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Motions in the Interiors and Atmospheres of Jupiter and Saturn
2. Barotropic Instabilities and Normal Modes of an Adiabatic Planet'
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The low-frequency motions in a rotating, adiabatic, inviscid fluid planet are barotropic. quasi-
geostrophic. and quasi-columnar. The only steady motions are differentially rotating cylinders in
which zonal velocity & is a function of cylindrical radius r. Projected onto the planetary surface the
limiting curvature at which the flow becomes unstable is negative: its amplitude is three to four
times the amplitude for thin atmospheres. for planets in which density decreases linearly to zero at
the surface. This result, derived first by A. P. Ingersoll and D. Pollard (1982, {carus 52, 62-80) for
low zonal wavenumber perturbations, is shown to hold for all quasi-columnar perturbations. When
% = 0 the small amplitude motions are oscillatory. The lowest mode, as regards structure parallel to
the axis, propagates eastward with a speed proportional to (wavelength)’. Both the barotropic
stability criterion and the phase speed of the normal mode oscillations have features in common
with Jupiter and Saturn observations, although the test is inconclusive with current data and

theory.
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INTRODUCTION

This is the second paper in a series deal-
ing with possible large-scale motions in the
giant planets’ fluid intertors. The first paper
(Ingersoll and Pollard, 1982, hereinafter re-
ferred to as IP) presented a scale analysis
and a set of equations describing motions in
a rotating sphere of variable density when
the eddy viscosity and superadiabaticity
are small. A simple problem was solved,
that of an inviscid adiabatic fluid sphere
with a steady zonal wind varying as a func-
tion of cylindrical radius. This differentially
rotating, concentric cylinder pattern was
known to be a possible steady-state config-
uration (Poincare, 1910), but its hydrody-
namic stability had not been previously in-
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vestigated. [P restricted their analysis to
perturbations of low zonal wavenumber,
and found that stability is controlled by a
parameter B analogous to 3, the parameter
which enters in the barotropic stability cri-
terion for thin atmospheric layers (e.g..
Holton, 1979). The two parameters differ in
both sign and magnitude, however, so the
barotropic stability criterion for deep fluid
spheres is significantly different from that
for thin layers. IP concluded that Jupiter’s
and Saturn’s observed zonal wind profiles
are close to marginal stability according to
this deep sphere criterion, but are several
times supercritical according to the thin at-
mosphere criterion.

The present paper extends the analysis of
IP to a more general class of flows. If the
zonal jet spacing L is much less than the
planetary radius g, the fastest growing per-
turbations have zonal wavenumbers of or-
der ay/L, which is large. These perturba-
tions are outside the class considered by IP.
The motion is then quasi-columnar in that
the scale of variation in a plane perpendicu-
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MOTIONS IN THE GIANT PLANETS

lar to the axis of rotation is much less than
the scale parallel to the axis. The resulting
equations are nonseparable, and the mathe-
matical difficulties are greater than those
faced by IP.

Below we examine the stability of the ro-
tating cylinder flow to the more general
class of perturbations. We solve for the
growth rates and spatial structure of the
perturbations. The stability criterion is
once again a condition on the curvature of
the zonal velocity profile, and we compare
these new results with those obtained by IP
and with Voyager observations. The math-
ematical method is also used to study the
low-frequency modes of oscillation of a ro-
tating adiabatic fluid sphere. A comparison
is made between these modes and ordinary
Rossby waves in a thin atmosphere as well
as waves on Jupiter.

The motivation for this study is twofold.
First, these low-frequency, inviscid, adia-
batic, quasi-columnar motions represent a
new example of geostrophic flow, and de-
serve study for their own sake. Second, the
internal motions of Jupiter and Saturn prob-
ably affect the flow in the visible atmo-
spheres. Certain features of the observed
circulation—the curvature of the zonal ve-
locity profile (IP), the preponderance of
strong eastward flow on Saturn (Smith er
al., 1982; IP), the existence and time-de-
pendent behavior of long-lived ovals (Inger-
soll and Cuong, 1981; Mac Low and Inger-
soll, 1985)—may be inconsistent with some
of the hypotheses about internal motions or
lack thereof. Thus, surface observations
may tell us something about the interior.
But first we must find out what kinds of
internal flows are possible, that is, consis-
tent with the equations of motion. The
present paper is a step toward that goal.
For a general review of atmospheric dy-
namics of Jupiter and Saturn the reader is
referred to Ingersoll et al. (1984).

MATHEMATICAL MODEL

IP derived the anelastic equations of mo-
tion (Ogura and Phillips, 1962) that describe
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slow motions in a rotating, quasi-adiabatic
fluid sphere. These equations are self-con-
sistent in that they conserve energy. Their
advantage is that they do not propagate
sound waves. IP further restricted consid-
eration to the case of an adiabatic fluid—
one where entropy per unit mass is con-
stant both with respect to time and
position. These equations, IP (40) and (46),
describe the quasi-columnar motions of a
rotating barotropic fluid. The motion takes
place in a cylindrical annulus of radius r ~
ro = ag cos A, where X\ is the latitude at
which the cylinder meets the surface of the
planet. The radial thickness of the annulus
is of order L, and the condition L < g, al-
lows us to unwrap the annulus and treat it
using Cartesian coordinates. The spherical
geometry still enters in the density struc-
ture and in the boundary condition which
states that the normal component of veloc-
ity is zero at the planetary surface. The co-
ordinate system and choice of length scales
are reviewed in the Appendix.

