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Summary. We critically analyse the problem of the variation of the gravita-
tional constant with cosmological time.

Since Einstein’s equation does not allow G to vary on any time-scale, no
observational data can be analysed within the context of the standard theory.
The recently proposed scale covariant theory, which allows (but does not
demand) G to vary, and which has been shown to have passed several
standard cosmological tests is employed to discuss some recent non-null
observational results which indicate a time variation of G.

1 Introduction

McCrea (1978) has pointed out that there is no sense in which the standard general relativity
(GR) can admit a variable ‘gravitational constant’. It was also suggested (McCrea 1974)
that with improved observational confirmation of Einstein’s results, thus establishing the
correctness of his theory of gravitation, any variation of the gravitational constant can be
ruled out by inference. While we agree with the former remark, we do take issue with the
latter inference. In the present paper, we shall explain how Einstein’s theory of gravitation
can be reconciled with a varying gravitational constant.

The value of any dimensional physical constant depends on the units one employs. In a
space-time theory such as GR, the fundamental unit is a length, which is provided by some
measuring procedure. However, any measuring instrument, being a physical system itself,
must obey certain dynamical laws. Thus, for example, if we use the distance between
orbiting gravitational bodies as a reference, we would have a gravitational unit (or Einstein
unit) of length. On the other hand, if atomic instruments, whose governing physical law is
quantum electrodynamics, are used, we have an atomic unit of length. 4 priori, there is no
reason to believe that the two units of length must be a constant multiple of each other.
Consequently, when the ‘gravitational constant’ is a constant in one system of unit, it is not
necessarily a constant in the other system of unit.
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The idea can be better illustrated. If we write dsa, dsg for the line elements as measured
in atomic and gravitational units respectively, we would have in general

dsg = B(x) dsa ¢}

it follows then that all dimensional physical quantities in the two respective units are
similarly related:

Qe =0"0a (2

Where Qr and Qs may be scalars, vectors of tensors and the exponent 7 is given by the
dimensions of Q. In particular, the ‘gravitational constants’ in the two units are related by
G =fgGa. (3

We wish to note here a subtle difference between our use of the terms ‘general relativity’
and ‘Einstein’s theory of Gravitation’, The former assumes the strong principle of equiva-
lence which dictates that 8 must be strictly constant, If one assumes only the weak equiva-
lence principle, Einstein’s theory of gravitation remains intact, and § can in general be a
function of space-time. In the geometrical framework of Einstein’s theory of gravitation,
the Bianchi identities along with the conservation of energy and momentum demand a
constant Gg, which is a proportionality factor between the geometrical Einstein tensor and
the energy-momentum tensor. We note that it is Gg, and not the ‘gravitational constant’ in
any other units which is required to be a constant, because Einstein’s theory governs the
dynamics of gravitational phenomena only, and it provides a geometrodynamical unit of
length. Hence Einstein’s field equations must be understood as written in Einstein units. In
standard GR, people use these equations as though they are also valid in atomic units. It
should be recognized, however, that this amounts to making an extra assumption, namely,
that the scaling function (x) in equation (1) is a constant. Thus, one goes beyond the realm
of gravitational physics and stipulates a specific relation between gravitational dynamics
and atomic dynamics. If the gravitational interaction strength changes relative to electro-
magnetic interaction, we must expect 8 to be varying and therefore according to equation
(3) G, must also be varying. It is in this sense that we can accommodate and interpret a
varying ‘gravitational constant’. From this viewpoint of scaling between two kinds of
dynamical units, G must be expressible as a functional of § as is clear from equation (3).
However, it is important to note that for a complete determination of the variation of G,
one must know not only the variation of § but also the value of 7, as we shall explain in
more detail below.

With this understanding, it becomes evident that observational confirmation of Einstein’s
results in purely gravitational experiments can be compatible with experiments which
purport to measure the variation of G, provided in the latter, atomic units are used. This in
fact is what some observers have been attempting to do in the past few years: measuring the
non-gravitational variation of the orbital period of the Moon in terms of atomic time. What-
ever theoretical prejudice one may have for preferring a null result in the above experiments,
one should keep an open mind and allow for the possibility of a non-null result.

Historically, Milne had long ago anticipated the possibility of equation (1). When Dirac
introduced his Large Numbers Hypothesis (LNH) and proposed a varying G, he also had
equations (1)—(3) in mind. Unfortunately, when people study the effects of a varying
gravitational constant, Newton’s or Einstein’s dynamical equations are used with only the .
modification that Gg is allowed to be a variable. As was pointed out, this is a logically
inconsistent procedure.

