.g., Clayton, 1968). This formula 
is valid only for isotropic scattering or scat- 
tering involving phase functions that can be 
expanded in even  functions of Legendre 
polynomials (e.g., Rayleigh scattering). 
However, grains having a size comparable 
to or greater than a wavelength have promi- 
nent asymmetrical phase functions. Pollack 
et al. (1986) derived a more general form for 
K that allows for asymmetrical phase func- 
tions. 

In order to evaluate K, the composition of 
the dust grains, the optical constants of 
each of their components, and their size 
distribution need to be specified. The com- 
position of the dust grains was derived 
chiefly from the thermodynamic equilib- 
rium calculations of Lewis (1974) for a neb- 
ula having solar elemental abundance (Ca- 
meron, 1973). Lewis's results were used to 
specify the temperature stability bound- 
aries of the key condensates as a function 
of the gas density of the nebula. Prime con- 
densates included metallic iron, silicates, 
and water. The silicates were subdivided 
into a high-temperature form and a low- 

temperature form (the latter have water of 
hydration), and these forms were further di- 
vided into components with and without 
iron. In addition to the above thermody- 
namic equilibrium components, a small 
amount of magnetite was included in the 
grain assembly since it is a common compo- 
nent of some meteorites and is suspected to 
be present in interstellar grains. The values 
of K are not strongly influenced by the pres- 
ence of magnetite. 

For each component of the grain assem- 
bly, optical constants were derived from a 
host of laboratory measurements that cov- 
ered the very broad spectral domain from 
the near ultraviolet to the microwave. Such 
a broad spectral coverage is needed in or- 
der to properly evaluate the wavelength in- 
tegral equation for K at the temperatures of 
interest. 

Mie scattering theory was used to evalu- 
ate the monochromatic absorption and 
scattering coefficients for each component 
of the grain ensemble. These results were 
approximately combined and then  inte- 
grated over wavelength. These calculations 
were made over a wide range of tempera- 
tures (10-2500°K) and gas densities (10 -14- 
1 g cm-3). Separate calculations were per- 
formed for a wide variety of particle size 
distributions. In each case, the same size 
distribution was used for all the compo- 
nents of the grain ensemble. 

Figure 1 illustrates the temperature de- 
pendence of K at a nebula density of 10 -8 g 
cm -3 for a "nominal" size distribution 
(solid curve) and for ones in which the nom- 
inal distribution has been uniformly shifted 
in size by factors of 0. I and 10. The nominal 
size distribution was derived from that 
characterizing interstellar dust grains 
(Mathis et  al . ,  1977). The number of grains 
of radius r varies as r -3-5 for r between 0.005 
and 1/xm, with a constant value for r of less 
than 0.005/zm and a strong decrease with 
increasing r for r greater than 1/zm (Pollack 
et  al . ,  1986, Eq. (6)). 

The abrupt decreases in K in Fig. 1 are 
due to the evaporation of grain species at 
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FIG. 1. The Rosse land  mean  extinction coefficients 
for a nominal  size distr ibution as a funct ion of  temper-  
a ture  for a densi ty  of  10 -8 g c m  3. For  compar ison,  
curves  with uni form scaling in particle radius,  a factor 
o f  10 larger and  100 t imes smaller,  are included. 

temperatures  outside their stability fields. 
For  example,  the sharp decline of K with 
increasing temperature  near 175°K is due to 
the sublimation of  water  ice. 

As illustrated in Fig. 1, K does not depend 
sensitively on the exact  choice of the size 
distribution function, which is fortunate 
since this function cannot  be specified in 
any precise manner  for  the primordial solar 
nebula. The values of  K for the "nomina l "  
size distributions were used in all the calcu- 
lations of  this paper. Thus,  they are most 
pertinent to an early stage in the evolution 
of the primordial solar nebula, a stage in 

which most grains had not yet  accreted to- 
gether to form much larger particles (r > 30 
/zm). When r becomes sufficiently large, K 
has a much flatter dependence on 
wavenumber  k and it becomes progres- 
sively smaller in magnitude with increasing 
F. 

The temperature  dependence  of  K is one 
important  factor  in determining the extent  
of  the convect ively  unstable regions of the 
nebula. In particular, if we assume K - T~, 
where T is temperature  and ~ a constant,  
the radiative equilibrium temperature  gradi- 
ent is more likely to be convect ively unsta- 
ble when ~ >> 0 (Lin, 1981). The function 
-- 0 In K/a In T for the opacities of  Pollack et 
al. (1986) are shown in Fig. 2. According to 
Figs. 1 and 2, extensive altitude regions of  
thermal convect ion are most easily 
achieved at temperatures  where water  ice is 
present  (T < 175°K). 

IV. R E S U L T S  OF T H E  P R E S E N T  WORK:  NO 
S E L F - G R A V I T Y  

(a) Types o f  Solutions 

We discuss initially the types of  convec- 
tive zones encountered in the numerical in- 
tegrations and from which of these consis- 
tent solutions can be obtained. In order  to 
obtain a consistent solution, the convection 
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zone(s) must produce a sufficient amount of 
energy deposition via Eq. (6) (Sect. II) to 
balance the given amount of surface flux. 
This requires that the ambient temperature 
gradient be superadiabatic over a thick 
enough vertical extent. From the diffusion 
equation (8) (Sect. II), the dimensionless 
temperature gradient is 

d In T pFr(z) 3KpFr(z) 
~7 = d ln------p gcpp2xT 4acT41~2 z.  (17) 

Thus the vertical extent of the convection 
zone(s) is (are) mediated to a large degree 
by the run of opacities from T = Te at the 
optical surface to T = T~ at midplane. The 
range of temperatures depends in turn on 
the opacities and thickness of the disk 
through the optical depth to midplane, 

f:' r~ = rodz = 3 z + rpdz, (18) 

since T~ ~ r~/4T~ in pure radiative equilib- 
rium. 

The presence of convection throughout a 
sizeable vertical extent depends not only on 
the size of the opacity but also on its shape 
as a function of temperature. Lin and Papa- 
loizou (1980) have shown that opacities 
with large positive slopes in temperature fa- 
cilitate the outbreak of convection. They 
showed that, for any form of the energy 
generation rate, V --- 1/(4 - ~:), where K = 
r0/v. Since V > Vad is required for convec- 
tion, the condition 1/(4 - ~:) --- Vad ensures 
the occurrence of convection. For Vad = 
0.30 (appropriate for high temperatures), 
this condition gives ~: -> ~; and for ~7~d = 
0.40 (appropriate for the lowest tempera- 
tures), it gives ~: --_ ~. (Note that this is not a 
strict criterion for the presence of convec- 
tion, since 1/(4 - ~:) is only a lower limit for 
V.) The DeCampli-Cameron grain opaci- 
ties have ~: = 2 for nearly all temperatures, 
and so are ensured of producing wide- 
spread convection. 

The grain opacities by Pollack et al. 
(1986) have three peaks associated with the 
evaporation/condensation of different kinds 
of grains (see Fig. 1). We find that each 

opacity peak is capable of sustaining su- 
peradiabatic temperature gradients and 
convection zones of varying thicknesses in 
the vertical structures. This result is also 
consistent with the aforementioned analy- 
sis by Lin and Papaloizou (1980). In Fig. 2, 
we show the power dependence of the 
opacity on temperature (~: = d In K/d In T) 
for the Pollack grain opacities. Except for 
the low-temperature end, with opacities 
due primarily to water-ice grains, the val- 
ues of ~: tend to be well below 2. However, 
the values of ~ are large enough to satisfy 
Lin and Papaloizou's (1980) relation at least 
marginally, except for the depressed region 
around T = 400°K. In practice we find that 
~' somewhat exceeds 1/(4 - ~:) and that 
convection can be driven at most tempera- 
tures with the Pollack opacities. For the 
higher temperature models, where ~ -< 1, 
the convection for the Pollack opacities is 
much less efficient (and thus requires 
thicker disks) than that for the DeCampli- 
Cameron opacities. 

We find that consistent models can be 
constructed only when a large midplane 
convective zone occurs. Consider an opac- 
ity that increases with increasing tempera- 
ture, rises to a peak value at T = TK, and 
falls precipitously to a low value for T just 
greater than TK. The inward integration be- 
gins at the optical surface, z = H, with T < 
TK. Convection breaks out in the interior 
and, if H (i.e., ~'c) is not too large, Tc < T~, 
such that convection extends all the way to 
midplane. For such situations with mid- 
plane convection, increasing H causes the 
size of the convection zone, and thus the 
total energy deposition by turbulence, to in- 
crease. A consistent model with midplane 
convection is found if there exists a value of 
H such that Tc --< TK and the turbulent en- 
ergy deposition balances the surface flux. 
However, if we increase the value of 
Te(<TD, we eventually find a point where 
the value of H corresponding to Tc = T~ is 
still too thin to account for all of the surface 
flux. Increasing H to the point that T~ > T~ 
causes the opacity and the temperature gra- 
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dient to plummet and the model to become 
radiative near midplane.l We are unable to 
force the convective layer to produce more 
energy by increasing H further. Increasing 
H causes the bottom boundary of the con- 
vective layer to rise away from midplane 
faster than the top boundary, such that the 
convective layer becomes thinner overall. 
Raising the convective layer closer to the 
optical surface causes the superadiabatic 
temperature gradient and the convective ef- 
ficiency to decrease. These effects all cause 
the total amount of energy deposition in the 
convective layer to decrease when H is in- 
creased. We are therefore unable to find 
consistent models with one or more con- 
vective layers and a radiative midplane in 
our model. It is, however, possible to find 
consistent solutions with one or more con- 
vective layers provided that a substantial 
region of midplane convection can be 
driven by a rise in opacities at much higher 
temperatures. 