Any zonal flow & that depends only on
cylindrical radius r is a steady solution. IP
derive the linear equations that govern
small amplitude perturbations superposed
on this basic zonal flow. These equations,
IP (48)—(53), are the starting point of our
analysis:

(D

T
Uu=u-— 3y explik(x — c1)],

v = ik explik(x — c1)], 2

w = ikw explik(x - ct)], 3)
_ 9 b ap
(Ll - c) (a—yz — k2¢) + (7)57
d*u _ b apw)
- d_yz) =p a0 @
(i — ok*w = b %—f, (%)
pw = tp cot A,
z==h==*sin k. (6)

Here (x, y, z) are Cartesian coordinates
with x to the east, y inward along a cylindri-
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cal radius, and z parallel to the axis of rota-
tion. The dependent variables ¢» and w are
assumed to vary on a scale L in the y direc-
tion and on a scale comparable to the plane-
tary radius in the z direction. Departing
slightly from IP we scale r and z by the
planetary radius g, rather than the cylindri-
cal radius a, cos A. The velocities corre-
sponding to (x, v, z) are (i, v, w). The un-
perturbed zonal flow is u(y), and it is scaled
by a velocity uy. The wavenumber A and
eastward phase speed ¢ of the disturbance
are scaled by L' and wu,, respectively.
Time t is scaled by L/uy. Although the
above equations are dimensionless, we will
frequently include scaling factors in our for-
mulas to clarify the physical dependence.

The important dimensionless numbers
are b~! and 8. where

b ' = upag/ (2L = 0(1).
o = L/a() < 1.

(7)
(8)

The fact that the aspect ratio 8§ and the
Rossby number & = b '8 are small justifies
the quasi-geostrophic approximation for
this problem. Since density p varies on the
scale of the planetary radius but not on the
scale of L, both p, (1/p)dp/or and (1/p)op/az
are of order unity and vary smoothly in .
Their v variation is negligible for distur-
bances of scale L < ¢;. Generally we use a
polytropic model of the density

stn(R)

— (52 2302
=R R (r= + z-)"-.

p(R) = py

9

Here R is the dimensionless spherical ra-
dius, with R = | at the planetary surface; r
is the dimensionless cylindrical radius, with
r = rg = ag cosi in the middle of the annu-
lus.

To examine the stability of a particular
zonal flow i (y) we solve Eqgs. (4) and (5) for
the eigenvalue ¢. The equations are linear
partial differential equations in the vari-
ables ¢(y, z) and w(y, z). The eigenvalue is
¢ = ¢, + ic;, SO ¢, 1s the phase speed and k¢,
is the growth rate of the disturbance. Most
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of the examples are for the profile

i = uy cos{my/L), vl = L., (10)

which is a single cosine jet with peak east-
ward velocity in the middle of the channel.
(One may either regard y and L as physical
quantities, or else take L = | and treat y as
dimensionless.) A few comparisons are
made with double and quadruple cosine
jets—the same profile as in (10) but for the
regions —L <y =3Land -L =y =7L. An
increase in the parameter o' corresponds
to an increase in the curvature of the veloc-
ity profile. For any given b~! the problem is
to vary the disturbance wavenumber A to
find whether the given profile is unstable:
that is, whether positive values of k¢; exist.

For this barotropic flow model. growing
disturbances get their energy from the ki-
netic energy of the zonal flow. This require-
ment is seen by considering the equation
for disturbance kinetic energy:

+ k’-’lw\z) pdydz =

2
Im (kep* E’—‘f’) pdvdz. (11)

Jdy

2

- kP

I ’ ’ du

Jody

To derive this equation, multiply Eq. (4) by
pd*. multiply Eq. (5)* by pw, add the
two equations. intcgrate over the domain.
and take the imaginary part of the result.
Here an asterisk denotes the complex con-
jugate. Both the d2¢p/ay” term and the d(pw)/
9z term in (4) are integrated once by parts.
The surface terms arising from the integra-
tions by parts are assumed to vanish.

The lateral surface term is proportional
to pp*dd/ay, which vanishes if we impose
the boundary condition

¢ =0, y =

This condition is equivalent to having solid
walls on the sides of the channel. One way
to show that these artificial boundaries do
not affect the calculation is to vary their
position, for example, by comparing the

+L. (12)
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single and double jet solutions with each
other. The other surface term has the form

bpd*w = xbp|d|* cot A, z = *sin A,

(13)

where we have used the boundary condi-
tion (6). The fact that this term has no imag-
inary part means that this term also does
not contribute to the energy balance. The
energy equation (11) is obtained after multi-
plying the result of these manipulations by
k/2.

From Egs. (1)-(3) it follows that the left
side of (11) is dK/dt, the rate of change of
disturbance kinetic energy. The factor 1/2 is
needed because, although disturbance en-
ergy grows at the rate 2&c;, there is a factor
of 1/2 in the expression for kinetic energy
and another factor of 1/2 from averaging
over cycles in x. The right side of (11) can
be rewritten so that the equation becomes
c:{—lf = - J' f Z—;u’v’ pdydz, (14)

where ©' and v’ are the disturbance velocity
components in the x and y directions, and
the overbar denotes an average over cycles
in x.

