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ABSTRACT

Nonlinear calculations of models for bump Cepheids indicate that most of the basic features
of these stars can be reproduced well by models having normal to nearly normal evolutionary
masses and normal helium abundances, if Carson’s opacities are adopted. The trends of the
properties of the models with various physical parameters are otherwise very similar to those
obtained by other authors with the Los Alamos opacities (which have led to Cepheid masses of
half the evolutionary masses). Difficulties with the resonance hypothesis of Simon and Schmidt

as an explanation of the bump are discussed.

Subject headings: opacities — stars: Cepheids — stars: pulsation

I. INTRODUCTION

Classical Cepheids in the intermediate period range
(7-15 days) show a prominent secondary bump on
their observed light and radial-velocity curves. Up to
the present time, a satisfactory theoretical reproduc-
tion of this bump has been achieved only by making
one of two drastic assumptions: (1) that the mass of
a Cepheid is about half the mass expected from
standard evolutionary theory without mass loss
(Christy 1968, 1975; Stobie 19695, c¢; Rodgers 1970;
Fricke, Stobie, and Strittmatter 1971, 1972) or (2)
that the composition of the outer layers of a Cepheid
is anomalously helium-rich or metal-rich (Cox et al.
1977; Cox, Michaud, and Hodson 1978).

The opacities used in obtaining these model results
were generated from various versions of the Los
Alamos opacity code, beginning with the original
work of Cox and Stewart (1965). In an interesting
experiment, Fricke, Stobie, and Strittmatter (1971)
demonstrated that an arbitrary scale-factor increase
of the Cox-Stewart opacities would lead to a propor-
tionate increase in the inferred masses of bump
Cepheids. Using this result and knowing that Carson’s
(1976) independently generated opacities are, in the
crucial second helium ionization zone, larger by a
factor of ~2 than the Cox-Stewart opacities, Carson
and Stothers (1976) predicted that the mass anomaly
for bump Cepheids could perhaps be made to disappear
simply by adopting the newer opacities.

In order to verify this prediction, we calculated a
number of nonlinear models with Carson’s opacities.
These models showed the predicted secondary bump
for nearly normal evolutionary masses (Vemury and
Stothers 1977). However, with the same opacities,
Cox (1977) independently computed a model for
6.4 M, obeying the normal evolutionary mass-
luminosity relation and did not find a bump. Nor was
he later able to obtain a bump for a model of 7 M,
in which we had reported a large one. We confirm
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that the particular model of 6.4 M, originally com-
puted by Cox does not show a bump. Regarding the
7 M, model, Cox (1977) afterwards obtained a bump
for this model at a larger velocity amplitude (64
km s~* as compared with his earlier 46 km s~1). But
he still had reservations about the Carson opacities.
Although the validity of these opacities has also been
questioned by Merts (1977), who tried, unsuccessfully,
to reproduce them, it is equally true that the Los
Alamos opacities themselves have not been tested
and verified by an independent group. Carson (1976)
himself has stressed the care with which his hydrogen
and helium opacities were calculated. In any case,
Carson and we regard stellar applications as being
probably the only available test of the opacities at
present.

These various considerations have motivated our
present calculation of a large number of nonlinear
Cepheid models based on the Carson opacities. We
have studied deep stellar envelopes having composi-
tion parameters (X, Y, Z) = (0.739, 0.240, 0.021) and
undergoing radial pulsations in the fundamental
mode. In §II the computer program is described,
with various tests of the program made in § III. The
new nonlinear results are presented in § IV. Some
discussion and improvements of the linear results
published previously (Carson and Stothers 1976) are
described in § V. Our main conclusions are summarized
in § VL.

II. THE COMPUTER PROGRAM

Several computer programs have been written by
different authors to solve the nonlinear equations of
stellar pulsation at large amplitude. There are found
to be variations in detail among the different results
that have been obtained for ostensibly the same stellar
model by different authors, but the main features of
the luminosity and velocity curves, including the
secondary bumps, seem to agree. Since the present
code has been created independently of the previous
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codes, it is appropriate to describe our own procedures,
physical input data, and a few ideas on how to achieve
a functional program that do not seem to have been
published previously, at least in any detail.

a) The Static Model and the Initial Model

First, a static model of the stellar envelope is con-
structed by solving (with the use of step-by-step
numerical integrations) the familiar differential equa-
tions governing the equilibrium structure of the star.
The envelope model is characterized by the total
stellar mass M, luminosity L, effective temperature
T., and chemical composition parameters X, Y, Z. In
addition, the boundary conditions, thermodynamic
state relations, and opacities need to be supplied. The
boundary conditions are taken to be those of Christy
(1967). The state relations apply to a mixture of
radiation and nondegenerate gas in various stages of
ionization; all the Saha equations for hydrogen,
helium, and a hypothetical, easily ionized metal are
solved simultaneously at every layer of the model in
which log T' < 5.50 (at hotter layers the gas is assumed
to be completely ionized). The opacities used are the
Carson radiative opacities in logarithmic tabular form
(with linear interpolation used between grid points)
for log T > 3.85, and Cox and Stewart’s radiative
opacities in Christy’s (1966) analytic fitted form for
log T < 3.85; the two sets of opacities are found to
match nearly perfectly at log T = 3.85, in regard to
both the value and the gradient of the opacity.
Convection is completely ignored in our models; the
diffusion approximation is adopted for radiative
transfer at all layers.