We find it convenient to classify the 
types of consistent solutions by the primary 
source of opacity driving the midplane con- 
vection. The exact temperature of the opac- 
ity peaks (TK) depends on the density. 

(1) "h 'e  models":  T, <- T~" -~ 125 to 
175°K. Convection only occurs at midplane 
and is driven by the low-temperature opac- 
ity peak due primarily to water-ice grains. 

(2) "Silicate mode ls" :  Tc <- ~ i  .~ 325 to 
375°K. Midplane convection is driven by 
the opacity peak due primarily to moderate- 
temperature silicate grains. These solutions 
typically have a second, elevated convec- 
tive layer due to water-ice opacities. In 
some models, though, the water-ice opacity 
peak lies so near the optical surface that no 
convective layer is formed. 

Because  there is a residual flux remaining as one 
approaches  z = 0, the tempera ture  gradient  mus t  even-  
tually become  superadiabat ic  again, causing a very 
thin, " f o r c e d "  convect ive  region near  z = 0. How- 
ever,  this thin,  unphys ica l  convect ive  region typically 
provides  a negligible amoun t  of  turbulent  energy depo- 
sition, and so it can  be safely ignored for the  purpose 
of  this d iscuss ion.  

(3) "Iron models":  T, <_ T~ "e ~- 1200 to 
1400°K. Midplane convection is driven by 
opacities from high-temperature silicate 
grains and iron grains. These solutions may 
feature no additional convective layers, one 
additional convective layer due to the mod- 
erate-temperature silicate opacity peak, or 
even two additional separated convective 
layers due to moderate-temperature silicate 
and water-ice opacity peaks; the appear- 
ance of convective layers depends on how 
close to the optical surface the opacity 
peaks occur. 

(b) The Local  Vertical Structure 

The local vertical structure is shown in 
Figs. 3a-3j for a representative solution 
with a midplane convective zone and a con- 
vective layer. The opacity in the convective 
layers is due primarily to water-ice grains 
while the convection at midplane is due pri- 
marily to moderate-temperature silicates. 
The specific heat is computed with the 3 : 1 
ortho to para mixture of H2, which is re- 
flected in the height dependence of Vad in 
Fig. 3b. The averaging process of vt is 
shown in Fig. 3d, in which we plot the lo- 
cally calculated value of vt with its surface 
density average; it is the density average 
that is actually used to compute the local 
vertical thermodynamic structure (see Sect. 
VI in Paper I). We have computed the local 
values of the turbulent velocity (vt) from the 
thermodynamic structure and plotted them 
in Fig. 3i with their average value. The av- 
erage vt in this example is about 1% o f  the 
average sound speed. Note that the local 
values of 1-'t and vt are peaked strongly in the 
outer region of the convection zone and de- 
crease rapidly toward midplane, vanishing 
a tz  = 0. 

In most models the midplane convection 
comprises a majority of the vertical struc- 
ture in terms of height and mass. This prop- 
erty can be quantified in terms of the "frac- 
tional extent of the midplane convection," 
defined as the ratio of the vertical extent of 
the midplane convection zone (2Zc) to the 
distance between optical surfaces (2H), and 
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the "fractional mass of the midplane con- 
vection," defined as the ratio of surface 
density in the midplane convection zone, 

"Zc = f~= pdz, (19) 
Zc 

to the total surface density, 

X = f~_= odz. (20) 

For models in which the opacity at mid- 
plane is near an opacity peak (To ~- TK), the 
fractional mass of the midplane convection 
is 0.85-0.95; the fractional extent of mid- 
plane convection here is about 0.85 in ice 
models, 0.80 in silicate models, and 0.75 in 
iron models. These fractions decrease as 
one moves down the opacity peaks with 
lower temperatures. When we decrease 
temperatures in the silicate and iron models 
to points where the convective layers are 
providing over 20% of the turbulent energy 
deposition, the fractional mass and extent 
of the midplane convection have decreased 
to about 0.70 and 0.45, respectively. (We 
stop computing silicate and iron models at 
these points because the additional itera- 
tions required by the convective layers be- 
come restrictive.) We compute cool ice 
models near the optically thin limit (~'c -< 2), 
where the fractional mass and extent of the 
midplane convection decrease to about 0.30 
and 0.45, respectively. Part of the reason 
that the fractional mass decreases to such a 
low value is because when z~ = 2, the sur- 
face density contained in the large radiative 
atmosphere is already 40% of the total sur- 
face density. 

(c) Upper and Lower  Temperature 
Bounds  

For T > T Fe, the evaporation temperature 
of iron grains, effectively all grains evapo- 
rate at the densities encountered in the so- 
lar nebula models, and only the very low 
gas opacity remains. Because of the behav- 
ior described in Section IIa, we are unable 
to find consistent solutions with grain opac- 
ities for a given radius and effective temper- 

F e  ature when T > TK . In principle, we could 
construct models with gas (primarily hydro- 
gen) opacities large enough to sustain mid- 
plane convection, but these models would 
need to be very thick and too hot to corre- 
spond to conditions generally assumed in 
the primordial solar nebula, having a 
greater resemblance to stellar conditions. 
We therefore take the consistent solu- 
tions for which Tc -- T F~ as the upper bound 
in effective temperature at a given radius. 
Figure 4a bows, for several radii, Tc vs T~ 
and the upper limits of Tc for the different 
types of midplane convection. 

At some radii, the models become mar- 
ginally optically thin (% < 10), at which 
point our assumption of radiative transport 
wholly by diffusion becomes invalid. Mar- 
ginally optically thin models are seen for R 
= 1013 and 1014 cm in Fig. 4b, showing 7~ vs 
Te. When ~'~ becomes less than 10, it drops 
dramatically as the convective elements be- 
come optically thin and their radiative dissi- 
pation rates reach an asymptotic maximum, 

4acrT  3 
6 x - - -  (21) 

Cp 

This causes the convective efficiency to in- 
crease with decreasing K and T, contrary to 
the trend in optically thick disks, and thus 
resulting in comparatively thinner disks. As 
opacities become low enough in all types of 
midplane convection, much more material 
must be added to the vertical structure to 
produce a superadiabatic temperature gra- 
dient, eventually causing the optical depth 
to rise with decreasing Te. At large enough 
radii (e.g., R = 5 x 1014 cm), rc turns up in 
the ice models without ever becoming opti- 
cally thin. In this case there is no strict 
lower bound to constrain T~, except by the 
empirical argument that molecular clouds 
have canonical temperatures of 10°K, such 
that models with T < 10°K may be excluded 
as unrealistic. The accretion rate in a 
steady disk is given by 

i~I - 27tacT4 
3fV (22) 
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FIG. 5. The mass accretion rate ~'/as a function of 
effective temperature Te for radii ranging over the ex- 
tent of the present solar system. The dark lines denote 
models with valid solutions. The region between the 
horizontal lines represents the common range in h~/for 
which a constant accretion rate exists for R ranging 
from 5.8 × 1012 to 5.0 x 1014 cm. 

at radii much larger than the central ob- 
ject 's radius (Pringle, 1981). 

The largest allowed T~ at Mercury's orbit 
(266°K at R = 5.8 x 1012 cm) corresponds 
to a maximal accretion rate M of 10 Is5 g 
sec-L In order to constrain Tc > 10°K for 
an orbit between Neptune and Pluto o fR  = 
5 X 1014 c m ,  w e  r e q u i r e  M > 1017-5 g s e c  - l .  

This narrow range of allowed accretion 
rates for a stationary disk spanning the 
present solar system is shown in Fig. 5 on 
an M - T~ diagram with the allowed ranges 
of models having midplane convection. 

(d) General Properties o f  the Models in Te 
and R 

We have computed vertical structures for 
selected effective temperatures at radii of 
I012, 1013, and 10 j4 cm in order to examine 
general properties of the solutions. We 
have also computed a limited number of 
models at radii corresponding to the 
present orbits of Mercury (5.79 × 1012 c m )  

and Neptune-Pluto (5 × 1014 cm). The 
gross properties of the solutions are plotted 
in Figs. 4a-4e. The central (midplane) tem- 

perature To, the optical depth to midplane 
~'c, the ratio of the height of the optical sur- 
face H to radius R, the density-averaged 
coefficient of turbulent viscosity (vt), and 
the surface density E are shown against Te 
in Figs. 4a-4e, respectively, for different 
radii and different types of midplane con- 
vection. The dimensionless coefficient of 
turbulent viscosity after Pringle (1981), 

otc = (vt) Pc 1), (23) 
Pc 

the central density pc, and the central pres- 
sure pc are shown against Tc in Figs. 6a-6c, 
respectively. 