A consistent formulation of the gravitational equations in non-gravitational units has been
given in an earlier paper (Canuto et al. 1977) in which we developed the ideas outlined

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1979MNRAS.188..829C&amp;db_key=AST

FTI79MIRAS, 188- ~8Z9Th

Varying G 831

above: gravitational dynamics remains unchanged. When described in atomic units, the
dynamical equations are obtained by conformal transformation, as required by equation (1),
from the corresponding ones in standard GR. Clearly the a priori undetermined function 8
would appear in these equations. If, e.g. the observational results are analysed with these
equations, § can be determined observationally. On the other hand, one could apply
theoretical considerations such as Dirac’s LNH to fix the functional form of 8. In this case,
the conformally transformed dynamical equations are fully deterministic, and one can
predict results from experiments using atomic units. In this manner, one can have a valid
observational check on Dirac’s ideas.

In the next section, we briefly review the framework of scale covariant gravitation intro-
duced in an earlier paper and then illustrate the types of theoretical considerations one can
use for the determination of 8. In Section 3, we shall show in some detail how the scale
covariant framework can be used to interpret and analyse data from atomic measurements

of gravitational phenomena, thus giving a description of the observational determination
of 8.

2 Theoretical determination of §

With the premise that Einstein’s theory correctly describes the gravitational phenomena, the
following field equations and geodesic equations are assumed valid:

®)
G‘w = 8TIGETI) (43.)

d*x* dx dx'o
5+ o =0 (5a)
AE P dgdig

where dAg is the differential affine parameter, identifiable with the differential path length
for non-null geodesics. It is therefore a length measured in Einstein units. We adopt the
convention that the coordinate differential is dimensionless. Thus, given that

,_® o, ]
dst. = guydx" dx”; dsi =gy, dx" dx (6)
equation (1) implies

®) (A)
Suw 6 Euvs (7)

which can be readily recognized as a conformal transformation. The geometric parts of
equations (4a) and (5a) are easily transformed. With the further assumption that the right
side of equation (4a) is form invarjant (see Canuto et al. 1977, for details), we get

(A) (A)
with
. g8 (A) o
f“vzz%_4 “f" (29._,%’)
B g B B
and
dzxu+ F“ dx’ dxP B,,(dx# dx” v dx®? dxp) _ (5b)
d?\i d)\Ad)\A B d?\Ad}\A dAadAp

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1979MNRAS.188..829C&amp;db_key=AST

FTI79MIRAS, 188- ~8Z9Th

832 V. Canuto, S.-H. Hsieh and J. R. Owen

with

By=By

We note that G(E) and G(A) are the Einstein tensors constructed from g(E) and g,w) respec-

tively. Covanant d1fferent1at10n in equation (4b) is defined with respect to g,SA) Likewise,
the I's in equations (5a) and (5b) are the Christoffel symbols constructed from g® and

gﬁﬁ,‘) respectively.

It can be shown from equations (4b), using equation (3) that
™, = (mg—2) T*(In B), + (In B T. )

(Henceforth we drop the index A for atomic units). Hence the energy momentum conserva-
tion law in atomic units must be modified as a consequence of our assumptions. In the same
spirit the modified baryon number conservation equation reads

(nut)., + (1 —ﬂg)ng-=0 )

where # is the baryon number density. The generalization given by equation (9) is com-
patible with equation (8) if we assume a perfect fluid form for the energy momentum tensor
with p = 0. However, the validity of equation (9) is independent of this assumption.

If one writes (p = I'p) ‘

"= (p +p) uu” — pg" (10)

and integrate equations (8) and (9) over a volume element V, it can be shown that equation
(8) yields

pV(1+F) - G—IB-(1+3F) (1 1)
and equation (9) yields
nV ~Gg! (12)

where I' has been assumed constant, and we have again made use of equation (3). Equations
(11) and (12) give the allowed variation of total energy (in atomic units) and particle
number within a co-moving volume. Obviously, the results of the standard theory are
recovered if we set G and f equal to constants.

With the aid of equations (11) and (12), we can indicate how cosmological considerations
such as Dirac’s LNH can be used for the determination of 8. (A more detailed discussion and
a brief review of LNH can be found in Canuto et al. 1977.) We assume homogeneous cosmo-
logical models so that only functional dependence with respect to cosmic time # (in atomic
units) needs to be considered.