The right side of (14) is thus the sole
source of disturbance kinetic energy for
this barotropic flow model. For the distur-
bance to grow the term u’v’ must be posi-
tive where du/dy is negative and vice versa;
the disturbance must transfer x momentum
out of the center of the jet. This is opposite
to the transfer that was actually observed
by Ingersoll et al. (1981) in Jupiter’s atmo-
sphere, indicating that the observed eddies
on average are different from those consid-
ered here. Our result may still be relevant
to Jupiter and Saturn if at deeper levels the
curvature of the zonal velocity profile is
limited by these unstable barotropic eddies.
Ultimately the relevance of this barotropic
model depends on the interior being adia-
batic, as stated at the outset.

We shall also study the solutions ob-
tained by setting # = 0 in Eqs. (4) and (5).
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From (11) it follows that ¢; = 0; these solu-
tions are wavelike in character and do not
grow in time. The velocity scale ug is now
arbitrary, but by setting b = cos A in (7) we
adopt the velocity scale 2QL%/ry, where L is
the length scale of the disturbance and ry, =
ag cos A is the cylindrical radius in physical
units. The phase speed will therefore be
given in terms of 2QLYr,. With i = 0 the
coefficients multiplying the terms in ¢ and
w do not depend on y over the distance of
L. Therefore the y dependence may be fac-
tored out, and the disturbance has the form

f(2) explik(x ~ c¢t) + iny]. (15)

The problem is to find the eigensolutions
f(2) and the real eigenvalue ¢ for different
choices of k£ and n. The phase speed c(k, n)
may be compared to the phase speeds of
waves in thin atmospheric layers and waves
observed on Jupiter and Saturn.

METHOD OF SOLUTION

IP considered the case & — 0, which
means that the physical wavenumber of the
disturbance is much less than L', where L
is the width of the jet (10). In this case Eq.
(5) becomes d¢/0z = 0, and (4) may be inte-
grated with respect to z to yield a differen-
tial equation in y only. Below we do not
restrict the value of &, so the differential
equations (4) and (5) are not separable in v
and z. Galerkin methods are used to find the
solution (e.g., Haltiner and Williams, 1980).

We represent the solution as a sum of
basis functions

J M
& =2 O dinfiDg.y.  (16)

=1 m—1

and similarly for w. Here &;, are the un-
known coefficients, and fig,, are the chosen
basis functions. For the z direction we use a
finite element decomposition with f(z) be-
ing piecewise linear functions centered on J
+ 1 equally spaced nodes in the range [z| <
sin A. The reader is referred to Haltiner and
Williams for details. The number of finite
elements, or intervals, from z = —sin A to z
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= sin A is J, and J/2 is the number of ele-
ments from the equator at z = 0 to the sur-
face at z = sin X. Accordingly, J = 2 has a
node at the equator and a node at the sur-
face, and is called the 1-element model; J =
4 has an additional node halfway between
the surface and the equator and is called the
2-element model, and so on. We have
solved the barotropic stability problem for
the 1-, 2-, and 3-element cases.

For the y direction we use a spectral de-
composition consistent with the boundary
condition (12),

gm = sin[mm(y + L)/2L],

m=1,2,--- .M (17)
For the double cosine jet the denominator
2L is replaced by 4L. Typically M was ei-
ther 20 or 40 in our barotropic stability anal-
ysis. It is convenient to think of the product
Jfigm as a single basis function /;, where i =
M@ — 1) + m. The maximum value of / is
therefore M x J, which we denote by N.
The Galerkin method involves substituting
the expansions of the form (16) into Eqs. (4)
and (5), multiplying by each of the basis
functions #4;, and integrating over the do-
main. Since there are N basis functions and
two differential equations, one obtains 2N
linear algebraic equations in the 2N un-
known coefficients for ¢ and w.

As discussed by Haltiner and Williams,
the Galerkin method leads naturally to en-
ergy conservation in equations with qua-
dratic energy invariants. The latter phrase
refers to the terms in the expression for the
energy of the system. In our problem these
are the terms on the left side of Eq. (11),
which are quadratic in ¢ and w. One forms
the Galerkin integrals of (4) and (5) as if one
were deriving the energy equation (11).
This means multiplying (4) and (5) by ph;
and not simply by A; before integrating with
respect to y and z. With this method the
energy equation (11) is satisfied exactly
when the basis function expansion (16) is
used for ¢ and w.