The primary feature of the models is the 
steep dependence of the turbulent viscosity 
on T¢ and To. This is mainly due to the de- 
cline in opacity with falling temperatures, 
making it more difficult for a superadiabatic 
temperature gradient to be sustained. In or- 
der to counter the decline in opacity and 
turbulent energy generation rate, the disk 
must have more material present to pro- 
duce a given amount of radiant flux; this 
results in the general increase in surface 
density and central density with decreasing 
temperature. This effect is also reflected in 
the optical depth to midplane, especially in 
the iron and silicate models. Note that the 
values of Tc in the iron and silicate models 
approach an asymptotic minimum with de- 
creasing T~ in Fig. 4a. Note also that the 
central pressures have nearly uniform val- 
ues for a given radius and type of midplane 
convection. 

The aspect ratio H/R generally increases 
monotonically with T~ in Fig. 4c, except for 
a small inversion near log T = 2.1, espe- 
cially evident in models for R = 1012 cm. 
This is caused by the condensation of water 
ice in the atmosphere near the optical sur- 
face, which changes the optical surface 
boundary condition Eq. (14). 

Only solutions with the standard 3:1 
mixture of ortho to para H2 and Pollack 
grain opacities are plotted in these figures. 
A comparison of heights of the optical sur- 
face and surface density for different mix- 
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tures ofpara and ortho H2 in low-tempera- 
ture ice models is shown in Figs. 7a and 7b. 
A sample comparison between solutions 
with DeCampli-Cameron opacities and 
Pollack opacities is shown in Figs. 8a-8c 
for silicate and iron models. The DeCam- 
pli-Cameron opacities are larger than the 
Pollack opacities and have a higher temper- 
ature dependence in this temperature 
range, both of which cause the models with 
DeCampli-Cameron opacities to be thinner 
and have higher average viscosities than 
models with Pollack opacities. The two 
opacities give very similar solutions at low 
temperatures where water ice dominates 
the opacities. 

(e) Radial Properties of Steady Disk 
Models 

The maximal accretion rate for a steady 
disk with radii spanning the planetary orbits 
and with a central mass of 1Mo is about 
10185 g sec -I (see above). We have ordered 
vertical structures for constant values of,~/ 
of I0 ]8, 10 z8"5, and 1019 g sec -1 in order to 
show the sensitivity of the steady disk 
models to M. At the regions of overlapping 

solutions between ice and silicate midplane 
convection and silicate and iron midplane 
convection, we have artificially connected 
the solutions to correspond to a minimum 
of disk mass. Specifically, we follow the ice 
models from the outermost radii until mid- 
plane temperatures are too high to allow 
midplane convection with water-ice opaci- 
ties. At that point, we switch to silicate 
models and decrease the radius until mid- 
plane convection is no longer possible with 
moderate-temperature silicate opacities. 
Finally, we switch to the iron models and 
proceed to an innermost radius where all 
grains evaporate. As discussed above, fi- 
nite transition regions must actually occur 
with large radial gradients for which our 
governing assumptions are invalid. We dis- 
play the radial behavior of the steady disk 
models in Figs. 9a-9h only out to a radius 
o f  1014"5 cm, at which point the disk's self- 
gravity becomes important and the Jean's 
criterion (33) for gravitational instability be- 
comes marginally satisfied. Although we 
have calculated the structure with convec- 
tive turbulence beyond this radius (see Ta- 
ble I), the governing equations become in- 
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valid. In Figs. 9, we show the radial 
behavior, respectively, of the aspect ratio 
H/R, the surface density ~, and the optical 
depth to midplane 7c; the central tempera- 
ture To, density Pc, and pressure Pc; and 
the turbulent viscosity coefficients (vt) and 
ac. The positions of the planets are marked 
in Fig. 9a for reference. 

Figure 9a shows that H/R is roughly ~o for 
all models, being larger for larger M. The 
iron and silicate models at smaller radii 
have larger values of H/R and a greater 
amount of flaring than do the ice models at 
the largest radii. The kink in the iron 
models is due to water-ice condensation 
near the optical surface, causing rapid 
changes in the surface boundary condition. 

While the mean surface density de- 
creases from iron to ice models with in- 
creasing radius, the surface density within a 
type of model always increases, as seen in 
Fig. 9b. This is caused by the rapid decline 
of turbulent energy generation rates with 
increasing radius for a given type of mid- 
plane convection, as seen in Figs. 9g and 
9h. While zc reflects the behavior of ~ in the 
iron and silicate models, it decreases with 
increasing R in the ice models, since the 
decline in &t) and ac is less steep in the ice 
than in the iron and silicate models. 

The central temperature decreases 
monotonically with increasing radius for a 
given type of midplane convection and be- 
tween types of models (Fig. 9d). However, 
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the central density and pressure in Figs. 9e 
and 9f show a plateau effect  from one type 
of  midplane convect ion to another,  in most 
instances decreasing with increasing radius 
at the hot end of  a given type of  midplane 
convect ion,  then increasing at the cool end 
as convect ion  becomes less efficient. In 
fact we note that the steady models for con- 
vective turbulence can be quite accurately 
approximated as connected isopycnic 
models. 

(f)  The Effect of  Different Central 
Masses 

We have initially assumed that the proto- 
sun in the center  of  the primordial solar 
nebula contains its present  mass. However ,  
because the convect ive  models violate 
Jean 's  criterion in the outer  Jovian orbits, 
there must be a significant amount  of  mass 
contained in the disk. I f  we still insist on a 
central mass of  IMo,  then we must invoke a 
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TABLE I 

443 

log R log • log Tc log Pc log log X¢ log(vt) log S Ro x log log (vt/cs) log ¢xc 
r, n(ko) 

12.750 3.023 3.115 -8.792 3.218 14.739 14.516 4.882 0.342 32.6 -6.782 -1.916 -2.21 
13.100 3.340 2.895 -8.888 3.351 14.501 14.225 5.426 0.264 60.8 -7.395 -2.226 -2.81 

0.693 
13.431 3.885 2.762 -8.772 3.818 13.963 13.668 6.601 0.117 198 .9  -8.247 -2.310 -3.73 

0.509 
0.435 

13.435 2.944 2.523 -9.602 2.871 14.892 14.631 5.153 0.328 37.6 -7.790 -2.069 -2.53 
0.425 

13.600 3.175 2.449 -9.581 3.042 14.682 14.434 5.500 0.249 56.4 -8.162 -2.381 -2.90 
0.755 

13.784 3.535 2.383 -9.464 3.341 14.326 14.070 6.043 0.176 105 .6  -8.608 -I .916 -3.48 
0.881 

13.800 2.324 2.136 -10.406 2.484 15.448 15.237 4.694 0.494 21.3 -8.154 -1.721 -2.09 
14.100 2.540 1 .795 -10.650 2.022 15.233 15.060 4.973 0.383 28.3 -8.714 -2.033 -2.37 
14.600 3.160 1.314 -10.536 1.500 14.749 14.500 5.776 0.197 75.4 -9.701 -2.691 -3.20 
15.000 3 .731 1 .042  -10.425 1.565 14.271 13.457 6.859 0.095 310.7 -10.541 -3.361 -4.07 

Note.  The values of To, Pc, zc, and Xc are those at midplane. The values of S, x, n(k0), and Ot/C s correspond to the 
maximum values for the midplane convective layer only. The maximum Rossby number for each convective 
layer in a vertical structure model is presented with the midplane value listed first and the outer-most listed last. 
The turbulence coefficient ac, is calculated by using Eq. (23); all values (in cgs units) are for log M = 18.5. 

mechanism for mass loss from the central 
region of the solar nebula. Alternately, we 
can assume that the sum of the mass in the 
primordial sun and disk is 1Mo. We cannot 
accurate ly  determine the amount of mass in 
the disk model, since most of the mass is 
contained in the outer region of the disk 
precisely where self-gravity becomes im- 
portant and the convective model becomes 
inappropriate. Likewise, the central mass is 
ill determined, and so it is of interest to 
determine the behavior of our models for 
different values of the central mass. In the 
following discussion, we shall be biased to- 
ward central masses less than 13/o. 

The central mass M (assumed much 
greater than the disk's mass) enters the cal- 
culation through the gravitational potential; 
and in the thin-disk approximation one 
equates ~-~2 with G M / R  3. Therefore, varying 
M is equivalent to varying ~.  The radius 
also only appears explicitly in the expres- 
sion for l-l. Thus, a family of solutions ex- 
ists for a given value of l l  with radius given 

by R 3 = G M / ~  2. We let R~ be the radius 
assigned to base computations with M = 
1Mo. Radial solutions for different M are 
obtained simply by assigning 1)14o solutions 
with RI = m-VaR to R, where m =- M/Mo .  
In Figs. 9a-9h, this corresponds to shifting 
the scale of log R (which is really log R0 on 
the abscissa by -~  log rn; e.g., for m = 0.5 
the log R scale is shifted to the right by 
about 0.1. 

The maximal accretion rate is determined 
by the hottest iron model allowed at Mercu- 
ry's orbit. One can see from the figures and 
the preceding argument that decreasing M 
allows larger values of the maximal accre- 
tion rate. The maximal M goes empirically 
as  R~ "25, or m -0"75. However,  it would still 
take rn as low as 0.2 to allow an accretion 
rate of greater than 1019 g sec -~. 