(1) First gauge. If we assume (Dirac 1974)

1
G~? N=nV ~ 13, (13)

equations (11) and (3) imply that

1 )
B~=, mg=—1. (14)
t
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(b) Second gauge (Dirac 1938). If we assume
1
G ~ - N=nV ~ °= constant. (15)
equations (12), (15) and (3) then yield
B~t, my=+1. (16)

(c) From considerations of the spectrum of the background radiation (Canuto & Hsieh
1978), one may prefer to impose the auxiliary condition that radiation be adiabatically
conserved. Thus with I = Y3, we find from equation (11) that

Gp* = constant. )
Together with equations (13) and (3) we obtain
B~V mp=2, (18)

The common assumption among the above three cases is the Dirac hypothesis that the
gravitational constant decreases as the inverse of the cosmological epoch. The hypothesis of
matter creation which is incorporated only in case (a), can be modified. Instead of specifying
the time variation of the particle number within a co-moving volume, one can stipulate that
the number of particles within the observer horizon increases as the square of the epoch:

Ny=2m (ct)® ~ ¢ (19)
m

We shall now show that for certain cosmological models, the assumption (19) leads back to
the hypothesis on the variation of G.

For that purpose, we note first that equation (11) with I" = 0 gives the variation of mass
density

pm ~RPGTIE™ (20)

where we have replaced the volume by R3, R being the scale factor in the Robertson--Walker
metric. Next we note that equations (4a), (4b) are conformal transformation of each other
and so must be their solutions. Hence, using equation (7) it can be shown that

Rg(te) =B R(?) (21

where Rg(fg) is the scale factor of the R—W metric in Einstein units satisfying equation
(4a). It is well known that in the matter-dominated era, for £ = 0, we have

Rg(tp) ~ 3. (22)

Using equation (1), equation (21) can be rewritten as
t 2/3

r@) -0 [ Berar| 23)
0

With equations (20) and (23), equation (19) becomes

-2
Ny ~ ﬁ2t3G“( f ' B(t) dr’) ~ 12
0

29
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which, for simple power laws 8 ~ t?, (p # 1) yields

Ny~—~£,
G

i.e. G ~ t71, the hypothesis on the variation of G (Dirac 1938).

3 Observational determination of B

From standard theory, it is easy to show that

GgMg = constant (24)
A GgMg)’

"E_, (GgME) (25)
ng GegMg

Ry  GgMg

where Rg is the radius of the planetary orbit and ng = 2n/Tg, with Tg denoting the period
of revolution. Without a clear distinction between different dynamical clocks, it has been
tempting for observers to interpret the variation of (71/n) and (R/R), over and above that due
to tidal effects, in terms of equations (25) and (26). In fact, assuming a constant total mass,
it is often stated that

eyl Re @7)
ng  Gg Rg

Observational results are often presented in terms of G/G, using equation (27) (see, e.g.
Reasenberg & Shapiro 1977, 1978). The latter is the result of what Dirac has referred to
as a ‘primitive theory’ of varying G which stipulates the same Newtonian equations of
motion with G being a function of time. Such a stipulation by itself is not necessarily wrong
unless one also imposes certain conservation laws which are not compatible with the
assumed dynamical equations. This is most easily understood in the framework of Einstein’s
theory of gravitation where for a given Lagrangian, both the dynamical equations and the
conservation laws are specified. Considering the Newtonian equations as a classical limit of
Einstein’s theory, equations (25) and (26) must be used in conjunction with the constraint
(24), ie. GgMg = constant. Hence, the only information one can get from these two
equations is that

dn dR
E_O E_

s (28)
dtg dtg

Thus imposition of the standard conservation law, namely, constant total mass, cannot be
compatible with variable G.

On the other hand, measurements of planetary orbital parameters using atomic instru-
ments ought not to be considered as a test of Einstein’s theory of gravitation per se. Rather,
assuming the latter’s validity, such observations should be considered a test of the constancy
of B. Since the orbital period and radius are both small intervals compared to the cosmo-
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logical scale, the differential scaling law, equation (1), applies so that

1
}’ZE=BI’Z; Rg=BR (29)

where n and R now refer to the corresponding orbital parameters measured in atomic units.
With the assumed constancy of ng and Rg, we find immediately

—=e= (30)

Thus having introduced the distinction between two dynamical clocks, a non-vanishing
observational result in 7 and R can be easily understood. Even without reference to the con-
straint (24), primitive theory and the new theory can be distinguished in that they imply
different ratios,

hgfng oA
RE/RE

b

which can be checked by observations.

One can derive equation (30) in a more elaborate fashion, using the equation of motion
(5b). tHowever, as can be recognized, equations (5a) and (5b) are conformal transformations
of each other. Results of equation (5b) can be obtained from those of equation (52) by a
conformal transformation.