The static model envelope thus derived usually
contains 1000 or more zones. For the nonlinear cal-
culations, strict limitations of computer time require
that the adopted number of zones be small. There-
fore, about 40 zones are selected in the manner sug-
gested by Christy (1967). The optically thin part of
the envelope contains four or five zones, the narrow
hydrogen ionization region has one or two, and the
innermost zone is assigned to be near a radius fraction
r/R of 0.10. From this coarse static model, the physical
variables can be averaged to give values at the centers
of the zones. This rezoning, however, does not pro-
vide a model in exact hydrostatic and thermal equi-
librium. Initiation of the pulsation code with such a
model is found to lead to violent instabilities, whose
decay in the interior zones is extremely slow. For this
reason, the model has to be again set in full equi-
librium by using a differencing scheme consistent
with the pulsation code. The final model obtained in
this way constitutes the initial model for the pulsational
study.

b) The Dynamical Models

The partial differential equations of stellar pulsa-
tion have been cast into finite-difference form with
mass as the independent space variable. A semi-
implicit scheme described in detail by Christy (1964,
1967) has been used to set up and solve these
difference equations.

*

Vol. 225

For the numerical treatment of shocks, an artificial
viscous pressure should be added to the difference
equations. Stellingwerf’s (1975) form of the viscosity
has been adopted here, because this form does not
introduce unwanted viscous damping in the interior
(adiabatic) part of the model. In most of our models,
the viscous coefficient Cy is set to 1.0 and the cutoff
parameter « to 0.1.

At large pulsational amplitudes, the physical vari-
ables in the outer zones change very rapidly during
certain phases. Therefore, the use of the Courant
condition to determine the size of the time step
during these phases often leads to too large a predicted
temperature change. Since the temperature of each
zone must be subsequently iterated to a chosen ac-
curacy of one part in 4 x 105, it may happen that the
iterations fail to converge, and often they diverge
violently. In such circumstances the time step is cut
down by a specified factor and the iteration procedure
is reinitiated. This process can be repeated if an even
smaller time step seems to be required. Another in-
stance when the time step is arbitrarily cut down
occurs in the event that the number of iterations
exceeds a specified limit of 10. However, the normal
number of iterations required is less than six. For one
pulsation cycle, the number of time steps used is
typically about 300.

The period is determined by ascertaining when the
radius of a selected zone returns to its initial value.
For this purpose, a relatively deep zone is chosen
where the cyclical variation of the radius is smooth
and nearly sinusoidal. At the end of a period, the
other physical variables generally do not return to
exactly their initial values, because small numerical
errors have unavoidably been incurred during com-
putation. Therefore the computed [ PdV work done
by each zone over a period shows random fluctuations
from cycle to cycle. In order to exactly close the loop
integral, we have added the quantity 0.5(Pipyer +
Ptina))(Vingtiat — Vima) to the approximately computed
value of [ PdV.

The limiting amplitude of pulsationally unstable
models can be reached by starting from either (@) the
white noise of the initial equilibrium model or (b)
a suitable choice of an initial velocity distribution,
such as an assumed power-law dependence on r/R
or else an arbitrary scaling of the velocity distribution
obtained from linearized pulsation theory. We have
selected method (b) with a power-law dependence.
The power law has been adapted from Stobie’s (1969a)
formulae when available or else determined by trial
and error so that the dispersion of the velocity ampli-
tudes during the first six periods is small. To attain
limiting amplitude in a reasonable expenditure of
computer time, the velocity of each zone has been
amplified after a lapse of three to six periods by a
factor ranging from 1.4 to 1.1, depending on the
nearness of the model to limiting amplitude. In order
not to disturb the model structure too much, the
boost in velocity amplitude is provided at the phase
of peak kinetic energy when the envelope is expanding
most rapidly. After the model has nearly reached
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limiting amplitude, as defined by a nearly constant
peak kinetic energy, an additional amplification is
given to see if the peak kinetic energy comes back
down to the correct limiting value. This method en-
sures that limiting amplitude has truly been reached,
a condition that may otherwise be masked in cases
where the growth rate is very slow. At this amplitude,
the model is run for several periods to remove the
presence of any unwanted modes. The period and the
surface velocity curve must then have attained an
exactly repeating behavior. In our work, the term
“surface” will be taken to mean the layer at which
the optical depth of the static model was about 0.2.

