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ABSTRACT

A new finite-differencing scheme for solving the tracer transport equation given prescribed winds is
presented. The prognostic quantities predicted by the new scheme are the mean concentration and its spatial
gradients. In one and two-dimensional tests using uniform air masses, the new scheme is roughly comparable
to a fourth-order differencing scheme in accuracy. When the air masses are not uniform, the new scheme
is superior to fourth-order differencing. An application of the schemes to three-dimensional tracer modeling

is included.

1. Introduction

This paper introduces a new finite-differencing
scheme, called the “slopes scheme”, to solve the
tracer transport equation. The slopes scheme is ba-
sically an upstream scheme but it uses and predicts
the spatial gradients of concentration in addition to
the mean concentration within each grid box.

Several authors (Crowley, 1968; Kreis and Oliger,
1972; Anderson and Fattahi, 1974; Purnell, 1976;
Mahlman and Sinclair, 1977) have reviewed nu-
merical schemes to solve the transport equation.
Here we examine three well known schemes—the
upstream, second- and fourth-order schemes—and
compare them to the slopes scheme. All four schemes
were tested using periodic models in one and two
dimensions. They were also applied to a global three-
dimensional model with winds generated by our gen-
eral circulation model. We will outline some prop-
erties of the schemes in this introduction, with a more
quantitative discussion to follow.

In all our tests the upstream scheme showed itself
to be highly diffusive, but it displays a negligible
phase lag and is only moderately affected by air mass
variations. In one and two-dimensional tests with
uniform air masses, the second-order scheme gen-
erates a phase lag and has other inaccuracies, while
the fourth-order scheme advects the initial distri-
bution very well. But when the air masses are not
uniform, both these higher-order schemes produce
“noisy” patterns that depend on the magnitude of
the air mass perturbations. When used in our three-
dimensional tracer models, where there are large
variations in air mass, these schemes are unable to
maintain anything like a coherent tracer distribution.
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In contrast, the slopes scheme produces smooth dis-
tributions, has no phase lag, is only marginally af-
fected by air mass variations, and shows little dif-
fusion.

There are various modifications which are com-
monly applied to the second- and fourth-order
schemes to prevent negative concentrations, gener-
ally at the expense of greater diffusion. In applica-
tions where it is necessary to have both positive and
negative tracer concentrations or when small varia-
tions exist on a large mean value (e.g., carbon diox-
ide), such modifications are inapplicable. Hence, in
this paper we mainly discuss the schemes in their
pure form.

2. The finite-difference equations for the schemes

R, the concentration of a tracer with respect to
air, in the absence of sources or sinks is governed by
the differential equation

dR

—+ V.VR =0,

ot
where V is a specified velocity, ¢ is time, and V is
the spatial gradient operator. Assuming that mass
of air is conserved, the density of air p satisfies the
continuity equation

dp

—+V.pV =0

at p

The conservative or flux form of the tracer trans-
port equation is determined from (1) and (2):

dpR

9P + V-pVR =0,
ot P 0

(1)

(2)

(3)
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FiG. 1. Delineation of grid boxes and location of air mass and
air mass fluxes in the two-dimensional model.

The numerical schemes discussed in this paper
approximate (3) with finite-difference equations. The
equations are written in two dimensions in Cartesian
coordinates (x, y) so that the reader can see how
they can be generalized to three dimensions or re-
duced to one dimension.

We adopt the convention that subscripts (7, ) refer
to discrete locations in the x, y directions with grid
spacings Ax, Ay, and superscripts (n) refer to discrete
times with time interval Ar. We assume that Ax,
Ay and At are uniform in time and space. The mass
of air in a grid box is M =~ pAxAy and the air mass
fluxes are A =~ pultAy, B ~ pvAtAx, where u, v are
the components of V in the x and y directions, re-
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spectively. The spatial staggering of these quantities
is shown in Fig. 1. The mass fluxes A4™*'/? and
B"*1/2 are temporally staggered because they repre-
sent the mass of air crossing the edge of a grid box
during the time nAt to (n + 1)Ar.

We assume that M, A and B are known functions
of time and space and that (2) has been solved by
the finite-difference equation
M"+l.‘— M+ A;':llz An+1

LB -BIE=0. (4)
Here and in the remainder of the paper we will ex-
plicitly write only those indices which are necessary
for clarity.

Figs. 2, 3 and 4 illustrate the upstream, second-
order and slopes schemes in one dimension using for-
ward explicit time steps (FS). (The fourth-order
scheme is not easily represented this way.) The sec-
ond- and fourth-order schemes are unstable with for-
ward time steps, so in practice we use the leapfrog
(LF) method for them. To simplify the notation for
the leapfrog time steps we set

A?ﬁ'l/l = Al+l 2 + A:l-:ll 29 (5)
and similarly for B.
The upstream scheme is
(MRY™' — (MR)" + Firyjs — Fioipa
+ Gj+l/2 - Gj—l/2 =0, (6)
where
ARZR; when AXf7 =0,
Fiorpp = N
YT AR, when AR <O,

A
i-1 i i+1
R;
S —
§ —- \\§ ’ \\
- Ris
N N
& - \\ "
-M/2-A -M/2 0 M/Z—A' M/2  Mass of Air