To gain more information from equation (30), we first note that for non-relativistic
matter, the energy density p is mostly due to the rest mass density. Hence with '=0,
equation (11) gives

pV ~(Gp)™
or
GMp = constant, 31)

which replaces equation (24). Clearly for § = 1, the two coincide. We now have

Aoy R_B 32)
n M R B

Thus, unless one makes more detailed stipulations, observational determination of the
variation of § by measuring # and R gives no information about the separate variation of
G and M. This is expected of all gravitational experiments dealing with geodesic motions.
For the latter respond to the source strength which is always characterized by the combina-
tion GM. On the other hand, given hypotheses (a), (b) or (c) as described in the previous
section, the variations of G and/or M are specified by cosmological considerations. These in
turn determine $/8 which can be checked, using equation (30), against the measured values
of ii/n and R/R. Before making more detailed comments on such a comparison, we sha]l
consider another effect of varying f.

If the strength of the gravitational interaction does change with respect to that of atomic
dynamics, the size of a macroscopic object such as a planet or a star would be expected to
vary with time. To see this, we consider a model in which matter has an equation of state of
the form

p~p" (33a)
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where p and p are respectively the pressure and mass density. v is called the polytropic
index.

It has been shown (Canuto et al. 1977) that from equation (4b), the equation of hydro-
static equilibrium in the non-relativistic limit retains the standard Newtonian form

dp GM

;;’.r— =—p —rz— (33b)
From equations (33a) and (33b) we get

GM* 7374 = constant,

so that

F 1 G 22—y M
- = —+ —. (34a)
r 4—3yG 4-3y M

Making use of equation (31), we can write

f_y-23+7—1 G
r 4—3vy8 4-3yG

(34b)

It is important to note that, unlike the case of a planetary orbit, the variation of the
radius of the kind of macroscopic object under consideration cannot be reduced to purely
a variation of the product GM. Hence the two types of observations (32) and (34b) together
give not only the value of 8, but G and M separately.

There has been indications (McElhinny, Taylor & Stevenson 1978) that the Earth and
Mars have been slowly expanding whereas Mercury has been contracting. On the other hand,
no observable variation of the size of the Moon is detected. Notwithstanding the difficulties
of interpreting palacomagnetic data, McElhinny et al. results cannot be directly compared
with equation (34b) because the latter is merely a rough approximation for a simplistic
polytropic model. Many geothermal effects which can contribute to the variation of the
radius have not been included. Nevertheless, the model does point out the fact that in situa-
tions where a balance of two types of forces is at play, one can gain information on the
separate variation of G and M. We therefore venture to suggest that with sophisticated
computation of stellar structure and high-resolution measurement of the solar radius, one
can perhaps have sufficient accuracy for a determination of G/G.

Finally, we return to the observational determination of § using equation (30). The latest
values of the observed total variation of n for the Moon are

7, = (—23.8 £4) arcseccy > (Williams, Sinclair & Yoder 1978),
Fi, = (— 24.6 £ 1.6) arcsec cy 2 (Calame & Mulholland 1978),
i, = (—21.5+3.2) arcseccy > (Van Flandern 1979, private communication).

From these one must subtract the contribution due to tidal effects (Muller 1978).
iy = (— 30.0 £ 3) arcsec cy 2

so that the net variation can be expressed as

n 1

"= iy 1) =
n n
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where n = 1.73 x 10° arcsec/cy. These data indicate that
17
—=(3.6+£2.9) 107 Yyr
n
=(3.1+2.0) 107 Yyr (36)
=(4.8+2.4) 107 Yyr.
Hence from equation (32),
(GM)" >0, §>0. (37)

Comparison with equations (14), (16) and (18) shows that of the three different gauge
conditions proposed for the determination of $, only Dirac’s matter creation gauge (14),
is excluded by present observations.

4 Conclusions

We have advocated the interpretation of a varying G as a non-constant scaling between
atomic and gravitational clocks. Consistent dynamical equations with a varying G can thus
be written and observational data should be analysed in terms of these equations. The
scaling function 8 is not dynamically determined. This is because the theory is as yet incom-
plete. In fact so far we have only expressed gravitational dynamics in terms of atomic units.
When a theory of coupled atomic and gravitational dynamics will be available, we expect 3
to emerge naturally as a dynamical field variable.

On the other hand, observational constraints on § can be a valuable guide for the con-
struction of such a theory. It is therefore useful to develop further the present theory to
study its astrophysical and cosmological consequences. Part of this task has been accom-
plished (Canuto & Hsieh 1978; Canuto, Hsieh & Owen 1979). It is found that currently
available observations on magnitudes, angular diameters and radio-data do not exclude a
varying G of one part in 10" Y/yr.
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