After the numerical adjustment of the original static
model and the initiation of pulsations, the mean lumi-
nosity and effective temperature of the star are no
longer precisely the equilibrium values. However, we
shall ignore these very small differences and refer to
the models in terms of their equilibrium luminosities
and effective temperatures.

III. TESTS OF THE PROGRAM

In order to check the computer code, we have re-
calculated two Cepheid models that have been
previously calculated by other authors:

(1) Goddard model: M/My = 4, log (L/Ly) =
3.503, logT, = 3.756, X = 0.700, Z = 0.020,
Los Alamos opacities (Castor et al. 1976).

(2) Christy model 5gF: M/My = 0.578,
log (L/Lo) = 1.585, log T, = 3.813, X = 0.698,
Z = 0.002, Los Alamos opacities (Christy 1966).

In each case we have used Christy’s (1966) analytic
fit to the earlier Los Alamos opacities and approxi-
mately the same number of mass zones, time steps,
etc., as did the previous authors, except that we have
adopted Stellingwerf’s form of the artificial viscosity
for the Goddard model. Our results are found to be
in very good agreement with previous ones. Details
of our version of the Goddard model are presented in
Figure 1 and immediately below, for comparison with
the set of models computed by several other authors
(Castor et al. 1976):

Zones optically thin 52/5
Viscosity 1S.10
Number of periods calculated 30

Number of time steps per period 350

r/R 0.089
Period (days) 9.75 + 0.03
Method Radius crossing
Growth rate 8.37, K.E.
K.E. (10*2 ergs) 2.4
Machine 360/95
Periods per minute 0.5

The fact that our peak kinetic energy is somewhat
higher than the values obtained by other authors
suggests either that their models may not have
achieved limiting amplitude or that the difference in
opacity representation is causing the variation.
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Fic. 1.—The Goddard model, calculated with Cox-Stewart
opacities. The surface luminosity and surface velocity curves
refer to optical depth ~0.2 of the static model. The interior
velocity curve refers to a layer with a temperature of ~2 x 10°
K in the static model.

If the Goddard model is computed with Carson’s
opacities, the result is markedly different. In this
case, RV Tauri behavior is exhibited (§IV). In the
case of the Cox-Stewart opacities, such behavior
occurs only at much higher R/M ratios (Stobie 1969b;
Christy 1975).

IV. NEW NONLINEAR RESULTS

To reproduce the observed bump Cepheids, stellar
masses must be used that range from values expected
from normal evolutionary theory without mass loss
to as small values as seem to be required to produce
“bumps” on the luminosity and velocity curves. The
observed luminosities and effective temperatures,
though somewhat uncertain, probably lie within the
ranges 3.5 < log(L/Ly) < 3.7 and 3.75 < log T, <
3.81 (Fricke, Stobie, and Strittmatter 1972). There-
fore, the expected masses are 6-8 M, if the bump
Cepheids are evolving in the slow “blue loop” phase
of core helium burning; the much less likely hypoth-
esis that they are in the rapid “first crossing” phase
of core helium ignition leads to expected masses of
7-9 M.

Our adopted grid of theoretical models is listed in
Table 1, together with a summary of our main results.
In this table, notation is conventional, but we men-
tion explicitly the following quantities for definite-
ness: K.E., peak kinetic energy; A, full (not half)
amplitude; Asymmetry, time spent on the descending
branch of the surface velocity curve divided by time
spent on the ascending branch; ¢, phase after zero
velocity at minimum radius of the second (but not
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necessarily the secondary) bump in the surface veloc-
ity curve plus unity; 8¢, phase of the surface velocity
maximum minus phase of the surface radius mini-
mum; P,/P,, ratio of the period of the second over-
tone to the period of the fundamental mode (derived
from linear nonadiabatic theory). Under the heading
Bump, the letter A stands for the presence of a
secondary bump on the ascending branch of the sur-
face velocity curve, while the letter D refers to a bump
on the descending branch. If there is no bump, the
letter X is used. Luminosity curves are not used for
this purpose because, as is generally found, the
luminosities near the surface tend to be noisy unless
a fine zoning of the outer layers (including the
hydrogen ionization zone) is adopted.