The maximal accretion rate by this 
method of calculation may be more sensi- 
tive to m than this. If protomercury, or its 
constituents, was formed from the nebula 
when M was less than 1Mo, and if the spe- 
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FIG. 10. The calculated central temperatures Tc vs R 
for log M = 18 and 18.5 are compared to the data by 
Lewis (1974) (crosses). 

cific angular momentum,  (GMR) I/2, was ap- 
proximately conserved,  then the conditions 
relevant  to present-day Mercury  occurred 
at a more distant radius, R/R~ = Mo/M. In 
this case, the grain evaporat ion criterion at 
Mercury should be applied for a central 
mass M to the IMc~ solution at R~ = 
R~m 4/3, hence the maximal M would scale 
a s  m -3 .  If the protosun accreted a substan- 
tial fraction of  its mass during or after 
planet formation, much higher accretion 
rates may be applicable in the solar nebula. 

planetesimal formation different from 
points 1 to 5. 

The run of  surface density in models of  
the primordial solar nebula can be com- 
pared with the "min imum mass"  distribu- 
tion of  the solar system; this is computed 
by augmenting the masses of the present  
planets and asteroids to solar elemental 
abundances and smearing them between 
their orbits. Aside from a gap in the aster- 
oid belt, the minimum mass distribution 
gives a surface density that falls roughly as 
R -3/2 (Weidenschilling, 1977). In Fig. 9b, we 
see for the convect ive  models an overall 
tendency for X to decrease with R from iron 
to ice midplane convection.  However ,  the 
surface density for  a given type of  midplane 
convect ion increases with R. It is therefore 
difficult to find a direct correspondence be- 
tween the run of  surface density in the con- 
vective model and for the minimum mass 
distribution. At the radii of the outer Jovian 
planets we expect  ~ to turn over  and de- 
crease with R because of  gravitational in- 
stability (Sect. VI), but this only forms a 
lobelike distribution of surface density (Fig. 
l l ) .  

The present  convect ive models inevita- 
bly lead to massive disks in which self-grav- 
ity becomes important.  The mass of  the 

(g) Comparison with Characteristics o f  
the Solar System 

The composit ion of  the terrestrial planets 
and Jovian satellites gives information on 
the temperatures  at which planetesimals 
formed in the primordial solar nebula. In 
Fig. 10, we compare  these estimated tem- 
peratures (Lewis,  1974) with the midplane 
temperatures  that we obtain with M = 10 ~8 
and 10 ~8.5 g sec -j .  Our results agree quite 
well with the data points; however ,  the ne- 
cessity of fitting points 1 to 5 and 6 and 7 
simultaneously is perhaps not stringent. 
Points I to 5 are obtained from terrestrial 
planets and an asteroid. Points 6 and 7 are 
obtained from satellites of  Jupiter and Sat- 
urn, and so may belong to an epoch of 
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steady disk interior to a radius R and exte- 
rior to the radius Rmin where grains are first 
able to condense is given by 

tribution of the rocky cores of the outer 
planets (Pollack, 1984; D. J. Stevenson, pri- 
vate communication, 1986). 

Md = 2zr~ , (R ' )R 'dR' .  (24) 
ra in  

Most of the disk's mass resides at the outer 
Jovian orbits and since E is approximately 
proportional to R 1.25, M,I(R) -~ 2~(R)R 2. The 
point where the disk becomes gravitation- 
ally unstable, i.e., where ~ = ~cr, Eq. (33) 
corresponds to 

M d ( R ) / M  ~ 2h/R.  (25) 

Therefore the ratio of the (interior) disk 
mass to central mass M at ~cr is around 0.1 
to 0.2, and the ratio is probably increased 
several tenths more in the self-gravitating 
region beyond Ecr, as suggested by the run 
of surface density for marginal gravitational 
instability (Fig. l 1). Since a fair fraction of 
a solar mass is contained in the disk model, 
the appropriate value of the mass of the 
central protosun is uncertain. If a mass loss 
mechanism operates, such as bipolar ejec- 
tion, the mass of the central body could be 
near its present value; if not, then only a 
fraction of a solar mass could be appropri- 
ately assigned to the central body. This 
problem needs more extensive analysis. 

Within the present model, the character- 
istic dissipation time for the solar nebula is 
given by 

ra = ---:- ~ 20 myr (26) 
M 

for h)/= 1018.5 g sec -1. We expect Md to be 
several tenths of Mo; thus, rd should be on 
the order of 10 myr. 

Gravitational instabilities operating in the 
outer disk may lead to inconsistencies with 
popular hypotheses of Jovian planetary for- 
mation. This situation suggests that a "gas 
instability" could be responsible for the for- 
mation of the outer planets rather than a 
"core instability"; however, the former 
mechanism fails to account for the size dis- 

V. THE STABILITY OF STEADY DISK MODELS 

In this section we discuss the radial prop- 
erties of disks with constant accretion rate 
spanning the orbits of the present planets. 
These steady disk models are constructed 
by ordering by radius a sequence of vertical 
structure solutions which satisfy Eq. (22) 
(Sect. 6) with a given ~/. Such a steady disk 
can only be realized in nature over a certain 
radial extent provided material is supplied 
to it at the outer radial boundary at a steady 
rate and removed at the same rate at the 
inner radial boundary. While this situation 
can readily occur in close binaries with 
steady mass transfer, it may only hold in a 
transitory sense in the primordial solar neb- 
ula, since the nebular material is constantly 
being depleted and eventually must run out. 
In a thick cloud, material may also enter the 
inner disk region almost vertically and per- 
haps inhomogeneously, admitting the pos- 
sibility of an approximately stationary disk 
with an h)/that varies with radius. Further, 
the behavior of the vertical structure solu- 
tions with radius, assuming that convection 
is the sole source of turbulent viscosity, 
may make the realization of a steady disk 
difficult, which we discuss at length below. 
The properties of steady disks described in 
the previous section may be appropriate to 
only limited spatial regions and only epi- 
sodically in the history of the solar nebula. 

(a) R a d i a l  C o n d e n s a t i o n  B o u n d a r i e s  

The high-temperature end of the ice 
models and the low-temperature end of the 
silicate models, as well as the high-temper- 
ature end of the silicate models and the low- 
temperature end of the iron models, have 
overlapping solutions for some values of Te 
and R, leading to an ambiguity in the appro- 
priate values of H, E, etc. The transition 
between models with different types of 
midplane convection cannot occur abruptly 
at some radius, for it would result in very 



446 CABOT ET AL. 

large radial gradients, clearly invalidating 
our governing assumptions. It is possible 
that solutions in the transition regions with 
significant radial gradients are time depen- 
dent or inherently unstable, which could in- 
hibit any steady transfer of material from 
one region to another. 

(b) Mul t ivalued Solut ions 

A further complication arises in that the 
same value of £ can occur at a given radius 
for different values of Te. For instance, the 
high-temperature end of the ice models fea- 
tures an inversion in £, resulting in multiple 
values of T~ for certain values of E. Also, 
the low-temperature end of the silicate 
models shares values of £ with the high- 
temperature end of the iron models at a 
given radius. Bath and Pringle (1985) sug- 
gested that this situation could lead to a 
limit cycle behavior in the disk, switching 
between low- and high-viscosity states. 

(c) Viscous Diffusive Instability 

Another question of stability lies in the 
general tendency of the surface density to 
decrease with increasing Te. The mass 
transfer term 

fit, ~ -  ( O t ) ~  = a)//3zr (27) 

is proportional to T 4 via the energy equa- 
tion (6). Lightman and Eardley (1974) 
found that when d~/clE < 0 at a fixed ra- 
dius, the disk is unstable to localized radial 
perturbations. The reason this occurs is 
that, when E is locally increased (de- 
creased) by a small amount, the local mass 
transfer rate, proportional to/x, decreases 
(increases) commensurately when dtz/clE < 
0; this causes material to accumulate (dis- 
perse) more, and so leads to a runaway pro- 
cess. Thus the disk has the tendency to 
form rings, or perhaps clumps for nonaxi- 
symmetric perturbations, when £ depends 
on T~ as in Fig. 4e. The manner in which 
such instabilities in turn affect the proper- 
ties of turbulence and the structure of the 
disk is not clear; in particular it is not 

known if this diffusive instability precludes 
the formation of a steady disk entirely. 

In calculating the growth behavior of the 
viscous diffusive instability, one assumes a 
disk with Keplerian rotation that is in verti- 
cal hydrostatic and thermal equilibrium. 
The linearized, time-dependent perturba- 
tion equation for the radial disk structure is 
given by (Pringle, 1981) 

Om 3 m'(r) 02m 
Ot - 4 r z Off' (28) 

where r = R v2, m = rSIx, and m'(r) = (Otz/ 
0£)~. With separation of variables, one 
finds m(r,t) = e"f(r) ,  where n is the integra- 
tion constant and growth/damping rate of 
the instability, and where f ( r )  is governed 
by 

dZf 4nr 2 
dr 2 3m'(r) f = O. (29) 

Consider the boundary value problem for 
which f ( r )  vanishes at two bounding radii, 
f ( rO = f(r2) = O: then n is real and given by 

f?  (rf) 2 3f[2 (d_d_f)2 
n , ~ d r  = - - ~  ~ dr dr. (30) 

Thus n has the opposite sign of the average 
inverse m'. If m' > 0 everywhere in the 
domain between rj and r2, then n < 0 and 
the perturbation is damped (stable); if m' < 
0 somewhere in the domain, then n can be 
positive and the perturbation is growing 
(unstable). For some regions of the steady 
(constant /~/) disk models, m' can be ap- 
proximated by a power law going as r-p. In 
this special case, the solution of Eq. (29) for 
p :~ - 4  is 

[( 4n ]'/2 r2J 
f ( r )  = rl/2B1/2q L\3m~--s?7--'/ q , (31) 

where Bl/2q is a Bessel function of order 
l/2q = 1/(p + 4). The eigenvalues of n are 
approximated by 

I =  1 ,2 ,3  . . . . .  (32) 
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which is roughly a radial average of the 
viscous diffusion rate I~t/R 2 multiplied by 
( - 0  In/l~//O In X)r and a radial wavenumber 
squared. The radial structure is unstable at 
all wavelengths with the shortest wave- 
length modes growing most rapidly. Once 
the perturbations reach finite amplitude, 
the radial structure begins to depart signifi- 
cantly from thermal equilibrium, radial 
thermodynamic gradients become impor- 
tant, and the governing equation (28) for the 
growth of the instability becomes invalid. 