FiG. 2. Diagram of the upstream scheme in one dimension. The abscissa is air
mass, ordinate is tracer concentration. The mean concentrations at the beginning
of a time step for three grid boxes are R;-;, R, and R;., (solid circles). M (=M;)
is the mass of air in grid box i; 4 (=A,-4) is air mass flux from box i — 1 into j;
A’ (=A;4y) is air mass flux from i into i + 1. (In this example both 4 and A4' are
positive. An alternative view is that the mass and tracer are fixed, while the grid
edges are moved to the left during the time step.) The hatched areas
AR,;_, and A'R; are the masses of tracer moving into and out of grid box i, respec-
tively. The mean tracer concentration in grid box i at the end of the time steps is
(MR; + AR;-, — AR,)/(M + A — A') (open circle).
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F1G. 3. Diagram of the second-order scheme in one dimension. For nomenclature,
refer to Fig. 2. The hatched areas A(R,.; + R;)/2 and A(R; + R;.()/2 are the
masses of tracer moving into and out of grid box i. The mean concentration in grid
box i at the end of the time step is [MR; + A(R,., + R)/2 — A(R; + Ri.1)/2]/

(M + 4 — A') (open circle).

The definition of G is symmetric: A4 is replaced by
B and i is replaced by j.
The second-order scheme is

(MR)™' — (MR)"™" + %2 Ai1 /o R + Riyy)
= %A (Rimy + R) + 2By (R; + Risy)
—¥%B; 1 (Ri-1 + R) =0. (8)
The fourth-order scheme is
(MR)y™! — (MR)n—l
+ Yi2Aiv1jo(—Rizy + TR; + TRy — Riys)
~ Y241 (—Ri-3 + TR, + TR, — Ryy)

Tracer Concentration

+ 1/lsz+1/2(_R'—1 + 7Rj + 7Rj+l - Rj+2)
- 1/123'—1/2(_R'—2 + 7Rj—1 + 7Rj - Rj+1) = 0. (9)

A detailed derivation of the slopes scheme will be
found in Section 3. Here we present the difference
equations with a brief explanation. The slopes scheme
uses several prognostic quantities to represent the
tracer distribution within a grid box: the mean con-
centration R and the slope of concentration in each
direction multiplied by the spatial interval in that
direction. In two dimensions let the vector slope S
= (S, T) so that R + %48 is the average concentration
at the right edge of the grid box and R + 2T is the
average concentration at the top edge. We note that
the concentration is discontinuous at the edges. The

i+l

-M/2-A -M/2

0 M/2-A M/2  Mass of Air

FIG. 4. Diagram of the slopes scheme in one dimension. For nomenclature refer
to Fig. 2. The hatched areas are the masses of tracer moving into and out of grid
box i. The heavy solid lines indicate the piecewise linear distribution of concentration
f(m) at the beginning of a time step. The dashed line segment is the least-squares
fit line for the function f(m) in the interval (—M/2-4, M/2-A). It determines the
linear distribution in grid box / at the end of the time step; its center point coincides
with the mean concentration (open circle).
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scheme can be written
(MRY™*' — (MRY" + Firijo = Fioipp + Gpoajp = Gy = 0, (10)
(MSY™! — (MS)' + {M[6(F_ )2 + Fiy1)2) — (Aisr1j2 — Ai12)Si] — 6(Aicrjz + A )2)
X(MR;— Fipipp+ Fiiyp2) + Py — Piaja} /(M — Ay + Aiv2) + Ejjp — Ejoyp = 0, (11)

(MT)™' = (MTY" + {M,[6(G)_y/2 + Gjr12) — (Bjs1/2 — Bi-12)T;] — 6(By-1)2 + Bjs1)2)

XMiR; = Giipp + Giorp2) + Qpraja — Qpapa} /(M =

Bj+l/2 + Bj—l/z) + Di+l/2 = Diyp = 0, (12)

where
Ao Ri + %(1 — Ao/ M)S] when A2 0 (13)
Fir1n = 13
e Aper o Rivy — (1 + Ai+1/2/Mi+1)Si+1] when A4;,,,, <0,
P Ai+l/2[(Ai+l/2)2Si/Ml‘ = 6F;. 5] when Ay =0 (14)
s Aol (Aiy1 )22 Sii1 /My — 6Firy 2] when Ay <0,
Air 2T when  A4;,,,=20
Diyyp2 = (15)
Air2Tir When Ay, <0,

G, Q and E are defined the same as F, P and D,
respectively, by replacing 4 with B, § with ‘T, and
i with j. ,

Note that (10) is formally identical to the up-
streamn scheme (6) but that the definitions of F and
G have additional terms. Also, note that in one di-
mension (12) disappears, as do D, G, Q and E. In
three dimensions we require additional terms for
(10), (11) and (12), as well as an equation for the
slope in the third direction.

f(m) =< R+ mSi/Mi

Lo

R; is the average value of f(m) in grid box / and S;
is M;-df/dm in grid box i. During the time step,
A;-1)2 is the air mass entering grid box i from the
left and A, is leaving to the right. The slopes
scheme fits f(m) from —%AM;, — A4,,, to Y2M,
— A;iy2 by a new. least-squares line segment, thus
determining the mean concentration and slope for
grid box i at the end of the time step.
Set
1/2M—Ai+1/2

I= [f(m) — ma — b)*dm

—1/2M;—Ai—1/2

(17)

and calculate a and b from the two equations:
dl/da = 0,
dI/db = 0.