a) Work Curve

As a prototype bump Cepheid, we select one of our
models characterized by M = 7 Mo, log (L/Lo) = 3.7,
log T, = 3.78, and P = 8.7 days. The integrated work
done over a pulsation cycle by each zone in this
model is shown in Figure 2. Notice that pulsational
driving occurs both in the helium ionization region
(zones 27-34) and in the hydrogen ionization region
(zones 34-44). In some of our models, the driving
peak in the latter region is split into two subpeaks (a
phenomenon discussed by Stellingwerf 1976). Very
rarely, the helium peak is also partially split. It should
be noted that no significant excitation or damping
occurs in layers with temperatures higher than
log T = 5.4 (zone 10); therefore, the large CNO
opacities that Carson derived for such high tempera-
tures have no effect on the pulsational properties of
the models.

b) Velocity Curves

Velocity curves for our prototype model are shown
in Figure 3. A magnified scale is used to plot velocities
in the lower zones so that the small structure becomes
visible. It will be noticed that Christy’s (1968) “echo”
phenomenon can be traced in our models. Thus, a
running wave is propagated inward from the helium

—T T T T T T T T
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ZONE NUMBER
Fic. 2.—Work integral per zonme, in units of the peak
kinetic energy, for a model of 7 M, at limiting amplitude. The
temperatures of a few zones in the static model are indicated.
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FiG. 3.—Velocity curves for various zones in a model qf
7 M. The zone numbers are indicated. The vertical scale is
different for the various zones.

ionization region (starting from near zone 28) and is
then reflected off the central core; eventually the wave
arrives at the surface about 1.6 periods after its
initiation. This disturbance at the surface causes a
secondary bump to appear on the descending branch
of the velocity curve (zone 40). The primary bump
in this curve seems to be due to the arrival of the
running wave that is propagated directly outward
from the helium ionization region at the same time
as the inward-wave is initiated. For comparison, the
velocity curves for a model of 5 M, with the same
luminosity and effective temperature as those of the
prototype are shown in Figure 4. The period of this
model is significantly longer (11.5 days), and the
secondary bump now appears on the ascending
branch of the velocity curve (zone 30).

It is well known from Stobie’s (1969b, ¢) and
Christy’s (1975) work that the observed (Ledoux and
Walraven 1958) progression of the shape of the light
and velocity curves with increasing period can be
qualitatively reproduced by theoretical nonlinear
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F1G. 4.—Velocity curves for various zones in a model of
5 Mo. The zone numbers are indicated. The vertical scale is
different for the various zones.

models. Our quantitative results for M = 7 M, and
log (L/Ly) = 3.7, based on the new opacities, are
shown in Figures 5 and 6. Three main features of the
velocity curves, which are more accurately determined
than the luminosity curves, should be noted. First,
the phase of maximum outward velocity occurs very
close to the phase of maximum luminosity, as is
actually observed (although there are differences in
detail). Second, a small bump appears initially on the
descending branch of the velocity curve around a
period of 7 days, then grows and progresses forward
with respect to velocity minimum until it switches to
the ascending branch around a period of 12 days.
Observationally, the corresponding periods are about
7 and 10 days. Third, the models predict a large
asymmetry in the surface velocity curve when the
amplitude is high, and a small asymmetry when the
amplitude is low. This correlation is in fact observa-
tionally corroborated. The theoretical and observed
values of the asymmetry are ~ 4 for velocity curves that
have a bump on the descending branch, and ~1 for
velocity curves that have a bump on the ascending
branch. The average surface velocity amplitudes pre-
dicted by the models are roughly 80 km s~. In com-
parison, the average empirical velocity amplitudes,
formed by multiplying the observed radial-velocity
amplitudes by 24/17, are only about 60 km s~*. How-
ever, the discrepancy seems small in view of the crude
treatment of the outer layers in our models. All the
foregoing conclusions are equally valid for any other
reasonable choice of stellar mass and luminosity (see
the full results in Table 1).
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Another, indirect measure of the asymmetry of the
surface velocity curve is given by 8¢. Its theoretically
predicted increase with period is confirmed very
elegantly by the recent observational data of Evans
(1976). A further point of agreement with observation
is the lack of a prominent secondary bump at very
long periods (see our model for P = 30.2 days) and,
occasionally, at periods where a bump is the rule
(see our models in the period range 5.8-7.7 days). It
should be emphasized that, in any sequence of models
in which two of the parameters (mass, luminosity,
effective temperature) are held fixed, the progression
of the bump is smooth and unbroken; but the periods
at which the bump is first and last visible are not the
same for every sequence. Since Cepheids of the same
luminosity and effective temperature could have at
least three different implied masses (corresponding to
the three different evolutionary crossings of the in-
stability strip), there could be a small range of periods
where Cepheids with and without bumps coexist. The
assumption that not all Cepheids have the same
initial chemical composition could introduce additional
scatter.