(d) J e a n ' s  Instabil i ty  

The self-gravity of  the disk becomes im- 
portant for the outer Jovian orbits, and a 
trial steady disk structure may prove to be 
unstable to gravitational collapse. The 
Jean's  criterion for gravitational instability 
is given roughly by 

h M  
X > ~,cr --= R 3 , (33) 

where h =- ( p / o l F )  m, evaluated at mid- 
plane, is the isothermal scale height 
(Pringle, 1981; Safronov, 1969; also com- 
pare Eq. (2), Sect. II). For  a typical aspect 
ratio h/R of about 0.1 and M = IMe, the 
critical surface density at R = 1014 cm is 
about 2 x 104 g cm -2. Comparing this with 
Fig. 4e shows that only some hot iron 
models at R = 1014 cm marginally satisfy 
condition (35). At R = 5 x 1014 cm, how- 
ever, Ecr ~ 800 g c m  -2, such that all models 
are at least marginally unstable to gravita- 
tional collapse. 

In Fig. 9b the critical surface density is 
estimated at the outer radii of  the solar neb- 
ula and compared with values of E from 
steady models. It is seen that for R > 3 x 
1014 cm, condition (33) is satisfied and the 
Jean's  instability should occur. The surface 
density increases with increasing radius in 
the outer Jovian orbits, which causes the 
amount of  mass in the disk interior to a 
fixed radius to be larger for a smaller cen- 
tral mass (see Sect. IVf). This causes the 
radius at which the Jean's  criterion (33) is 
first satisfied (Rj, say) to be smal ler  for a 

smal ler  central  m a s s  at a fixed accretion 
rate. consider the dependence of Rj on m 
for a constant  h;/. For  m = M / M e  = 1, we 
find E - R s with s = 1.25 at Jovian orbits; 
for arbitrary m ,  ~, ~ R ~ m -s/3. We let h/R in 
criterion (28) be approximately a constant 
in R; thus, 

M h  
~cr ~= R 3 m R - 2 ,  

R j  ~ m (s+3)/3(s+2) ~ m 0"44. (34) 

The dependence of  Rj on m is somewhat 
less steep when ~ / i s  held at its maximum, 
since h/R increases and E decreases with 
increasing ~/. We find that at the Jovian 
orbits, h/R ~ )1~/°19, ~ ~ )t~/-°zS, RJ +2 
) ~ 0 . 4 7 .  Using the prior result that the maxi- 
mal M goes as m -4/3 and s = 1.25, we find Rj 

m °-33. Therefore, as the central mass in- 
creases, the boundary of gravitational in- 
stability .generally recedes. However,  if 
maximal M scales as steeply as  m -3, as dis- 
cussed in Section IVf, then Rj becomes al- 
most independent of m. 

It is possible that the effects of self-grav- 
ity in this region lead to a natural way of 
truncating the inner disk from the remnant 
protostellar cloud. It is also possible that 
Jean's  unstable material becomes turbulent 
under collapse and enhances disk accretion 
as envisaged by Paczynski (1978). The an- 
swer to such speculations lie, however, in 
models that take explicit account of the 
disk's self-gravity. We may conclude, in 
any event, that the outermost region of the 
solar nebula cannot evolve to a state like 
that in our convective models. 

VI. THE EFFECT OF SELF-GRAVITY ON 
RESULTS OF PRESENT WORK 

For very short wavelengths, the growth 
rate n(k) for gravitational collapse with ra- 
diative dissipation is governed by the quin- 
tic equation 

n 5 + y x k 2 n  4 + ( k 2 c  2 + ~'~2 __ toZ)n3 

+ xk2[kZc 2 + y(l) 2 - to~)]n 2 
+ [ ( k 2 c ~  2 2 2 - 2  - o c ) k z ~  k - gozflkZrc~]n 

+ (kZc  2 - "yo92)xk2~-~ 2 = 0, (35) 
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where y is the ratio of specific heats, X the 
coefficient of radiative diffusion, Cs the 
sound speed, and g~/3 the convective lapse 
rate squared. 

For very  shor t  w a v e l e n g t h s  the self-grav- 
ity of the perturbation is given by 

o j  2 = oJg -~ 47rGp. (36)  

For l o n g e r  w a v e l e n g t h  radial perturbations, 
Safronov (1969, 1980) suggests the approxi- 
mate form 

o~2 = oJ~kh/(1 + kh) ,  (37) 

where h is the characteristic half-thickness 
of the disk. The general condition for gravi- 
tational instability is 

to2 > T -'k2c2" (38) 

For co 2 slightly larger than ,v-lb2~2 z ,, ~ ,  the 
growth rate is a combination of convective 
and gravitational instabilities. For to2 >> 
k2c 2, the growth rate is dominated by the 
gravitational instability, with n(k) -~ toG. In 
the absence of buoyancy, the fastest grow- 
ing modes occur for a ver t ica l  co l lapse ,  k~ = 
0, for which the fifth-order Eq. (35) sepa- 
rates into 

(n 2 + ~2)[n3 + Txk2n 2 + (k2c 2 - coG)n 

+ xk"(k'c~ - Tto~)] = 0. (39) 

For radial collapse, k~ = 0, Eq. (35) be- 
comes instead 

n2[n 3 + Txk2n  2 + (k2c~ + ~2 _ to2) n 

+ k2[k2('~ + T(~] 2 - tOG) ] = 0, (40) 

where the cubic part is the standard expres- 
sion for gravitational growth rates with ra- 
diative dissipation in an infinitesimally thin 
disk (Morozov et  al . ,  1985; Safronov, 
1980). 

For optically thick perturbations, the ra- 
diative dissipation rate of the perturbation 
is given by x k  2. In the optically thin limit, 
the result changes to 3(Kp)2X . Unno and 
Spiegel (1966)join the two limits with the 
expression 

3(Kp) 2 
8× ~ X k2  3(Kp)2 + k2. (41) 

In order to generate a gravitational instabil- 
ity, oJ0 (i.e., p) must be sufficiently large 
with respect to the acoustic frequency, but 
in order to accomplish this the growth rate 
must be small with respect to too in order to 
give a low-viscosity, high-density disk. We 
therefore expect the growth rate to be gov- 
erned by the marginal state. The growth 
rate for vertical collapse is then, from Eq. 
(39), 

, y ~ 2  __ k2e~ 

n ~ 8 x k2c----2s ~ 093 , (42a) 

with co2 given by (36) and 8 x by (41). Analo- 
gously, the growth rate for radial collapse is 
given by Eq. (40): 

~'(to2 - f~2) _ k2c~ 
n ~ 3 x 2 ",' O.2 ( 4 2 b )  

k c~ + - to2 ' 

where to2 is given by (37). 
We shall now determine the steady disk 

conditions using the vertical averages 

~- 2ph ,  (43) 

rc ~ Kph -~ I/2K£, (44) 

where h is given from hydrostatic equilib- 
rium by 

h2['~ 2 ~ R"gT. (45) 

Writing n = 8×J'~ from Eqs. (42a) and (42b), 
the turbulent viscosity is given by 

3¢~ 
vt = n/k  2 ~- X 3r~ + kZh 2fG" (46) 

The factor kh will be taken as a fixed pa- 
rameter of the model. The flux from the op- 
tical surface of the disk Fs, given by the 
energy equation as 

Fs  = 9/8~'~2Vt~, (47) 

is related to the accretion rate in a steady 
disk ~ / b y  

3 F~ = ~ 1)2/I)/. (48) 

In an optically thick medium the flux is 
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given by the diffusion equation 

ac  d T  4 
F -  

3 dr  

o r  

f~O ac F d ,  =-~--(T 4 - T~), 

where To is the temperature at r = 0. For  r 
~> 1, T 4 >> T 4, and as a rough average we 
take 

fo ~ F d r  ~ ½F~rc, 

thus 
2 a c T  4 

Fs ~ 3re (49) 

If  we extend the gray atmosphere approxi- 
mation to the optically thin case (which 
may be inappropriate if the opacity be- 
comes too line dominated), we find that the 
flux in a finite slab is given by 

F ~ acT4rc.  

Taking again the average of  F to be ½F, we 
obtain 

Fs ~ 2acT4rc.  (50) 

Following the spirit of Spiegel (1964) and 
Unno and Spiegel (1966) for perturbations, 
we join expressions (49) and (50) so that 

2 a c T  4 3z  2 
Fs = 3r¢ 3% 2 + 1 (51) 

We also write, with Eqs. (43)-(45), 

4 a c T  3 _ 8 a c T  4 R~ (52) 
X -- 3Kp2Cp 3rc~,l'~ 2 Cp' 

where we take cp/K'g to be a fixed parameter 
of the model. 