In finite element jargon the boundary
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condition (6) is a natural boundary condi-
tion {(c.g., Bathe, 1982). Such boundary
conditions either involve derivatives (e.g.,
d¢h/az) or cross terms (e.g., both w and ¢).
To satisty such conditions one integrates by
parts as it forming the energy integrals. The
derivatives and cross terms are eliminated
from the surface terms by substituting the
expressions for the boundary conditions.
These terms then appear in the Galerkin
equations. In our case the surface term aris-
ing from (6) is always zero because it is
multiplied by p, which vanishes at the plan-
ctary surface z = *sin A,

The method is much simpler when « is
constant (or zero). Then the disturbance
has the form (15), and the basis function
representation is simply

J

¢ = Z b f(2). (18)
with a similar expression for w. It becomes
possible to compare the 4-, 8-, and 16-ele-
ment models in this case. One result of this
comparison is that the method does well in
satisfying the boundary condition (6) even
without the factor of p. We find that the
ratio w/¢p at the surface differs from the de-
sired value cot A by amounts less than (J/
2)72. For the 8-element model (J/2 = 8) the
error is less than 1/64. For the 4-element
model the error is less than 1/16. This satis-
fying of the boundary condition (6) goes be-
yond what is required for energy conserva-
tion, which is taken care of automatically
by the fact that p = 0 at the surface.

The Galerkin representation of two vari-
ables ¢ and w with N basis functions leads
to a linear eigenvalue problem of order 2N
X 2N, namely,

BX = cAX. (19)
Here X is the vector of length 2N contain-
ing the unknown coefficients ¢; and w, that
appear in the expansions (16) or (18). The
2N X 2N matrices A and B contain the inte-
grals of each basis function with every
other basis function multiplied by the ap-
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propriate functions u(y), p(z, r¢), and so on,
that appear in (4) and (5). Finally c is the
unknown eigenvalue, having the same
meaning as in Egs. (1)-(5).

Equation (19) was solved using IMSL li-
brary subroutines INV2F, EIGRF, and
EIGZF on a VAX 11/780 computer. These
routines give all 2N eigenvalues, each with
its own eigenvector. Only some of these so-
lutions are physically significant, however.
The meaningful solutions look the same re-
gardless of how many basis functions are
added to the representation. For J and M
sufficiently large they vary smoothly in y
and z. And in the barotropic stability prob-
lem they are frequently associated with the
fastest-growing solution. The other solu-
tions are artifacts of the discrete represen-
tation. They vary wildly with respect to y
and z; their eigenvalues change drastically
when more elements or more sine functions
are added to the representations (16)-(18).
And unfortunately, when u is not constant
they sometimes have finite growth rates.
Problems arise particularly when the physi-
cally meaningful solutions have zero
growth rates. Then the spurious solutions
cannot be eliminated on the basis of growth
rate alone. They must be examined by vary-
ing the resolution (number of basis func-
tions) before any physically meaningful
conclusions are drawn.

RESULTS: BAROTROPIC INSTABILITY

Two kinds of problems were investi-
gated: the stability of the cosine jet u = iy
cos(my/L), and the propagation of waves
with # = 0. In both cases the goal was to
extend the results of IP, which are valid
only in the limit £k — 0. In that limit ¢ de-
pends only on y and obeys Eqs. (54)-(56) of
IP, which are

d*¢p

~ d%i
(u_C)d—)JZ+<

B_:i? & =0, (20)
20 dH

B="gar

h
H = f_h pdz. (1)

Here we are using dimensioned variables,
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so h = ag sin A. A useful formula, valid
when p approaches zero linearly near the
outer surface as in (9), is

—B sin? A — (3.00)2Q/ay, A—=0. (22)

In general B, which plays the role of 8 in
the barotropic vorticity equation of meteo-
rology, is negative. This means that distur-
bances with k — 0 cannot grow unless d i/
dy? is more negative than B somewhere in

the region.
If the cylindrical flow u(y) is projected
onto the planetary surface using dy = —dr

and r = ay cos A, the necessary criterion for
instability is

“le)—\ (B sin? A — al%d—)\';) >0. (23)
This condition is most likely to be satisfied
near the peaks of the eastward jets. Equa-
tion (22) gives the value of B sin’\ as A — 0.
At A = 30° the value of B sin?A is (—3.29)8,
where 8 = 2Q) cos Ma,. At all latitudes B
sin? A is between —38 and —48, according
to IP. Figure 1 shows a comparison be-
tween the observed curvature (l/ad)d’u/
d\? and B sin? \. If barotropic instabilities
of the type considered by IP were limiting
the curvature of the zonal flow, the two
curves should approach each other but not
Cross.

For the cosine jet (10) the most negative
curvature of u as a function of y (or r) is
—ugm?/L?. If this were equal to B at latitude
A = 30°, one would have

uero/2QL% = 1.0003, A= 30° (24)
For larger values of wuory/2Q0L? the flow
would be unstable. We shall call this the
Rayleigh criterion, because of the similarity
to Rayleigh’s analysis for parallel shear
flows (e.g., Greenspan, 1968). However,
(20)—(24) are applicable only for long-wave-
length disturbances (kK — 0).