(18)
(19)

Ri—l + (m + 1/2M,'_.1 + l/ZM,')Si_I/M,'_l

- Ry + (m — oM, — VoM )S;i1 [ My

‘3. Derivation of the slopes scheme

We begin our derivation in one dimension, so that
B, the mass flux in the y direction, is zero. At the
beginning of time step n we establish a linear coor-
dinate m in the x direction whose unit is mass of air
and whose zero point is the center of the grid box
i. (m is a Lagrangian coordinate and is more rig-
orously defined at the beginning of Section 4. Also,
see Fig. 4.) We determine a piecewise linear function
which represents the distribution of tracer concen-
tration as a function of mass:

when —M; l/zM,~ <m< ""l/ZM,
when _I/ZM, <m< l/ZM,' (16)
when Y“M,<m<VvM;+ M., .

The new center of mass of grid box i with respect
to the old coordinate is

c= VZ(_Ai—l/z - Ai+1/2)- (20)
The new values of R and S at time n + 1 are
RHY = ge + b,

Sttt = a(M} — Aijp + Aimip) = aM7.

(21)
(22)

In addition, the least-squares-method guarantees
tracer mass conservation:

1/2Mi—Ai+1/2
f f(m)dm = (MRY*.
1/2Mi—Ai-1/2

(23)

To simplify the computer code we assume that the
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air mass flux leaving a grid box does not exceed the
mass of air in the box, i.e.,

A1+l/2 Mi (24)
and

_Ai—l/Z < Mi. (25)

These assumptions force the limits of integration in
(17) and (23) to lie within the three boxes i — 1, i
and i + 1. When they are not satisfied, the scheme
becomes inaccurate. The same applies to our up-
stream scheme.

Using (16)-(23) together with the one dimensional
analog of (4), Egs. (10) and (11) can be derived for
the one-dimensional case. For two dimensions (12)
can readily be derived from (11) through symmetry.
However, the extra terms £ and D in (11) and (12)
do not come directly from this derivation. In the case
of (11), the E terms represent the upstream advection
of S in the y direction.

For the slopes scheme to be accurate in two di-
mensions, one further adjustment is required. As
already noted, the scheme basically advects into a
grid box the air and tracer that was upstream of the
box at an earlier time. As long as the vector wind
is parallel to one coordinate axis, the scheme works
very well (see Section 4 on one-dimensional tests.)
However, when the vector wind is not parallel to an
axis, each grid box should receive tracer from corner
boxes as well as from side boxes. The contribution
from the corner boxes is not taken into account in
the scheme, and if the mass fluxes are large, this
error can be significant enough to actually over-
whelm the scheme.

One solution is to use small mass fluxes, which is
equivalent to using small time steps. This works be-
cause the contribution from the corner boxes is pro-
portional to Ar?, whereas the contribution from the
side boxes is proportional to Az. The drawback to
this solution is that it significantly increases the com-
puter time required.

Another solution is to use spatial leapfrog (SLF)
(see Fig. 5). We start using one-half the mass flux
in the x direction and no flux in the y direction.
Thereafter, on alternate steps we use the mass flux
in the y direction or an average mass flux in the x
direction. The flux in the other direction is zero. At
the end of the integration, the last half mass flux in
the x direction is used. It also can be understood as
integrating (10), (11) and (12) but zeroing out A4
(and, consequently, also F, P and D) on odd time
steps and zeroing out B (and, consequently, also G,
Q and E) on even time steps.

Spatial leapfrog in two dimensions can dramati-
cally improve the results of the slopes scheme (see
Figs. 9 and 10.) It also can be used in the upstream
scheme. SLF is not directly applicable to the second-
and fourth-order schemes since it would interfere
with their temporal leapfrog.
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F1G. 5. Diagram of the spatial leapfrog method. The coordinates
are the mass fluxes in two directions. The two-dimensional mass
flux field (dotted arrows) for several time steps is separated into
one-dimensional mass fluxes (solid arrows) for different overlap-
ping time steps.

4. Numerical experiments in one dimension

Using the notation of Section 2, we replace V by
u (since we are interested in one dimension) and set
a = pu. (2) is then written as

% , da
at  Ox

Given arbitrary functions p(x, t) and a(x, 1) satis-

fying (26), there exist functions m(x, ) such that

p = 0m/dx (27)

=0. (26)

and
a=—dm/at. (28)

m may be a global function if the spatial domain is
simply connected, otherwise m will only be local. If
p is positive, m is a monotonically increasing function
of x and can be used as an alternative reference
frame. We refer to m as the mass coordinate. Figs.
2, 3 and 4 use m as the abscissa. The implications
of the two reference frames with which to view R
will be discussed in Section 7.