¢) Masses of Bump Cepheids

Fricke, Stobie, and Strittmatter (1972) have shown
that, if one defines ¢ in the manner indicated above,
then the product P¢ turns out to be nearly propor-
tional to the radius R. This result was already implicit
in the earlier work of Christy (1968, 1970), Stobie
(19690, ¢), and Fricke, Stobie, and Strittmatter (1971).
More recently, Christy (1975) has confirmed and
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interpreted it in terms of his echo concept. With
Carson’s opacities, we find:

Pé ~ 0.22(R/R,) days, (1)

with a range of scatter in the coefficient of +0.03.
Another useful quantity is the *“ pulsation constant,”

Q = P(M|Mo)""*(R|Ro) ™2 . @

This is not exactly a constant but is approximately
proportional to (R/M)'* for a wide range of stellar
models. With Carson’s opacities, we find:

P ~ 0.025(R/Ro)"*(M|Mo)~* days,  (3)

where the coefficient has a scatter of +0.001.

By combining the (P, ¢, R) and (P, M, R) relations,
it is possible to obtain a formula for the mass of a
bump Cepheid in terms of the directly observable
parameters P and ¢. With Carson’s opacities,

MMy = 0.25P$™3 C))

Since observed bump Cepheids have (P> = 8 days
and <¢> = 1.6 (Fricke, Stobie, and Strittmatter 1972),
we may infer that they have an average mass of
{M|My) =~ 6.0. The situation is illustrated in detail
in Figure 7, where individual bump Cepheids are
plotted along with the individual theoretical models.
It is worth noting that more of the stars should have
a bump on the descending branch if the average mass
is greater than 6 M, but more should have one on
the ascending branch if the average mass is smaller
than 6 M.

P(DAYS)
)

1 1

1 L

i 1
1.0 Il 1.2 1.3 1.4

1.5

1 1
1.6 1.7 1.8 1.9 20

PHASE qb OF THE SECOND BUMP

FiG. 7.—Relation between the period and the phase of the second bump on the surface velocity curve, for the theoretical models
(filled circles) and for observed bump Cepheids (opern circles). The grid connecting the theoretical models of a fixed mass is

explained schematically in the upper right corner.
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COX-STEWART CARSON

r==-1

35f -

LOG(L/Lo)

301

M/M,

FI1G. 8.—Mass-luminosity diagram both for bump Cepheids
(boxes) and for stellar models that have evolved to the “second
crossing” phase without mass loss (curves). The results for
the two adopted sets of opacities are shown.

Previous authors have obtained {M/My> =~ 3.8
with the use of the Cox-Stewart opacities. The differ-
ence from our results is striking. Only a small part
of this difference can be due to the slightly different
choices of chemical composition (see Fricke, Stobie,
and Strittmatter 1971). About 309, of the difference
actually comes from the change of the Q value (Carson
and Stothers 1976); but by far the greater percentage
arises from the change of .

To effect a further comparison, the regions of the
mass-luminosity plane occupied by bump Cepheids
are shown for the two sets of opacities in Figure 8.
Also shown are the corresponding evolutionary mass-
luminosity relations for stellar models that have
evolved to the “blue loop” phase without mass loss.
The evolutionary mass-luminosity relation for
M|M, > 8 in the case of Carson’s opacities is
extrapolated, since a ‘“‘blue loop” does not occur at
such high masses with his opacities if Z > 0.02
(Stothers and Chin 1978). The small differences in
luminosity that result from switching from one set
of opacities to the other are caused mainly by the
differences in the contributions to the total opacity
coming from the CNO elements at temperatures of
log T = 5.4-6.4.

We regard Figure 8 as important evidence that
Carson’s opacities (for at least the element helium)
may be superior to those of the Los Alamos group.
A small improvement in Carson’s opacities could
possibly bring the pulsational masses of bump Cepheids
into perfect agreement with the evolutionary masses.
Alternatively, since the red-giant precursors of
Cepheids are observed to be losing mass, an average
15%, loss of a red giant’s initial mass could be invoked
to achieve exact agreement. However, it is known
from evolutionary calculations that a loss of between
109, and 80%, of a star’s initial mass will completely
suppress the “blue loop.” This result has been ob-
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tained both for the Cox-Stewart opacities (Forbes
1968; Lauterborn, Refsdal, and Weigert 1971) and
for Carson’s opacities (Stothers and Chin 1978).
Nevertheless, the model uncertainties are such that
they probably do not entirely preclude a mass loss
of 15%,. An affiliated problem is that the empirical
mass-loss rates, as recently calibrated by Reimers
(1977), are about 50 times too small to yield the neces-
sary amount of mass loss. However, these “ observed ”
rates are stated by Reimers to be only lower limits
to the true rates. In fact, Bernat’s (1977) rates are
between one and two orders of magnitude higher
than Reimers’s.