Figure 2 shows the growth rate contours
for 0 = kL = 3, where k is the physical
wavenumber and L is defined from the pro-
file width in (10). The results are a compos-
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Fi1G. 1. Curvature or second derivative of Jupiter’s
zonal velocity profile, after Ingersoll and Pollard
(1982). The original data are from Ingersoll er al.
(1981). Here u is the mean eastward wind speed and v
is the northward horizontal coordinate (different from
v in the text). Voyager | data are on the left and Voy-
ager 2 data are on the right. The smooth curve to the
right of each profile is 8, the planetary vorticity gradi-
ent for thin spherical shells. The smooth curve to the
left of each profile is B sin® A, which is relevant for
deep fluid spheres. The observed profiles rarely cross
the left curve but often cross the right curve. suggest-
ing that a deep interior flow with the observed curva-
ture might be marginally stable.

ite of 1-, 2-, and 3-element calculations. with
20, 40, and occasionally 80 sine functions in
the spectral decomposition. The fact that
the zero growth rate contour does not inter-
sect the line k£ = 0 at the Rayleigh criterion
is due mostly to the sidewall boundary con-
dition (12). Runs for the double and quadru-
ple cosine jets give results that approach
the Rayleigh criterion within 1%.

Figure 2 extends the results of 1P upward
from the horizontal axis, that is, from k£ = 0.
The peak in the growth rate occurs near kL
= 1, ugrg/(2QQL% = 1.5. Instability still sets
in near uyry/(2Q1L?) = 1 over a range of kL
from 0 to 2. There are no growing solutions
for kL > 2. Nevertheless, Fig. 2 basically
confirms IP by indicating that the Rayleigh
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criterion (24) based on the theory for & —
0 provides a good criterion for stability for
all disturbance wavenumbers. The phase
speed contours (normalized by u,) indicate
that the fastest-growing disturbance tends
to travel with that part of the flow where the
Rayleigh criterion is marginally satisfied,
that is, where B — d?u/dy* is close to zero.
For values of uyro/(2Q1L?) close to 1.0 the
criterion is satisfied at the peak of the jet (¢,
= 1.0). For values around 1.5 the criterion
is satisfied further down the sides of the jet
(¢, = 0.63).

Figure 3 gives a representation of the
fastest-growing disturbance near kL = 1.0,
ugro/(2Q2L%) = 1.5. It is an even disturbance
in that the streamfunction ¢ and the x and v
components of velocity are symmetric
about the equator 7 = 0. The northward
axial velocity ikw is antisymmetric. This is
the only physically meaningful solution that
can grow for this value of uyry/QQL%). We
show the results of the I-element calcula-
tion. The 2-element calculation is essen-

T T T T
10 DEEP BAROTROPIC
a0
3 INSTABILITY
Si u =g coslmy/L), iyl <o
‘123 £ = py sin{wRI/(TR), latitude = 30°
5,
=20
wl
5 — growth
= rate in units
w of uy/L
210 --- phose
< speed in
Eé) units of ug,
e Rayleigh crid
= ayleigh criterion
Lo ol =0
&0
05 [Re] [ S0

ZONAL VELOCITY  ugr /2605

FiG. 2. Growth rates and phase speeds of distur-
bances on the cosine jet. Here v is distance inward
from the cylinder of radius ry. The cylinder meets the
surface ot the sphere at latitude 30°. Density p depends
on the spherical radius R. with R = 1 and p = 0 at the
planet’s surface. The eastward wavenumber of the dis-
turbance is k., and the half-width of the jet is L. The
arrow labeled Rayleigh criterion indicates the onset of
deep barotropic instability when sidewall effects are
unimportant and &L — 0; this criterion was originally
derived by Ingersoll and Pollard (1982) for deep
spheres.
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F1G. 3. Complex phase and amplitude of the fastest
growing disturbance at kL = 1 and wuyo/200L2 = 1.5
(Fig. 2). Here ¢, and ikw, are the streamfunction and
axial velocity, respectively, at the surface of the
planet, and ¢ is the streamfunction in the equatorial
plane. Only the relative amplitudes and phases are sig-
nificant. As kL — 0 the three phases approach a com-
mon curve.

tially the same; the phase speed and growth
rate differ by 1073 and 1072, respectively,
between the two calculations. The stream-
function and axial velocity at the surface
are ¢, and ikw,; the streamfunction at the
equator is ¢b%. The zonal velocity profile is a
full cosine with maximum eastward veloc-
ity in the middle of the figure. Cross stream
distance is simply y/L as in (10) with the
origin displaced by one unit.

The phases of ¢ and ¢, as functions of
distance from the jet center are perhaps the
most interesting feature of Fig. 3. The en-
ergy equation (14) requires that #'v’ be pos-
itive where di/dy is negative and vice
versa. An alternate expression for u'v’,
which appears in (11), is —(k/2)Im(¢p*9¢p/
dy). This is equal to —(k/2)|d[2op/ay, where
p(¢p) = tan~'(¢/,) is the phase of the com-
plex amplitude of the streamfunction de-
fined in (1) and (2). Thus a growing distur-
bance must have dp/dy positive where
du/dy is positive and vice versa. This re-
quirement is confirmed in Fig. 3, which
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shows that the phases of ¢ and ¢; both
have maxima near the jet center, where ir
has its maximum. The fact that the phase
change is of order 45° in a distance L means
that the negative correlation between u’v’
and du/dy would be clearly observable if
these were the dominant eddies. As stated
earlier a positive correlation is observed in
the visible atmosphere (Ingersoll ez al.,
1981).

These disturbances have a substantial
amount of energy associated with their ax-
ial motion. The three terms on the left side
of (11) are associated with the x, y, z com-
ponents of velocity, respectively, and they
are all of the same order of magnitude. De-
spite this large axial velocity, the motion is
geostrophic in the xy plane. The last fact
follows from the smallness of L/ay and the
fact that the motion is quasi-columnar.