Combining (46), (47), (51), and (52) gives 

fG ~ 2Cpt (53a) 
9 l g '  

where 

3 ~  + h2k 2 
t ~  3~c + 1 (53b) 

Using k2c 2 ~ F l k 2 h 2 ~  2, the solution of (52) 
for vertical gravitational collapse from Eqs. 
(36) and (42a) is 

60~/~2 ~ Flk2h2 1 + fc  y +----~, (54a) 

which has a minimal value for the smallest 
allowed value of kh .  For radia l  gravita- 
tional collapse from Eqs. (37) and (42b), 

ro~/f~ 2 ~ (1 + 1/kh) 

[ 1 + fo) (54b) x ~1 + Fjkah 2 
+~G / , Y 

which has a minimal value of about 3.7 for 
kh  ~ 0.62 for ~ < y -< ]. In the optically 
thick case, ~ >> (1, k2h2), or for k2h 2 ~ 1, we 
have t ~ 1. In the optically thin cases, r~ "~ 
(1, k2h2), we have t --~ k2h 2. In both limits 
we have to~/f~ 2 ~ constant. It is therefore 
convenient to consider these limiting cases 
where to~/~ 2 is determined solely by the pa- 
rameters y, Fi ~ y, and kh .  

Using (43) and (45), we write (36) as 

2rrGE 
tO~O 2 ~ ~ ( R g T ) I / 2 ,  

o r  

(KgT) 1/2 

where o~/f~ 2 is given by either of Eq. (54a) 
or (54b). We further assume the average 
opacity has the form 

K ~ K0 To, 

making Eq. (44) 

r¢ ~- ½KoTeE. (56) 

Using (55) to eliminate ~ from (56) gives an 
expression for rc in terms of T: 

(J0  K0ak-; '2 r +"2 
rc ~ \~-~/ 4zrG (57) 

Further,  Eqs. (51) and (48) give another re- 
lation between rc and T: 

3 a2.~ 3~ + 1 
T 4 ~ - -  (58)  

16~- ac  Zc 



450 CABOT ET AL. 

T A B L E  II 

(~ ~=½-~ ,¢¢½)  

re >> 1, (kh) 2 
T ~ l~3"Mn(oJ~/f~2)" 
h ~ ~ ( 3 / 2 ) .  i/~(1/2)~(£0~/~'~2)(1/2~ . 

Tc - -  ~12~/" 2 / ~ ( 4 .  I ) (¢M0/~2)4 .  

Ot c ~ ~-(9/2) . /~(I-(3/2)"1)(( ,0~/~ '~2 ) (1+(3/2).) 

In the optically thick case with ~-~ >> (1, 
k2h2), to~/~ 2 ~ constant and 

9 fF/Q 
_ _  _ _  3"C, T4 ~ 16¢r ac  

which gives with Eq. (57) 

~'Kot~ g ~3/~/. (59) 
\~ -2 ]  6 4 7 r 2 a c ~  

From this all other relevant quantities can 
be calculated. The dependences of T, h, E, 
and ~c on f~,/Q, and os~/fF are given in Table 
II. Also given is the dependence of  the tur- 
bulence coefficient a~, given by 

ot~ 3rr~RgT" (60) 

In the optically thin case with ~-~ ~ ( I, k2h2), 
co2/fF = constant and 

3 ~2/Q 1 
T 4 

16zr ac  "rc ' 

giving 

T9/2+~ ~ (oJo~-' 3 G M ~  
\ f F /  4 acKoRIg/2" (61)  

The dependences of T, h, E, re, and O~c on 
~ ,  h)/, and 00~/~ 2 are given in Table III for 
this case. 

The surface density depends on f /  to a 
power ranging from ~ to ~ for values of st 
from 0 to ~ in the optically thick case, and to 
a power of slightly greater than 1 in the op- 
tically thin case for all s t -> 0. Thus, when 
the gravitational instability becomes opera- 
tive in the outer disk, the surface density 
decreases rapidly with increasing radius 
(assuming Keplerian rotation, f~ ~ R-3/2), 
opposite to the trend of the convective 

model. The decline of E, coupled to the 
growth of o~c, with increasing radius is illus- 
trated in Fig. 1 I, which shows the solution 
for vertical gravitational collapse (solid 
lines); the solution from the convective 
model is indicated in dashed lines. At some 
radius we expect the convective and gravi- 
tational model to join, perhaps smoothly. 

While the analysis and results just  pre- 
sented take into account the most impor- 
tant physical effect, namely, the new form 
of the growth rate, they cannot be consid- 
ered complete. A complete analysis would 
have to include changes in the hydrostatic 
equilibrium equation (i.e., the additional 
pressure due to self-gravity), non-Keple- 
rian motion, a new expression for energy 
transport by turbulent motion, and finally 
the use of the full fifth-order equation for 
n(k) .  

The Keplerian motion is altered in the 
following way: Most of the disk's mass in 
the convective model resides in the outer 
radii, and the disk is perhaps truncated at 
some radius by self-gravity or another 
mechanism. We therefore imagine the mass 
distribution of the disk to be toroidal or lo- 
belike in nature. The self-gravity for this 
mass distribution depends on the external as 
well as internal mass at a given radius, un- 
like for a spherical mass distribution, where 
the gravity depends only on the internal 
mass. The innermost region of the disk 
feels essentially only the pull of the central 
object. At some intermediate radius the 
mass in the outer disk is felt, effectively 
reducing the pull of the central object. If the 
radial pressure support is negligible such 
that the radial component  of gravitational 
acceleration is balanced by centrifugal ac- 

T A B L E  I l l  

('0 t = + + ¢ )  

.r,: "~ 1, (kh) 2 
T -  fDM'o(m~/fF)-,) 

~ ~(i/2).0+1/~(1/2)~(0j~/~,~2)1 (1/2).,) 
rc ~ ~2 4,0/~11-4.)(0j2/~2)4)1 
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celeration, then an effective reduction in 
gravity causes the rotation rate to decrease 
and the rotational shear to increase with re- 
spect to Keplerian values. At outer radii 
where most of the mass is concentrated this 
trend reverses as the attraction of the disk 
material enhances that of the central object, 
increasing rotation rates and decreasing ro- 
tational shear with respect to Keplerian. At 
radii far beyond the main concentration of 
the disk mass the combined mass of the 
central object and the disk acts as a point 
source, leading again to Keplerian orbits. 
The deviation from Keplerian values at the 
main mass concentration of the disk are ex- 
pected to be appreciable for a total disk 
mass comparable to the central mass; the 
precise properties of the rotational quanti- 
ties depend sensitively on the exact details 
of the mass distribution. 

A further complication may arise if radial 
pressure support becomes significant in the 
self-gravitating part of the disk. This would 
require a fully two-dimensional treatment. 

vii. DISCUSSION 

The primordial solar nebula may have 
been dissipated by turbulence generated by 
a number of instabilities, e.g., thermal con- 
vection, gravitational collapse, infalling 
material from the outer cloud, etc., with 
presumably one or more being the predomi- 
nant mechanism in any given part of the 
nebula at any given time. In this paper, we 
have explored the feasibility of construct- 
ing a physically consistent and meaningful 
model of the primordial solar nebula with 
turbulence maintained solely by thermal 
convection. We have further assumed that 
the nebular disk is in a stage before (or at 
the onset of) planetary formation in which 
gas and dust are mixed homogeneously; in- 
deed, it is the opacity of the dust grains that 
allows the presence of widespread convec- 
tion. 

Thus far, the traditional method of com- 
puting thin accretion disks has been to 
specify in an ad hoc manner a fixed global 
parameter ct measuring the strength of tur- 
bulence generated by all possible unspeci- 

fled sources. The a method does not shed 
any light on the physical processes underly- 
ing the turbulence, and thus has no ability 
to predict the structure and behavior of the 
disk under different physical conditions. In 
effect, oL represents the summed total of our 
ignorance in accretion disks. This fault is 
particularly acute in the study of the solar 
nebula for which direct observational data 
on protoplanetary disks are still lacking and 
for which evidence from the present solar 
system provides only very indirect hints 
about primordial conditions. 

Additional clues may be gleaned from ob- 
servations of young protostellar objects, 
e.g., bipolar nebulae, FU Orionis objects, 
and T Tauri objects, which show some evi- 
dence of containing disks, and from proto- 
planetary systems (Smith and Terrile, 
1984). However, the detailed evolutionary 
sequence of protostellar objects and their 
disks, especially with regard to the forma- 
tion of planets, is still highly speculative. 

(a) Comparison of  Results with LPB 

We find some markedly disparate results 
from the work of LPB. There are many dif- 
ferences between LPB's treatment and our 
own (see Sect. VII in Paper I), as well as 
certain basic similarities, and to ascribe the 
difference in the final results to one particu- 
lar cause is probably not valid. 