The solution of the one dimensional analog of (3)
is that R(x, ¢) can be factored through the function
m(x, t) and another function R(m), ie., R(x, 1)
= R[m(x t)]. The initial condition R(x, 0) deter-
mines R(m) which in turn determines R(x, t) for ¢
> 0. [In Section 3 and in Fig. 4, f(m) is a piecewise
linear function that approximates R(m) ]

Our one-dimensional model requires that the spa-
tial coordinate be periodic (i.e., a circle) with period
1. In this case, m can only be locally defined. p(x
+ k, t) = p(x, t) and similarly for ¢ and R, where
k is an integer. To simplify the model, we assume
that p is constant in time and, by virtue of (26), that
a = pu is constant in space. IV revolutions are com-
pleted at time 7 when:

N J: p(x)dx = J: a(t)dt. (29)
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TABLE 1. rms error dependence on grid resolution for
the one dimensional model.
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M Upstream 2nd order 4th order Slopes
8 261.26 262.72 337.87 150.09
16 244.00 329.39 208.39 72.10
32 223.67 223.37 61.99 22.11
64 189.81 98.50 13.31 5.83
128 146.91 32.07 3.29 1.58
256 102.11 10.31 0.83 0.43
512 63.94 3.27 0.21 0.12

The analysis in the preceeding paragraph and the
fact that m(x, 7) = m(x — N, 0) shows that for an
exact analytic solution, the distribution of R after
N revolutions is identical in space to its initial dis-
tribution.

Set
0 when —-“<x<-%%
1000(1 — 2(8x)* + (8x)%)
R(x,0) = (30)
when -“h<x<'%
. 0 when “B<x<¥®.
For our numerical model )
1 Ax(i+1/2)
RP=—f R(x, 0dx,  (31)
Ax Ax(i—1/2)

where Ax is the length of each grid box. For the
slopes scheme we initially determine S; as the slope
of the least-squares-fit line segment of the function
R(x, 0) from Ax(i — ¥2) to Ax(i + %) multiplied by
Ax. (Setting the initial slopes S; to zero introduces
a small error which decreases as the number of rev-
olutions increases.)

There are five important variable parameters in
our model. These parameters determine intermediate
parameters from which the fields A and A are de-
rived. The five important parameters are: 1) IM: the
number of grid boxes around the circle; 2) a: a di-
mensionless parameter which measures the ratio of
the air mass flux to air mass, assuming uniform den-
sity; 3) NREV: the number of revolutions after which
time comparisons will be made; 4) AMPM: the mag-
nitude of the random perturbations of the air mass
field, a discrete function of space; and 5) AMPA: the
magnitude of the random perturbations of the air
mass flux field, a discrete function of time. When
AMPM and AMPA are zero, M and A are uniform,
i.e., constant in time and space. When AMPM or
AMPA is not zero, M or A has random perturbations.

The definitions of the intermediate parameters
used in the model are:

Ax = 1/IM the equal length of each
. grid box
Puniform = 1 the uniform density of air

Ugniform = 1 the uniform wind speed

VOLUME 20

At = a+ Ax [ Uypitorm the time step

M nitorm the uniform mass of air in
= Ax- Puniform a grld box
Aaiform the uniform mass of air

crossing from one grid
box to an adjacent box
during a time step

r a random variable with
equi-probability in the
interval (—1, 1), it may
be a discrete function of
space or a discrete func-
tion of time.

The fields M and A used by the schemes are: M
= Mynitorm(1 + AMPM - r), the mass of air, a discrete
function of space; A = Aunisorm(1 + AMPA-7), the
air mass flux, a discrete function of time. Since we
assume that p is constant in time, M must be constant
in time and 4 must be constant in space. The prog-
nostic quantities R and S determined by the schemes
have already been defined.

The primary time step for all the schemes is At.
This means that for the second- and fourth-order
schemes, which use leap frog, the odd solution is
known when ¢ = (n + %) - At and the even solution
is known when ¢ = n- At¢, where n is an integer. To
start the leapfrog, the first odd solution at ¢t = %At
is determined by using a half forward step. (Im-
proving the start up procedure by using smaller steps
had a negligible effect on the results.)

The five variable parameters of the model were
changed separately to determine the sensitivity of the
schemes to each of them. The default values for these
tests were

= At- Puniform * Wuniform

IM = 64,
a=0.125,
NREV =1,
AMPM = 0,
AMPA = 0.

The tracer distribution at the end of the integration
time was subtracted from the initial distribution to
obtain the root-mean-square (rms) error over the
domain. A perfect scheme would have zero error.
The results of the tests are shown in Tables 1-5.

TABLE 2. rms error dependence on « for
the one-dimensional model.

a Upstream 2nd order 4th order Slopes
0.0156 196.54 98.77 13.64 6.78
0.0313 195.64 98.76 13.63 6.64
0.0625 193.78 98.70 13.56 6.36
0.125 189.81 98.50 13.31 5.83
0.25 180.67 97.66 12.36 4.89
0.5 155.21 94.27 9.75 343
1.0 0.0 80.12 25.46 0.0
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The tables show that in most cases the rms error
of the slopes scheme is usually at least half that of
the fourth-order scheme, which, in turn, has an rms
error considerably less than that of the second-order
and upstream schemes. Although one might expect
that doubling the grid resolution should reduce the
error by a factor of 22 in the second-order scheme
or 2% in the fourth-order scheme, that was not the
case in our experiments. Table 1 shows that for a
fine mesh, doubling the resolution reduces the error
by a factor of 3 for the second-order scheme and by
a factor of 4 for the fourth-order and slopes schemes.
Table 2 shows that each scheme works best for its
longest time step before reaching numerical insta-
bility. For « = 1, the schemes are at the edge of
stability.

Table 4 shows that the fourth-order scheme is very
sensitive to random deviations in the air mass fields.
The second-order scheme is even more sensitive, but
because of its larger rms error, the degradation is
not reflected in the table. When AMPM = 1, the
uniform air mass flux exceeds the air mass for 6%
of the grid boxes, causing the schemes to be unstable.