The physically significant modes, which
vary smoothly in y, are insensitive to the
number of terms in the basis function ex-
pansion. As already stated, the eigenvalue
¢ varies by less than 1% at kL = 1, ugry/
(2QL% = 1.5 when the 1-element solution is
compared to the 2-element solution. Similar
changes were noted in comparing the 20-
term and the 40-term sinusoidal expansions
in y. However for larger values of kL (e.g.,
kL = 3), the spurious modes have substan-
tial growth rates (k¢; = 0.3). These modes
oscillate rapidly in y, and their growth rates
decrease as more terms are taken in the si-
nusoidal expansion. Yet they would cause
trouble in a nonlinear time-dependent cal-
culation that was designed to follow the
physically significant modes as they grow
to finite amplitude.

RESULTS: INERTIAL OSCILLATIONS

The other application of these methods is
to normal mode oscillations where z = 0.
Since rotation provides the restoring force,
they will be called inertial oscillations (e.g.,
Greenspan, 1968). Other authors (Hide,
1966; Glatzmaier and Gilman, 1981) have
discussed these phenomena in other con-
texts. Ours is perhaps the first application
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to Jupiter and Saturn. As shown earlier, the
disturbance has the form (15). For compari-
son with observations it is useful to project
this variation onto the surface of the sphere
and choose L~' to be the projected
wavenumber. This is accomplished by let-
ting k. = (1/L)cos 6 be the eastward
wavenumber as seen at the surface and &, =
(1/L)sin 6 be the corresponding northward
wavenumber, with &, = &k and k, = s sin A.
The last step follows because the rapid vari-
ation in r is spread out when projected onto
the surface. The phase speed ¢, of a wave
as it moves over the surface of the sphere at
angle 6 to the eastward direction is then

¢p = ckelks + k7)™V2 = ¢ cos 6. (25)

where ¢ is the quantity appearing in Egs.
(H-(3).

For fixed L the phase speed ¢, is a func-
tion only of the direction of propagation. A
vector of length ¢, at angle 8 to the x axis
traces out a curve that defines the wave.
For example, a Rossby wave for a fluid in a
thin spherical shell has

—B cos 0
¢p = CcCosf = TI?_IT = —BL* cos 6.

(26)

where B8 = (2QU/ro)cos? A. The propagation
speed ¢, cannot be negative, so the Rossby
wave phase speed has no eastward compo-
nent—it plots as a circle of diameter 2€}1°
cos? Mry centered half a diameter to the
west of the origin.

As another example, the analysis of IP
gives phase speeds in the limit k&/n — 0, i.e..
cos 8 — 0. For # = 0, Eq. (20) gives ¢ =
—B/n?. This relation combined with (25)
yields

¢p = —(Bsin? MB)BL* cos 6,  (27)
since n? = /(L sin A)? in this limit. As
stated in connection with Eq. (23). — B sin”
A is three to four times 8 and is equal to
(3.29)8 at A = 30°. So at latitude 30° we

have, for [cos 6] < 1,

¢y = (3.29)BL2 cos 6. (28)

INGERSOLL AND MILLER

This looks like the Rossby wave circle (26),
except it i1s 3.29 times larger and its center
lies half a diameter to the east of the origin.
However, the analysis of IP defines only
the start of the curve—the vertical part that
lies close to the y axis. This part describes
northward and southward propagating
waves, and also eastward and westward
propagating waves that are trapped within
latitudinal limits that are small compared to
the east—west wavelength. The analyses by
Hide (1966) and by Glatzmaier and Gilman
(1981) were also subject to these restric-
tions.

The methods developed in this paper al-
low us to complete the curve for all direc-
tions of propagation (values of §). We can
also investigate higher modes, those for
which the phase of the oscillation changes
with respect to ;. We define the Mth mode
as an oscillation with M nodes (zero cross-
ings—not to be confused with finite ele-
ment nodes) between z = —sin A and z =
sin A. IP’s results are for the Oth mode (in-
phase oscillations at all z).

Figure 4 shows the curves at latitude 30°,
using the 8-element model. The results dif-
fer from the 16-element model by less than
0.01%. The speeds are shown scaled by V -
201 %Yr,, where V is the unit indicated with
each curve. Mode 0 propagates eastward
with a maximum phase speed of
(8.363)2Q2L2/ry. This mode does not propa-
gate westward. Mode 1, for which the oscil-
lations in the northern and southern hemi-
spheres are 180° out of phase, propagates
eastward with a maximum phase speed of
(11.502)2QL%r,. Its maximum westward
speed is (0.943)201%/ry. Higher modes have
higher speeds. The Rossby wave, which is
not an internal mode, is shown for refer-
ence only. Its maximum westward speed is
(0.750)2Q.L/ry.