One basic similarity that we have with 
LPB is that we both use basic convective 
properties (namely, the superadiabatic tem- 
perature gradient and the extent of the con- 
vective region) to describe the amount of 
turbulent viscosity in the disk, and thus the 
amount of viscous couple between annuli. 
LPB used a modified mixing length theory 
that ignores the physical effects of radiative 
dissipation, rotation, and anisotropy of the 
convective motions. They further allowed 
some extraordinary leeway in the definition 
of the mixing length. Convective turbu- 
lence is created and dissipated locally. We 
in turn use the complete MLT expressions 
that take radiative dissipation, rotation, and 
anisotropy into account, and in which we 
set the characteristic length scale to be the 
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vertical extent of the convective region. 
Convective turbulence is created locally, 
but assumed to be dissipated globally in a 
smooth manner throughout the convective 
region. 

Another similarity between the models is 
that they both rely on grain opacities to pro- 
vide sufficient amounts of opacity for con- 
vection to occur under physical conditions 
thought to be relevant in the primordial 
disk. LPB used DeCampli-Cameron opaci- 
ties, which give rise to low-temperature 
midplane convection from ice-grain opaci- 
ties and high-temperature midplane con- 
vection from iron-grain opacities. Our 
models use the new opacities by Pollack et 
al. (1986), which feature large moderate- 
temperature opacities due to silicates and 
smaller high-temperature opacities due pre- 
dominantly to iron grains. This gives rise to 
low-, moderate-, or high-temperature mid- 
plane convection, with the high-tempera- 
ture convection being less efficient than for 
the DeCampli-Cameron opacities. 

Much of the comparison between the 
results of the two models can be done in 
terms of the vertically averaged "parame- 
ter" describing the efficiency of turbulent 
convection (eta). This et-parameter is usu- 
ally set as a constant of the problem in most 
disk models. For both LPB and ourselves, 
ere is an end product of the model, which we 
define here as 

Since 

etc --= (Vt) RgTc (62) 

/(4 = 3~r f~_~ pvtdz = 3"a'Ec(Vt), (63) 

where ~ is the surface density contained in 
the convective regions (and where £~ ~< E), 
we obtain 

~f~ M tzf~ 
et~ - 37rEc RsT~ ~ 37r~ RgTc (64) 

Lin (1981) provides an analytic fit to LPB's 
models; noting that his definition of E is ½ 
of ours, one finds etc >~ 0.04 for midplane 

convection with ice-grain opacities and etc 
> 0.01 with iron-grain opacities, indepen- 
dent of radius and M. In contrast, our 
model yields etc ranging between l0 -2 and 
l0 4 for each type of midplane convection, 
depending strongly on both radius and ~/ 
(or, equivalently, effective temperature). 
Our etc depends strongly on the supera- 
diabatic temperature gradient, which in 
turn depends on the opacity. At a given ra- 
dius, increasing h)/ corresponds to increas- 
ing the temperature and the opacity, which 
leads to a larger superadiabatic temperature 
gradient, which gives a larger etc. At a given 
M, increasing the radius leads to lower tem- 
peratures, and ultimately decreasing values 
of etc. 

The size o f  the "mixing length." In com- 
puting the convective turbulence, LPB 
used the pressure scale height Hp through- 
out the convective region, which is much 
smaller than the extent of the midplane con- 
vective region far away from the midplane, 
and which "blows up" at midplane. The 
larger the mixing length, the larger the con- 
vective turbulence viscosity; thus LPB's 
turbulent viscosity is strongly peaked at 
midplane, with little contribution from the 
outer regions. In fact, LPB's local value of 
et (-~v2/c~) at midplane is about 1. The effec- 
tive length scale in our model is the vertical 
extent of the convection zone divided by 
the anisotropy factor, (1 + x) 1/2 ~ l, which 
is increased by rotational stabilization. The 
resulting length scale is less than or about 
Hp near the outer surface of the convection 
zone. 

The expression for turbulent viscosity. 
2 2 LPB used et --~ vJc~ locally, whereas we use 

an expression that corresponds to et --~ (12/ 
n)v2/c~, where n/lq = O(10 -1) on the aver- 
age. 

The different mathematical procedures 
that each model employs affect both the 
magnitude and behavior of etc. The averag- 
ing procedure we use on the turbulent vis- 
cous dissipation tends to produce lower 
values of etc. In Paper I we showed analyti- 
cally that, with LPB's equations averaged 
in a similar manner, etc < 10-15; numerical 
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integrations actually give ac ~< 10 -2'5. The 
averaging procedure tends to reduce the 
strong peaked behavior at midplane of 
LPB's solutions where their otc gets its 
greatest contribution. The insensitivity of 
LPB's o~ to radius and M (i.e., tempera- 
ture) appears to be in the nature of their 
local solutions. In LPB's models, the local 
value of a is always about l at midplane and 
falls sharply with increasing z. They there- 
fore have a very similar function for local a 
for all thermodynamic conditions, resulting 
in almost constant values of ac. In the 
model presented in this paper, the local 
value of ot with respect to turbulent energy 
generation is a sensitive function of the 
convective buoyancy and stabilizing effects 
of rotation, reflected in the anisotropy pa- 
rameter. 

Another important end product of these 
models is the size and behavior of the sur- 
face density with ~ / a n d  radius, which is 
strongly influenced by the size and behavior 
of etc. The larger the turbulent efficiency 
(Otc), the less material (2£) is needed to pro- 
duce a given amount of flux (or)l)/). In 
LPB's model, E is roughly constant with R 
for a given type of midplane convection, 
and depends on ~/roughly to the ~ power 
(Lin, 1981). In the model presented in this 
paper, a~ drops so rapidly with increasing R 
at fixed M that 2~ grows with radius. In- 
creasing ,~/at fixed R causes ac to increase 
so much that E decreases. We find the fol- 
lowing crude scalings for our model: in low- 
temperature " ice"  models, X - R/~/-I/4; in 
moderate-temperature "silicate" models, X 

RS/3)~l-V2; and in high-temperature 
" i ron" models, X goes as R 5/4 and M to a 
power varying between - ~  and -½. 

(b) Comparison with Observational 
Constraints 

There are biases in solar nebula modeling 
to construct models that are stationary over 
the radii spanned by the present planets, 
and to compare the mass distribution of the 
nebula to the mass of the present planets 
smeared between their orbits with enough 

H and He to give solar abundance (the min- 
imum mass distribution). Neither of these 
biases is particularly constraining if the 
nebula evolves dynamically through the ep- 
och of planet formation. A more solid com- 
parison can be made between the general 
radial temperature distribution in the disk 
model and the temperature distribution 
constructed from planetary compositions, 
provided planetesimal formation was oc- 
curring at the particular epoch this solar 
nebula model might represent (Fig. 10). 

Neither LPB's nor our mass distribution 
compares favorably with the minimum 
mass distribution, which has X - R -3/2, at 
least in the outer orbits (Weidenschilling, 
1977). 

For a stationary convective disk for radii 
at least as small as Mercury's, one requires 
that grains be condensed there to provide 
the necessary opacity. This limits the tem- 
perature and M. At the same time, one 
wishes to have a decent fit between mid- 
plane temperatures and estimated composi- 
tional temperatures (Lewis, 1974). versus 
radius. Lin (1981) finds a best fit o fM = 1019 
g sec -1. We find a best fit (Fig. 10) for ,~/= 
1018 to 10185 g sec -1, being somewhat lower 
as a consequence of our lower turbulent effi- 
ciency. The mass of LPB's disk is about 
0.01Mo, for which the disk's self-gravity is 
negligible. Our disk is unstable to gravita- 
tional instability at a radius between the or- 
bits of Saturn and Uranus; this implies a 
massive disk with Ma > 0.1Mo. The time 
for the disk to dissipate at a given accretion 
rate, ~'d = Ma/AI, is about -105 years for 
LPB's model and >2 × 1 0  6 years for the 
model presented here. 

The time scale associated with the infall 
of the molecular cloud in the protostellar 
(notably T Tauri) stage is -106 years. Ob- 
servations suggest the first 105 years are 
spent in a dynamic stage of bipolar outflow 
(Lada, 1985). It is possible that the bipolar 
outflow is powered by release of gravita- 
tional potential energy in an accretion disk 
close to the central condensation. If so, 
then one infers that the (dynamic) disk is 
dispersed in -105 years and suggests that 
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high-h)/, high-a models pertain to this stage. 
Adams et al. (1987) suggest that T Tauri 
stars, after the bipolar outflow stage, settle 
into a stage with quiescent disks with virtu- 
ally no intrinsic luminosity; radiation from 
the disks is from reprocessing of protostel- 
lar photons. Hartmann and Kenyon (1985) 
suggest that FU Orionis-like outbursts arise 
in T Tauri stars after a very-low-a (~I0 -4) 
disk or torus accumulates enough matter 
for high temperatures to develop and grains 
to evaporate, drastically lowering the opac- 
ity; at this point a "cataclysmic" outburst 
is suggested to occur in the disk, in analogy 
with the outburst mechanisms suspected to 
operate in dwarf novae (Faulkner et al., 
1983; Cannizzo and Wheeler, 1984). If out- 
bursts in FU Orionis stars are disk phenom- 
ena, then again a high-~/, high-a accretion 
occurs onto the central star. Our models 
suggest that convection is too weak to gen- 
erate turbulent transport corresponding to 
the energetic, high-a stages of protostellar 
systems, and that another mechanism must 
be involved. While it may be tempting to 
apply our convective model to the more 
quiescent, low-a stages of the disk, irradia- 
tion of the disk's surface by the young star 
and possible heating of the disk's surfaces 
by residual infall of matter may suppress 
this by causing the vertical temperature 
gradient to be subadiabatic for low enough 
accretion rates. 