It is worth recalling that Carson and Stothers (1976)
have found pulsational masses of Cepheids based on
the (P, M, R) relation to be almost as low with
Carson’s opacities as they are with the Cox-Stewart
opacities. Using radii determined from the observed
luminosities and effective temperatures of bump
Cepheids (Fricke, Stobie, and Strittmatter 1972), we
find specifically that, if (P> = 8 days and (R/Ry) =
55, the average mass according to equation (3) is
{M|My» ~ 5.3. If the accepted absolute magnitudes
of Cepheids were brighter by 0.11 mag or if their
accepted effective temperatures were 3%, cooler, their
average mass could be made equal to 6.0. This
uncertainty is probably permitted by the observational
errors.

d) Change of Helium Abundance

To test the effect of a uniform change in the chemical
composition of the stellar envelope, we have re-
calculated the two models shown in Figures 3 and 4
with new composition parameters (X, Y, Z) =
(0.49, 0.49, 0.02). Only the helium abundance is of
interest here since the metals abundance has a rela-
tively small effect on the pulsational properties.
Following Fricke, Stobie, and Strittmatter (1971), we
may express our results (which are given in detail in
Table 2) as a relationship between the helium abun-
dance and the stellar mass inferred from P and .
It is found, from the two models for 7 My, that
M oc Y~%2 while, from the two models for 5 M,
Moc Y-%% By using the Cox-Stewart opacities,
Fricke, Stobie, and Strittmatter (1971) found M oc
Y039 Apparently, the exponent is not very sensitive
to the adopted set of opacities.

It is of interest to ascertain whether, with a given
set of opacities, the change in the inferred mass is
due to the change in mean molecular weight or to the
change in opacity, since both factors depend on Y.
Therefore, we have taken the original model for 7 M,
and have introduced the new composition parameters
(X, Y,Z) = (0.49, 0.49, 0.02) into the thermodynamic
state variables, while retaining the original-composi-
tion opacity tables. Our results, shown in Table 2,
indicate that P is affected about equally (though in
opposite directions) by the two factors—mean molec-
ular weight and opacity—and that ¢ is considerably
more sensitive to mean molecular weight than to
opacity (but again the two factors act in opposite
senses).
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TABLE 2
FULL-AMPLITUDE PROPERTIES OF THE MODELS WITH VARIOUS HELTUM ABUNDANCES
M|Meo =5 M|My =17
PARAMETER 0.24% 0.241 0.49*%,0.491 0.24*,0.241 0.49,* 0.491 0.49,* 0.24}

RIRo...covvveiiiinnnnn. 66.0 65.9 65.9 65.8 65.8
P(days)........couuuiinn 11.46 11.50 8.72 8.69 8.59
K.E. (10*2ergs)........... 35 4.2 8.7 19.0 13.8
AR/R. ...t 0.26 0.21 0.19 0.19 0.19
Vous (kms=1) . ............ 37 45 45 47
Vm(kms™).............. —42 -39 —48 —60 —53

(kms=Y).............. 79 93 105 100
Loy (1037 ergss=%)........ 3.5 9 3.6 3.0 3
L (10°7 ergss™)........ 1.1 .87 0.86 0.27 0.57

DOl e e s et v e e ene e 1.3 3 1.6 2.6 1.9
Asymmetry............... 1.2 3 4.1 8.2 6.6
B 1.31 51 1.59 1.68 1.72
Ot i 0.31 .10 0.09 0.11 0.08
Bump..............o..... A D D D

* Y for state.
1 Y for opacity.

Note.—In both the M/My, = 5 and M/M, = 7 cases, we have used log (L/Lo) = 3.7 and log T. =

3.78.

V. NEW LINEAR RESULTS
a) The Resonance Py/Py = 0.5

Second-overtone periods have been calculated for
the models of Table 1 by employing linear non-
adiabatic theory. The computer program adopted is
that of Carson and Stothers (1976). It is basically
compatible with the nonlinear program that we have
written, except that the surface boundary condition
for the heat flow is somewhat different. However, this
small difference is not expected to affect the periods
significantly. Since Cox, Hodson, and King (1978)
have shown generally that linear and large-amplitude
nonlinear periods agree closely with each other, our
period ratios should be well determined even for
large-amplitude pulsators.

Our interest in this section focuses on the ratio of
the second-overtone period to the fundamental
period (P,/P,). Simon and Schmidt (1976) and Simon
(1977) have argued that an accidental resonance,
occurring when P,/P, = 0.5, causes the excited funda-
mental mode to pick up the second overtone; the
consequently modulated light and velocity curves are
expected to show a bump on the ascending (A) or the
descending (D) branch, depending on which side of
the resonance the period ratio lies. By matching
Stobie’s (1969, ¢) theoretical velocity curves, their
own linearized period ratios, and observational data
for bump Cepheids, Simon and Schmidt have derived
bump masses of about half the evolutionary masses
with resonance limits of Py/P, = 0.46-0.48 (A models)
and P,/P, = 0.50-0.53 (D models).