According to Fig. 4, the complete curve
is not a circle; the phase speed is strongly
peaked in the direction of eastward propa-
gation. This peaking increases as the lati-
tude decreases. Table I shows the eastward
phase speed (cos 6 = 1) for the lowest even
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F1G. 4. Propagation diagram for deep inertial waves
projected onto the surface of the sphere at latitude 30°.
The length of the vector from the origin to the curve
represents the phase speed scaled by V2QL%/ry, where
V is the unit indicated, and 2#wL is the wavelength
projected onto the surface. The lowest four axial
modes are shown. The Rossby wave curve is for thin
spherical shells, and is shown for reference purposes.
Density is assumed to vary as sin(wR)/(wR) as in
Fig. 2.

mode (mode 0) and the eastward and west-
ward phase speeds (cos 8 = *1) for the
lowest odd mode (mode 1). These results
are for pure east—west propagation, waves
with no variation in y. Below we consider
waves that are trapped in y, i.e., waves
whose north—south wavenumber n is much
larger than the east-west wavenumber & al-

TABLE 1

MaxiMUM PHASE SPEEDS (PosITIVE EASTWARD) IN
UNITs oF 2QLYr,

Latitude Internal modes Rossby
(deg) wave
0 i |
15 32.54 39.56 —0.986 —0.933
30 8.363  11.502  —0.943 —0.750
45 3.271 5.072 —-0.862 -0.500
60 1.232 2.311 -0.719 —0.250
75 0.2861 0.8335 -0.464 -0.067
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Fi1G. 5. As in Fig. 4 but for constant density.

though the waves propagate only in the
east—west direction.

Figures 5 and 6 show the results for a
constant density sphere. According to (21),
H is then 2aq4 sin A, and—B sin? A is (2€/
ro)cos? A, which is exactly equal to 8. Thus,
the behavior of the phase speed (27) for
|cos 8] < 1 is exactly the same as for a thin
atmosphere (26) but with 8 replaced by —3.
Figure 5 shows that the complete phase

2 T T T T T
Rossby Deep inertial waves with p=const
waves
| b
C, 600\ \g5° \30°  atitude =15°
O _—
_I._ —d
units of C are BK?
o ! L | ! \
=1 o} | 2 3 4 5 6

C

X

FiG. 6. As in Fig. 4 but for constant density and
scaling appropriate to Rossby waves. The phase speed
is scaled by Bk~? or 20012 cos? Nry, so Rossby waves
plot as a circle of unit diameter for all latitudes A. The
lowest mode (mode 0) is shown at latitudes of 15°, 30°,
45°, and 60°. The pronounced peak associated with
pure eastward propagation increases as the latitude
decreases.
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speed curve is elongated in the direction
cos # = 1, but less so than when density
decreases outward (Fig. 4). Figure 6 shows
the latitude variation of the mode 0 curve,
and illustrates the fact that the degree of
elongation for cos # = 1 increases toward
the equator.

We now compare the phase speeds of
Fig. 4 and Table I to the 100 m/sec zonal
velocities that are typical of Jupiter and
Saturn. The rationale is that some of the
observed phenomena might be related to
deep inertial waves. We do not suggest a
mechanism; our aim is merely to see which
of the quasi-columnar inertial oscillations
are in the right ranges of wavelengths and
phase speeds.

We treat the latitudinal bands as wave-
guides although the mechanism of trapping
is unclear. Projected onto the equatorial
plane the y vanation of the zonal velocity
profile is roughly sinusoidal, with a wave-
length of order 12,000 km (e.g.. IP Figs. 3—
5). At middle latitudes where B can be re-
garded as constant, the trapped wave has
the form

f(z) cos(ny) explik(x — ¢H},  (29)

with L = 1/n of order 12,000/27 km, or 2000
km. Equation (29) is equivalent to (15), but
it now describes an eastward or westward
propagating wave (¢ > ( or ¢ < 0) with a
standing wave (trapped) structure in v.
Three cases are considered: long waves
trapped in a narrow midlatitude band (kA <
n), short waves trapped in a relatively wide
midlatitude band (k > n), and long waves
trapped in a narrow band on the equator.
For k < n the analysis of IP is applicable.
Equation (20) gives ¢ = —B/n’, where —B
sin? A is of order 38. or (6{)/u) cos A ac-
cording to (22). Since ¢ is independent of &
the waves are nondispersive. For Jupiter
with n = 1/(2000 km), we have
68} cos A
¢ = s
dogh- SIn- A
This is a high speed. At latitudes of 45°, 30°,
and 15°, the eastward speeds are 85, 208,

. ( m ) COS A (30)

sec/ sin® A’
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and 865 m/sec, respectively, according to
the above formula. Shorter waves move
more slowly, as do waves trapped on the
equator.

For k > n the results of Table I are appli-
cable. Now the east—west wavenumber de-
termines the scale, and L is l/k. For L =
1000 km at latitudes of 45°, 30°, and 15°, the
eastward speeds are 23, 48, and 166 m/sec,
respectively, for mode 0 oscillations. For
shorter waves the propagation speeds fall
as L”. The waves are dispersive; the depen-
dence on L is similar to that for Rossby
waves.