Table 5 shows that all the schemes are fairly in-
dependent of variations in the air mass fluxes. When
AMPA = 8, the air mass flux exceeds the uniform
air mass for 6% of the grid boxes, again causing the
schemes to be somewhat unstable.

The schemes are compared with each other and
with the analytic solution in Figs. 6, 7 and 8. The
final distributions of the schemes using the default
values, except that NREV = 8, are shown in Fig. 6.
The second-order scheme shows a large phase lag
and a significant decrease in the maximum value of
the peak, as well as large negative values. The max-
imum value of the fourth-order scheme is nearly that
of the initial distribution; however, there is some
phase lag and several small extraneous ripples. The
peak of the slopes scheme is somewhat lower, but it
is more symmetric and has only a few small ripples.

Fig. 7, with AMPM = 0.25 shows the enormous
sensitivity of the second-order scheme to variations
in the air mass field. Within the region of the initial
peak, the fourth-order scheme is relatively unaf-
fected; however, it is quite ragged elsewhere. In con-

TABLE 3. rms error dependence on the number of revolutions
for the one-dimensional model.
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TABLE 4. rms error dependence on the amplitude of the random
perturbations of the mass field for the one-dimensional model.

AMPM Upstream 2nd order 4th order Slopes
0.0 189.81 98.50 13.31 5.83
0.0313 189.97 99.33 15.01 5.66
0.0625 190.19 100.49 19.57 5.56
0.125 190.76 103.72 31.96 5.60
0.25 192.45 112,77 59.77 6.60
0.5 197.84 140.76 116.41 11.25
1.0 214.02 247.45 225.45 26.24

trast, both the upstream and slopes schemes show
almost no effects.

Fig. 8 shows more clearly the degradation of the
fourth-order scheme when there are variations in the
mass field and when NREV is increased. We used
NREV = 64 and AMPM = 0.25 for the fourth-order
and slopes scheme, and in addition we included the
fourth-order scheme with AMPM = 0. (The slopes
scheme with uniform mass is similar to the one in
the figure but has a higher peak.)

5. Numerical experiments in two dimensions

We extend the analysis performed at the beginning
of Section 4 to two dimensions. ¥ becomes (u, v) and
we set a = pu, b = pv. We put a, b and p into a
vector P = (a, b, p). (2) is rewritten as

V-P=0, (32)

where the V operator is now (3/dx, d/dy, 8/dt).
Given an arbitrary function P(x, y, t) satisfying (32),
there exist functions m(x, y, £) and n(x, y, t) such
that

P=Vm X Vn (33)

m and n may be global functions if the spatial domain
is a simply connected planar domain. When the Ja-
cobian operator J(m, n/x, y) = p is positive, (m, n)
is one to one on (x, y), i.e., (m, n) can be used as
an alternative reference frame called the two-di-
mensional mass coordinates.

The two-dimensional analog of (1) is
Vm X Vn-VR = 0. (34)

TABLE 5. rms error dependence on the amplitude of the random
perturbations of the mass flux field for the one-dimensional model.

NREV Upstream 2nd order 4th order Slopes AMPA Upstream 2nd order 4th order Slopes
1 189.81 98.50 13.31 5.83 0.0 189.81 98.50 13.31 5.83
2 225.76 163.99 20.48 9.37 0.25 189.63 98.47 13.28 5.81
4 253.83 228.70 25.58 15.00 0.5 189.08 98.42 13.18 5.75
8 276.30 280.14 39.54 24.10 1.0 186.83 98.24 13.08 5.51
16 287.33 330.21 67.75 38.79 2.0 193.15 97.72 12.00 5.46
32 288.80 413.26 100.96 59.93 4.0 209.90 91.76 10.50 6.67
64 288.82 334.55 146.26 85.96 8.0 207.58 73.51 37.61 6.84
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F1G. 6. One-dimensional model with uniform mass field. The parameters used are IM =
64, « = 0.125, NREV = 8, AMPM = AMPA = 0. The abscissa is the model’s spatial

coordinate, the ordinate is tracer concentration.

Again, R can be factored through (m, n) and another
function R(m, n) as R(x, y, t) = R[m(x, y, 1), n(x,
¥, D] R is completely determined by the initial con-
dition R(x, y, 0) and the functions m and »n which
solve (32).

This analysis and the existence of mass coordinates
can be extended to higher dimensions. Their impli-
cations will be discussed in Section 7.

Our two-dimensional model is symmetric in the
two directions and is doubly periodic (hence topo-
logically a torus) with periods 1. We assume that
p is constant in time and that a = pu = pv is constant
in space. As in the one-dimensional case, after N
revolutions at time 7, R(x, y, 7) = R(x — N, y — N,
0) = R(x, y, 0).

The initial distribution is
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FiG. 7. As in Fig. 6 except AMPM = 0.25.
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FiG. 8. Fourth-order and slopes schemes after 64 revolutions. The common parameters are IM = 64,
a = 0.125, NREV = 64, AMPA = 0. Both schemes are shown with AMPM = 0.25; the fourth order

scheme with AMPM = 0 is included.