There seem to be several difficulties with this
theory. First of all, a forced second-overtone oscilla-
tion is hard to reconcile with Christy’s echo concept,
which seems to explain very well the behavior of the
velocities. Second, some of Stobie’s models pulsating
in the first overtone show a secondary bump on the

surface velocity curve. This bump for 7 M, and
log (L/Ly) = 3.7 shifts from the descending branch
to the ascending branch when the effective temperature
of the star is decreased, just as it does in the case of
the fundamental mode. But the first overtone is cer-
tainly not in resonance with the second (or even the
third) overtone. Third, our models of bump Cepheids
show P,/P, = 0.48-0.51 (A models) and P,/P, =
0.51-0.56 (D models). If the bumps are due to the
supposed resonance, then the resonance limits are
surprisingly wide and also are not symmetrical about
P,/P, = 0.50. As two examples, our prototype bump
Cepheid model with P,/P, = 0.543 is shown in
Figure 3, and a model for 9 M, with Py/P, = 0.556
is shown in Figure 9. Fourth, not all the models
within the formal resonance limits have bumps (for
an explanation see the analogous discussion at the
end of § IVh). Our model for 6.4 My with Py/P, =
0.546 does not show any sign of a bump, although it
has a large amplitude.

A note of caution should be sounded in connec-
tion with the period ratios quoted by Simon and
Schmidt. These were derived on the basis of linear
adiabatic theory. However, nonadiabatic effects have
a noticeable influence on the periods of the higher
pulsation modes, because for these modes more of
the pulsation amplitude is contained in layers closer
to the surface. We find that nonadiabatic effects
generally increase the period. Special calculations for
models of 7 M with log (L/L,) = 3.7 indicate that,
for both sets of opacities (Carson and Cox-Stewart),
the difference between the nonadiabatic and adiabatic
P,/P, values is 0.015 + 0.001, i.e., essentially inde-
pendent of P,. Therefore, the addition of 0.015 to the
resonance limits of P,/P, derived by Simon and
Schmidt should correct them for nonadiabatic effects.
The resulting limits turn out to be very close to the
results that we have derived on the basis of Carson’s
opacities.
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F1G. 9.—Surface velocity curve for a model of 9 My with
Pz/Po = 0.556.

b) Surface Phase Lag

The linearized calculations of Carson and Stothers
(1976) have indicated that the phase lag (with respect
to an adiabatic oscillator) between the luminosity
variation and the radial-velocity variation at the
stellar surface should be about 45° for stars that lie
near the blue edge of the Cepheid instability strip
and about 135° for very much redder stars. Convec-
tion, although it was included in the equilibrium
structure of their stellar models, was not allowed to
interact with the pulsations. By an obvious, but in-
correct, interpolation, Carson and Stothers concluded
that the average Cepheid ought to show a phase lag
of about 90°, as is actually observed. However, by
performing additional linearized calculations with
similar physical assumptions, we have determined
that the surface phase lag moves clockwise as the star
moves redward across the instability strip. Therefore,
the models including convection actually predict a
phase lag of about 270° for the average Cepheid. On
the other hand, with convection entirely omitted, the
surface phase lag is found to move counterclockwise
as the star moves redward, so that it reaches 90° where
the average Cepheid lies. Since rather similar results
have already been reported for models based on the
Cox-Stewart opacities (Baker and Kippenhahn 1965;
Castor 1971), it seems safe now to conclude that the
phase lag must behave as if convection were absent.
Therefore, our neglect of convection in the nonlinear
models is probably justified.

¢) Blue Edges

Our nonlinear computer program uses somewhat
different surface boundary conditions from those
used in the linear program of Carson and Stothers
(1976). It would be useful to know what effect
the different surface boundary conditions have on the
predicted blue edges of the instability strip on the
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H-R diagram. Since King et al. (1973) have shown
generally that linear and nonlinear blue edges coincide,
we have used our present computer program to re-
determine the theoretical blue edges determined pre-
viously by Carson and Stothers. These edges, given
in terms of log T, turn out to be within +0.005 of the
previous edges. Since the latter have already been
shown to agree well with the general position of the
observed blue edge, the present results seem to confirm
this agreement.