For long waves trapped on the equator
Eq. (20) is applicable, but B cannot be re-
garded as constant. Instead from (22) we

have
—B = 6Q/(aq sin® A) = 3Q/y, (31

where y 1s radial distance inward from the
surface of the planet at the equator:

Y = dy — dy €Os A = (ay/2) sin® A, (32)
With # = 0, Eq. (20) becomes
d*¢p 30
o + o ¢d =0, (33)

the solution of which is a Bessel function
(e.g., Abramowitz and Stegun, 1965, for-
mula 9.1.50):

d(y) = v'2Z(s), § = 2(3),9/|(")m.

where Z,is Jyor Y, for ¢ > 0, and is I, or K|
for ¢ < 0. Of these four choices only J; is
relevant to equatorial waves. For this solu-
tion ¢ oscillates regularly in y and vanishes
at y = 0. Since ik¢ is the inward radial ve-
locity, the condition ¢¢ = 0 at y = 0 corre-
sponds to having vertical velocity vanish at
the planet’s surface, as it should. The Y,
and K, solutions do not vanish at y = 0 and
have logarithmically singular derivatives.
The I, solution does vanish at y = 0, but it
grows exponentially in y. The J; solution
propagates to the east and has its first zero
ats = 3.8317.

It is tempting to associate these long-
wavelength, eastward propagating waves

(34)
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with the equatorial plumes that were seen
in the latitude band 0 < A < 9° at the time of
Voyager (Smith et al., 1979, Fig. 1). Setting
s = 3.8317 at A = 9° gives

_2( 2
€=3

2
s 2N —
3.8317) Qay sinz A = 126 m/sec.

(35)

This is only slightly greater than the east-
ward velocity of the plumes, but the agree-
ment is fortuitous. First, we have not iden-
tified a trapping mechanism, and the value
of A at which to apply Eq. (35) is uncertain
by a factor of 2 or more. Second, any trap-
ping mechanism probably involves the
zonal velocity profile #(y) which we have
left out of this analysis. Third, Eq. (20) de-
scribes a mode 0 solution, but there is no
evidence that the northern and southern
hemispheres were oscillating in phase at the
time of Voyager. Fourth, we have not iden-
tified an excitation mechanism, and there-
fore have no basis for associating the mo-
tion of the plumes with the propagation of
an equatorial wave.

DISCUSSION

The theoretical model allows us to study
a class of motions that could occur in a ro-
tating fluid planet. The physical system is a
simple one. The fluid is inviscid and adia-
batic, and density is allowed to vary from
its value at the center to the value zero at
the surface. Other studies have emphasized
the effects of viscosity, thermal stratifica-
tion, heat sources, energy dissipation, and
other processes. Given our ignorance about
the interiors of the giant planets, many ap-
proaches are possible. A goal of these stud-
ies should be to define the relationships be-
tween potentially observable quantities so
that observations may be used to limit the
theoretical possibilities. Another goal is
simply to learn about rotating fluid planets
by systematically studying idealized sys-
tems and not worrying about realism. Both
goals are consistent with this paper.

With these caveats in mind, we briefly
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summarize the results of this paper and
their relation to observations. First, the
limiting condition for stability of a deep
zonal flow is similar to that found by IP,
who considered only disturbances with
small zonal wavenumber. As shown by IP,
Jupiter’s and Saturn’s zonal velocity pro-
files are marginally stable according to this
criterion. On the other hand, the data refer
to the cloud tops and do not define the cur-
vature of the profile with high accuracy.
Also the theory is limited by the assump-
tions that the interior is inviscid and adia-
batic. And from the correlation between
u'v' and du/dy, it is clear that the eddies
observed in the cloud zone are not the
same as the fastest-growing eddies found in
the theory. The latter extract kinetic energy
from the shear flow; the former put energy
in. Processes that were not considered in
this model clearly are active in Jupiter’s
and Saturn’s cloud zone.

The results of comparing the theory of
deep inertial oscillations with observations
of waves in the atmosphere are equally am-
biguous. Many structures look like waves
confined within a band of latitude. Yet the
confinement mechanism and the wave exci-
tation mechanism are beyond the scope of
this theory. For some choices of latitudinal
bandwidth and eastward wavelength, the
eastward propagation speeds of the theory
are in the general range of observed veloci-
ties. This fact encourages us in our theoreti-
cal studies, but it does not prove that the
observed waves are related to deep inertial
oscillations.

APPENDIX

The coordinate system is complicated be-
cause we use both spherical and cylindrical
coordinates, and we employ two length
scales to describe variations perpendicular
to the axis of rotation. The cylindrical ra-
dial coordinate is r, and ry is a reference
value equal to the radius of the cylinder at
the zonal jet maximum. The axial coordi-
nate is z, which measures distance above
the equatorial plane. The spherical radial
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coordinate is R, so that R = (r2 + z2)"2. The
value of R at the surface of the planet is a.
the planetary radius. The latitude cos '(ry/
ap) where the reference cylinder meets the
planetary surface is A. The height / of the
cylinder is aq sin A. Flow quantities such as
velocity and streamfunction are assumed to
vary with respect to r on a short length
scale L. For these variations we use the
inward radial coordinate y = r, — r. Density
is assumed to vary only on the long length
scale a,, and we use the coordinates r and z.
Distance to the east is denoted by x. The
flow quantities are assumed to vary with
respect to x on the short length scale L, and
are assumed to vary with respect to z on the
long length scale ao. Thus x, v, 7 define the
Cartesian coordinate system used in this

paper.
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