R(x, y,0)

0 when —-“<x<-WB or -Va<sy<-W
1000[1 — 2(8x)* + (8x)*][1 — 2(8y)* + (8y)*]
when —-%k<x,y<k%

0 when “X<sx<¥ or “h<y<h

(35)

For the discrete model

1 Ay( j+1/2) Ax(i+1/2)
= R X, Y, 0 dxd s
Y Ax-Ay Ly(j_./z) fou—l/z) (x, y, 0)dxdy

(36)

where Ax and Ay are the lengths of each grid box.

For the slopes scheme, the initial S, ; is the slope
of the least-squares-fit line in the x direction from
Ax(i — %) to Ax(i + %) of the function R(x, y, 0)
integrated from Ay(j — '2) to Ay(j + %) multiplied
by Ax/Ay. The definition of the initial T ; is sym-
metric. .

The definitions of the parameters used in the two-
dimensional model are carried over from the one-
dimensional model. Since the model is symmetric,
all spatial parameters are identical in the two direc-
tions and do not need to be defined separately. (In
fact, all results are symmetric with the exception of
the slopes scheme using spatial leapfrog.) Certain
parameters need to be redefined from the one-di-
mensional case

M nitorm = AX * Ay * pusitorm, the uniform mass of air in
a grid box

Auniform = Ar-Ax- Puniform * Uuniform, the uniform mass
of air crossing the edge from one grid
box to an adjacent box during a time
step

M= Myl + (AMPM -1)(1 + AMPM -
r;), the mass of air, a discrete function
of space.

The designation of the time steps and the initial-
ization for the second- and fourth-order leapfrog are
carried over from the one-dimensional model. The
defaults for the variable parameters in the two-di-
mensional model are identical to those in the one-
dimensional case. The sensitivity of the schemes to
these parameters is shown in Tables 6-10. The slopes
scheme with forward steps requires a smaller « (i.c.,
shorter time step) than Y%, but it is included at the
default value for consistency.

The tables show that in most cases both the fourth-
order and slopes (SLF) schemes have an rms error

TABLE 6. rms error dependence on grid resolution for
the two-dimensional model.

Slopes

M Upstream  2nd order  4th order  Slopes (SLF)
8 89.34 101.96 120.94 66.43 67.71
16 89.25 122.18 85.84 56.46 42.99
32 87.79 93.42 27.29 67.00 17.66
64 79.36 43.69 5.94 42.33 4.29
128 65.38 14.40 1.48 20.46 0.92
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TABLE 7. rms error dependence on « for
the two-dimensional model.
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TABLE 9. rms error dependence on the amplitude of the random
perturbations of the mass field for the two-dimensional model.

Slopes Slopes

a Upstream  2nd order  4th order Slopes (SLF) " AMPM Upstream 2nd order 4th order Slopes (SLF)
0.0156 - 81.44 43.89 6.14 6.24 4.85 0.0 79.36 43.69 5.94 42.33 4.29
0.0313 81.18 43.88 6.13 9.32 4.76 0.0156 79.39 43.96 6.72 42.60 4.27
0.0625 80.62 43.84 6.09 17.52 4.60 0.0313 79.44 44.40 8.72 42.85 4.26
0.125 79.36 43.69 5.94 42.33 4.29 0.0625 79.55 45.76 14.16 43.24 4.29
0.25 76.00 43.05 5.52 0 3.69 0.125 79.86 50.10 26.35 43.56 4.59
0.5 62.33 40.45 6.88 . [} 2.59 0.25 80.83 63.13 50.29 41.86 6.83
1.0 0 30.98 o 0 .02 0.5 83.69 94.47 85.76 31.17 19.74

much lower than that of the upstream and second-
order schemes (sometimes as much as an order of
magnitude). Table 6 shows that the error reduction
factor for doubling the resolution is similar for the
one- and two-dimensional models, i.e., three for the
second-order scheme and factors of 4 for the fourth-
order and slopes (SLF) schemes.

Table 7 illustrates the statements made at the end
of Section 3 regarding the slopes scheme, i.e., the
scheme requires either small time steps or a spatial
leapfrog mechanism. Table 9 is further evidence that
the second- and fourth-order schemes are degraded
by variations in the mass field. All of the schemes
diverged for AMPM = 1.

Table 10 reiterates that the schemes are not
strongly affected by variations in the air mass fluxes.
The slopes (SLF) scheme was the only scheme to
converge for AMPA = 8 in spite of the fact that 6%
of the air mass fluxes exceed the uniform mass of the
grid boxes.

Contour diagrams of the schemes are compared
in Fig. 9 using the parameters IM = 32, a = 0.125,
NREV = 2, AMPM = AMPA = 0. They indicate
the phase lags of the second- and fourth-order
schemes and the artificial wave pattern those schemes
generate. The slopes (SLF) scheme also has a wave
pattern, but it is exeedingly damped. The regular
slopes scheme indicates that it needs a smaller time
step. The upstream scheme exhibits its well-known
highly diffusive property.

TABLE 8. rms error dependence on the number of revolutions
for the two-dimensional model.

Fig. 10 is to be compared to Fig. 9. All parameters
are the same except that AMPM = 0.25. Note that
the peak value has decreased for all the schemes. The
slopes (SLF) scheme now has a small phase lag but
is relatively unaffected otherwise. The second- and
fourth-order schemes generate noisy unrealistic pat-
terns.