It is not clear in previous scenarios of 
protostellar evolution at which point plane- 
tesimal or planetary formation is initiated. 
Clearly, at some point the grains separate 
from the gas to commence the formation of 
planetesimals. Weidenschilling (1984) has 
shown that while turbulence initially pro- 
motes coagulation of grains to small sizes, 
larger coagulations are destroyed by colli- 
sions using LPB's convective model. It is 
possible that with the lower convective 
speeds predicted by our model (vc <~ 0.01cs) 
the grains could coagulate to larger sizes. 
However,  Weidenschilling also points out 
that when grains coalesce in the dust-gas 
mix that the opacity drops, eventually shut- 

ting down the convective turbulence. 
Therefore an understanding of this crucial 
stage in planetary formation can only be 
achieved by detailed models that follow the 
dynamical behavior of the opacity in the 
disk as a function of grain size distribution 
as well as temperature. The credibility of all 
convective solar nebula models to date has 
suffered from this neglect. 

(c) Implications o f  the Disk Instabilities 

Our model predicts that, at an epoch 
when dust and grains were homogeneously 
mixed, the solar nebula was massive 
enough for gravitational instabilities to oc- 
cur. If, as suggested by Goldreich and Lyn- 
den-Bell (1965) and Paczyfiski (1978), mo- 
tions generated by gravitational collapse 
can in some way be transformed into turbu- 
lent motion (e.g., by interaction with rota- 
tional shear), the collapse of the disk could 
be balanced in a marginal state by heating 
from turbulent energy generation. We have 
investigated these models in Section VI. 
We find that the surface density falls rap- 
idly with increasing radius, which could 
suggest a natural mechanism for truncating 
the inner primordial nebula from the outer 
cloud. 

On the other hand, i f  gravitational col- 
lapse cannot be converted into turbulent 
motion, then the scenario for a steady state 
convective disk breaks down at radii 
roughly comparable to Uranus's orbit, be- 
yond which an unsteady region might have 
existed where gravitational instabilities de- 
veloped unchecked, provided enough mate- 
rial could accumulate there initially. The 
"gravitational instability" (GI) is unattrac- 
tive to proponents of the "core instability" 
(CI) hypothesis for formation of the giant 
planets. This is so because the GI scenario 
suggests that giant planets formed from in- 
stabilities in which gas (H and He) and 
high-Z material were homogeneously 
mixed. A basic tenet of the CI hypothesis, 
however, is that the outer planets devel- 
oped from solid, high-Z objects that, at a 
critical mass, initiated rapid contractions of 
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FIG. 12. The mass transfer term vtX (in g sec i) as a 
function of X (in gcm -2) for log R = 12, 13, and 14. As 

increases, the curves correspond to the ice, silicate, 
and iron models; for log R = 12, only the silicate and 
iron models are plotted. 

their gaseous envelopes; this hypothesis 
appears to fit models of the present planets 
far better than the GI model (Pollack, 
1984). 

A major problem lies in the inverse de- 
pendence of the accretion rate (i.e., the vis- 
cous couple) on the surface density X (see 
Sect. V; Fig. 12). As discussed in Pringle 
(1981), such a dependence may lead to the 
instability discovered by Lightman and 
Eardley (1974). For a short-wavelength si- 
nusoidal perturbation, the growth rate n of 
the instability is 

( I n , M )  3 0 
n -~ -~ (v t )k~  - O ~n ' (65) 

where kR is a radial wavenumber. In our 
solution, we typically find - 0  In/k//0 In E ~> 
2; thus, n > ~k~(vt) -~ ] (kRh)2acI l .  The rates 
for establishing vertical hydrostatic and 
thermal equilibria are II and ac~, respec- 
tively, where a typical value of ac = 10 -3 is 
found in our convective models. For inter- 
mediate wavenumbers, kRh - 1, the rate of 
growth for this instability exceeds that for 
maintaining vertical thermal equilibrium, 
and for large enough wavenumbers exceeds 
even the rate for maintaining vertical hy- 
drostatic equilibrium. 

Our "steady disk" would therefore tend 

to form rings, or perhaps clumps for non- 
axisymmetric perturbations, quite rapidly. 
The evolution of this instability is not 
straightforward, since radial gradients and 
time-dependent terms would become signifi- 
cant in the process. It is possible, for in- 
stance, that as the instability develops, a 
self-regulating mechanism acts to inhibit 
disruption of the disk, at least on some 
scales. It is clear, in any case, that the solar 
nebula cannot evolve into precisely the 
type of "s teady"  disk structure predicted 
by our convective model. Without proper 
treatment of radial and time derivatives, we 
cannot speculate the extent to which the 
steady disk structure, if such exists, devi- 
ates from this convective model. 

LPB's convective model is stable against 
this diffusive instability with O In A//O In X 
3. Other formulations of the turbulent en- 
ergy generation and dissipation by convec- 
tive motions could conceivably yield inter- 
mediate results with both stable and 
unstable regimes of parameter space. A 
convective nebula might then be subject to 
a hysteresis effect like that thought to occur 
in dwarf novae (cf. Bath and Pringle, 1985). 
The problem of the radial stability of steady 
accretion flows with convective turbulence 
certainly requires further examination. We 
need to clarify the manner in the distribu- 
tion of generation and dissipation of con- 
vective turbulence affects the stability of 
the solutions. We hope that large-scale nu- 
merical simulations of turbulent flows in a 
disk geometry will aid us in determining the 
validity of these prescriptions of convective 
turbulence. More detailed numerical 
models are also needed to follow the devel- 
opment of the instability should it occur. 

VIII. CONCLUSIONS 

In this paper we have presented results 
from a new convective model of the primor- 
dial solar nebula. This model incorporates 
new grain opacities by Pollack e t  a l .  (1986) 
and the prescriptions to treat convective 
turbulence suggested by Canuto and Gold- 
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man (1985) and Canuto et  al. (1984), which 
allow us to include directly the effects of 
radiative energy losses, rotation, and an- 
isotropy of convective motions. The turbu- 
lence is generated in the convective vertical 
structure straddling the midplane in propor- 
tion to the local convective buoyancy, 
which peaks well away from midplane. The 
turbulent energy deposition is assumed to 
be distributed smoothly throughout the 
convective midplane region. 

The results are, in brief: 
(1) We find lower, more variable values 

of the turbulent viscosity parameter a (typi- 
cally from 10 -2 to 10 -4) than in earlier 
models by Lin, Papaloizou, and Bo- 
denheimer (a from 10 -1'5 to 10-2). Our a 
appears to be highly sensitive to the local 
opacity. 

(2) We find an accretion rate M of about 
10 j8'5 g sec -I (5 x 10-8Mo year -I ) for a 
steady (constant)llt) structure having a 1Mo 
central object, extending in as far as Mercu- 
ry's present orbit, and having temperatures 
corresponding to estimated compositional 
temperatures of the present planets (Fig. 
10). However, for a lower mass central ob- 
ject, the maximal value of ~ / b y  this con- 
straint increases as M -3/4 to M -3, depending 
on the sequence of events in inner planet 
formation. 

(3) The surface density ~ increases stead- 
ily with radius in steady models, leading to 
satisfaction of Jean's criterion for gravita- 
tional collapse at a radius comparable to 
that of Uranus, and giving a disk mass 
greater than 0. IMo. 

(4) We find a long time scale for dispersal 
of the disk of greater than 2 x 106 years, 
compared with suspected time scales of 
105-106 years in young stellar objects. 

(5) Perhaps the most important result we 
find is an inverse h;/-2£ relation in most of 
the parameter space, implying a Lightman- 
Eardley-like diffusive instability operating 
radially. 

The occurrence of the Jean's instability 
at outer orbits and the Lightman-Eardley 
instability throughout the disk strongly sug- 
gests that the inner solar nebular could not 

have developed from the collapsing molec- 
ular cloud in the form of the "s teady"  disk 
models portrayed herein if convection were 
the sole source of turbulence. The long time 
scale for dispersal of the disk also argues 
that another more efficient source of turbu- 
lence was required to dissipate the gaseous 
disk. 

There are a number of improvements that 
we urge and anticipate in the physics of fu- 
ture modeling of primitive solar and stellar 
nebulae: 

(1) Rather than the snapshot approach 
used in all computations thus far, where 
one models an imagined epoch of the neb- 
ula with a steady disk of perfectly coupled 
dust and gas, one should perform more re- 
alistic modeling of formation of the inner 
protoplanetary disk from infalling material 
from the outer cloud; and, inclusive of this, 

(2) realistically model the dynamic be- 
havior of the dust opacity and grain size 
distribution in the disk. 

The sensitivity of the occurrence of the 
of the inverse ~/-E relation (and the con- 
comitant radial diffusive instability) to the 
vertical distribution of turbulent energy 
generation and dissipation deserves further 
study and begs for better basic models of 
turbulent transport in this kind of geometry 
and rotational shear. Efficient numerical 
simulations on supercomputers, now possi- 
ble in principle, may soon provide answers 
to this problem. 

Further observations of protostellar ob- 
jects and protoplanetary systems should 
provide tighter constrains on conditions in 
and evolution of primordial stellar nebulae. 
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