6. Application to three-dimensional tracer modeling

The schemes were applied to a three-dimensional
global tracer model which simulated the advection
of ash that erupted from Mt. St. Helens in May
1980. The wind and air mass fields used in the ex-
periments were generated by a general circulation
model (Hansen et al., 1982) which is global in extent
with 8° X 10° horizontal resolution and seven ver-
tical layers numbered from the ground up. Dynamics
is accomplished using Arakawa’s scheme B. The
model has annual and diurnal cycles and a realistic
topography.

The idea of using the Mt. St. Helens eruption was
partly whimsical, since we are not equipped to do a
realistic simulation. However, it did provide an ex-
ample of a simple application of the various schemes
to the three-dimensional case.

The experiments represent the actual eruption in
the following respects: 1) the tracer model uses a
realistic global topography; 2) the emission in the
model occurred at two adjoining grid boxes where

TABLE 10. rms error dependence on the amplitude of the random
perturbations of the mass flux field fer the two-dimensional model.

Slopes Slopes

NREV Upstream 2nd order 4th order Slopes (SLF) AMPA Upstream 2nd order 4th order Slopes (SLF)
1 79.36 43.69 5.94 42.33 4.29 0.0 79.36 43.69 5.94 42.33 4.29
2 89.01 71.19 9.12 171.18 7.34 0.25 79.30 43.66 5.93 43.82 4.27
4 94.83 95.96 11.27 o] 12.21 0.5 79.12 43,61 5.88 48.68 4.24
8 98.18 113.15 17.16 0 19.42 1.0 78.34 43,51 5.80 78.86 4.09
16 99.46 127.03 29.26 0 29.02 2.0 79.84 42.86 5.41 0 4.26
32 99.62 142.34 43.21 0 40.23 4.0 82.42 39.23 8.10 0 5.40
64 99.62 127.32 61.79 0 51.77 8.0 © [} s} 0 5.70
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FIG. 9. The two-dimensional model with uniform air mass field. The parameters are /M = 32, a = 0.125,
NREV = 2, AMPM = AMPA = 0. Dotted contours have negative values. The square shows the nonzero

extent of the initial distribution.
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FiG. 10. As Fig. 9 except AMPM = 0.25.

Mt. St. Helens is centered; and 3) the winds in the
model are comparable to May wind conditions in the
real world. The unrealistic aspects of the experiments
are: 1) actual wind observations were not used; 2)

the model’s emission occurred at layer 5 (236-400
mb) unlike the actual vertical distribution of ash; 3)
the ash does not fall by gravity and is unaffected by
rain; and 4) we did not allow vertical convection.
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UPSTREAM SCHEME (FS)

SECOND ORDER SCHEME (LF)

SLOPES SCHEME (SLF)

FiG. 11. Fifth layer concentrations for all the schemes after four days of integration.
Dashed contours have negative values.

The transport schemes were modified to use the
GCM’s regular latitude-longitude grid with fixed
boundaries at the surface and at 10 mb. The longi-
tudinal grid boxes at each pole are treated as single

boxes. For the slopes schemes, the horizontal slopes
at the polar grid boxes are set to zero. For the fourth-
order scheme, the north-south advection near the
poles uses the concentration of four grid boxes, one
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SECOND_ORDER SCHEME (LF) WITH LIMITS

FOURTH ORDER SCHEME (LF) WITH LIMITS

SLOPES SCHEME (SLF)

WITH LIMITS

FIG. 12. Fifth-layer concentrations for the schemes with limits after four days of integration.

of which is on the other side of the pole; also, the

vertical advection adjacent to the boundaries is a
combination of second- and fourth-order differ-
encing. .

All the schemes except for the slopes (SLF)
scheme use 1 h time steps. (This means that the two
leapfrog solutions for the second- and fourth-order
schemes are separated by 30 min.) Spatial leapfrog
was applied to the slopes scheme every 6 h in the
following ways:

1.5 h of east-west advection
3 h of north~south advection
1.5 h of east-west advection
6 h of vertical advection

1.5 h of east-west advection
3 h of north-south advection
1.5 h of east-west advection.

This method is dictated by the large east-west winds
and the small east-west grid length. The vertical
mass fluxes are generally small. The time steps for
the schemes were arrived at empirically by testing
each scheme with successively longer time steps until
the results changed significantly.

Analysis of the prescribed wind fields revealed that

in the upper atmosphere near the poles the air mass
fluxes occasionally exceed the mass of a grid box for
all the schemes. This occurs most often for the slopes
(SLF) scheme because of its longer time step, but
that scheme is better equipped than the other
schemes to handle such instabilities (see Table 10).

Fig. 11 shows the fifth layer concentration pre-
dicted by the various schemes on 22 May, four days
after the eruption. In general, the schemes behave
in a way consistent with our one and two dimensional
results: The upstream scheme is very diffuse, the sec-
ond-order scheme shows some phase lag in the lo-
cation of the peak concentration, and both the sec-
ond- and fourth-order schemes show an unrealistic
checkerboard pattern of positive and negative con-
centrations far from the ash cloud. This problem rap-
idly increases with time, rendering the schemes use-
less as a predictive tool after six days. One surprising
result was that the slopes (FS) scheme shows none
of the difficulties that motivated the use of spatial
leapfrog in the two-dimensional case (see Section 5
and Figs. 9 and 10)..

The slopes schemes also developed large areas of
small negative concentration, especially in the first,
third and seventh layers (not shown in the figures).
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SECOND ORDER SCHEME (LF) WITH LIMITS
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F16. 13. Fifth-layer concentrations for the schemes after 16 days of integration. The schemes
with limits and the slopes (SLF) scheme without limits are shown.

This condition persists when the experiments are ex-
tended and is caused by insufficient vertical mixing
between the layers. Tropospheric convection can
eliminate the negative concentrations in layers one
and three, but the problem in the top layer is difficult
to solve. Nevertheless, the slopes schemes are gen-
erally realistic and stable.

We also ran the experiments imposing “limits”
that prevent negative concentrations. In the second-
and fourth-order schemes, the tracer mass leaving
a grid box during a time step is limited to the tracer
mass in the box. In the slopes (SLF) scheme, each
spatial gradient is limited in magnitude so that the
concentration at the edge of a grid box is non-neg-

ative. As mentioned in the Introduction, such limits
are not always useful. .

Fig. 12 shows the fifth layer concentration pre-
dicted by the second- and fourth-order and the slopes
(SLF) schemes with limits after four days. The
schemes are in general agreement about the location
of the ash cloud, although the second-order scheme
still shows a slight lag and a single maximum.

When the experiments were extended an addi-
tional 12 days (Fig. 13), a tendency of the second-
and fourth-order schemes to predict multiple minima
and maxima with steep gradients became evident.
Because their limits are frequently being imposed
near the poles, the schemes have a tendency to ac-
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TaBLE 11. Relative computing time for the various schemes.

Slopes

Upstream 2nd order 4th order Slopes (SLF)
Pure form 0.81 1.00 1.54 3.00 1.93
With limits 1.99 2.31 2.62

JOURNAL OF APPLIED METEOROLOGY

cumulate concentration there. Despite their differ-
ences, all the schemes generally predict a maximum
concentration over Canada with a wedge of low con-
centration butting into Hudson Bay.

Table 11 shows the relative computing time re-
quired for the various schemes in our three-dimen-
sional model. For this table, the primary time step
for all the schemes is 1 h including 1 h for the east—
west advection of the slopes (SLF) scheme (and
hence 2 h for the north-south advection and 4 h for
vertical advection). The slopes schemes also require
additional computer memory.

7. Conclusions

We have shown that the slopes method of solving
the tracer transport equation is more accurate and
reliable than the conventional formulations. In our
periodic and three-dimensional models we saw that
the pure second- and fourth-order schemes become
totally unrealistic when the air mass is not uniform.
We also have shown that both the upstream and
slopes schemes are quite stable under these same
conditions, but that the upstream scheme is much
too diffuse.

Air mass variations occur in most applications, so
it is important to understand why the various schemes
behave so differently when perturbed in this way. In
our three-dimensional model these air mass varia-
tions are caused primarily by the earth’s irregular
topography. Another contributing factor may be the
rapid decrease in area (and mass) as the grid boxes
approach the poles.

To explain the difficulties that occur with the sec-
ond- and fourth-order schemes, one must first un-
derstand the mass reference frame. It is a Lagrangian
reference frame in which a parcel of air always keeps
the same mass coordinates. Since each parcel main-
tains the same tracer concentration for all time, con-
centration is a function only of the mass coordinates,
independent of time. If an observer in a spatial ref-
erence frame could watch a tracer model run, he
would see a fixed grid with air and tracer moving
around him. If he were in a mass reference frame
and watched the same experiment run, the tracer and
air parcels would remain fixed, while the spatial grid
lines would move around and become distorted.
These ideas are illustrated in Fig. 2.

The second- and fourth-order schemes need to ob-
tain the concentration at the grid box edges, which
will multiply the air mass flux crossing an edge. To
do this, the schemes interpolate assuming uniformly

VOLUME 20

distributed grid boxes. That seems correct if things
are viewed in the spatial reference frame. However,
it is not correct when viewed through the mass ref-
erence frame. Tracer concentration is defined relative
to air mass and not relative to space. In fact, with
nonuniform mass, the second- and fourth-order
schemes become first-order schemes in space.

By contrast, the upstream and slopes schemes view
the concentration function as defined everywhere in
the mass reference frame. At the end of each time
step, when the numerical model’s grid boxes are de-
lineated, they refit the concentration by a constant
or linear function for each box on the mass coordi-
nates.

Versions of the second-order scheme with limits
are widely used, yet we have seen in our model that
the reliability of its predictions decreases after sev-
eral simulated days. The fourth-order scheme, which
seems more promising in the one-dimensional case,
develops similar problems in our three-dimensional
model. Our own experience with second- and fourth-
order schemes in our three-dimensional tracer mod-
els is that at any time ~1% of the grid boxes have
exceedingly low concentrations. In addition, tracer
mass tends to accumulate at the poles.

The slopes scheme, while requiring considerably
more programming effort, is more accurate and also
is useful in applications with both positive and neg-
ative concentrations. Our full tracer model with the
slopes (SLF) scheme uses subgrid-scale convection
as determined by our general circulation model. The
convection mixes vertically the mean concentration
and the east-west and north-south slopes. The ver-
tical slope is reduced proportional to the percentage
of the grid box that is participating in the convection.
The slopes scheme does not need nor use explicit
diffusion.

In conclusion, we would add that the knowledge
gained by studying the second- and fourth-order
schemes in our tracer experiments can shed light on
the behavior of these schemes when used in general
circulation models.
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