VI. CONCLUSION

Nonlinear calculations of models for bump
Cepheids have previously shown that most of the
basic features of these stars are successfully repro-
duced by models having half the normal evolutionary
masses, if the Los Alamos opacities are adopted. It
is a remarkable circumstance that with the rather
different Carson opacities these same features can be
reproduced at least as well, and probably better since
normal to nearly normal evolutionary masses with
normal helium abundances are now called for. Be-
cause the observed rates of mass loss from the red-
giant precursors of Cepheids appear to be very small,
we believe that the use of Carson’s opacities gives
better agreement with observation. These opacities
have the additional advantage of accounting in a
better way for the general position (though not the
slope) of the observed blue edge of the instability
strip in the H-R diagram. However, other problems
(such as the small observed period ratios of the
double-mode Cepheids) remain for both sets of
opacities, and radical remedies like those of Cox
et al. (1977), and Cox, Michaud, and Hodson (1978)
may turn out in the end to be justified in part.

It is worth noting that the hypothesis of a resonance
between the fundamental mode and the second over-
tone, if applied to the present results for bump
Cepheids, leads to a lopsided resonance band and a
displaced resonance center as compared with the
results presented by Simon and Schmidt (1976). Be-
cause of this fact and some other considerations, we
wonder whether the resonance P,/P, = 0.5 is a good
explanation for and indicator of a bump Cepheid.

It is a pleasure to acknowledge material support
from T. R. Carson for the provision of his opacities,
L. Wink for his help with the equation of state sub-
routine, and R. F. Stellingwerf for numerous program-
ming hints. In addition, we thank A. N. Cox and
A. L. Merts for informative telephone discussions of
Cepheid and opacity modeling, and Norman Simon
for discussions of his results concerning period ratios
and for other helpful comments. S. K. Vemury thanks
the National Academy of Sciences—National Research
Council for the award of a Research Associateship at
the Institute for Space Studies and Dr. Robert Jastrow
for his hospitality at the Institute. He also wishes to
thank A. N. Cox for extensive discussions during a
brief visit to Los Alamos and for his cordiality at the
Scientific Laboratory.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1978ApJ...225..939S&amp;db_key=AST

J. 21225, J93950

BAD

rt

No. 3, 1978

BUMP CEPHEIDS 949

REFERENCES

Baker, N., and Kippenhahn, R. 1965, 4p. J., 142, 868.

Bernat, A. P. 1977, Ap. J., 213, 756.

Carson, T. R. 1976, Ann. Rev. Astr. Ap., 14, 95.

Carson, T. R., and Stothers, R. 1976, Ap. J., 204, 461.

Castor, J. I. 1971, Ap. J., 166, 109.

Castor, J. L., et al. 1976, in Proceedings of the Solar and Stellar
Pulsation Conference, ed. A. N. Cox and R. G. Deupree
(Los Alamos: Los Alamos Scientific Laboratory), p. 243.

Christy, R. F. 1964, Rev. Mod. Phys., 36, 555.

. 1966, Ap. J., 144, 108.

. 1967, in Methods in Computational Physics, ed. B. Alder

(New York: Academic Press), Vol. 7, p. 191.

. 1968, Quart. J.R.A.S., 9, 13.

. 1970, J.R.A.S. Canada, 64, 8.

. 1975, in Cepheid Modeling, ed. D. Fischel and W. M.
Sparks (Washington: NASA), p. 85.

Cox, A. N. 1977, private communication.

Cox, A. N., Deupree, R. G., King, D. S., and Hodson, S. W.
1977, Ap. J. (Letters), 214, L127.

Cox, A. N., Hodson, S. W., and King, D. S. 1978, A4p. J.,
220, 996.

Cox, A. N., Michaud, G., and Hodson, S. W. 1978, A4p. J.,
222, 621.

Cox, A. N., and Stewart, J. N. 1965, Ap. J. Suppl., 11, 22.

Evans, N. R. 1976, 4Ap. J. Suppl., 32, 399.

Forbes, J. E. 1968, Ap. J., 153, 495.

Fricke, K., Stobie, R. S., and Strittmatter, P. A. 1971,
M.N.R.A.S., 154, 23.

. 1972, Ap. J., 171, 593.

King, D. S., Cox, J. P., Eilers, D. D., and Davey, W. R. 1973,
Ap. J., 182, 859.

Lauterborn, D., Refsdal, S., and Weigert, A. 1971, Astr. Ap.,

97

Ledoux, P., and Walraven, T. 1958, in Handbuch der Physik,
ed. S. Fliigge (Berlin: Springer-Verlag), Vol. 51, p. 353.

Merts, A. L. 1977, private communication.

Reimers, D. 1977, Astr. and Ap., 61, 217.

Rodgers, A. W. 1970, M.N.R.A.S., 151, 133.

Simon, N. R. 1977, Ap. J., 217, 160.

Simon, N. R., and Schmidt, E. G. 1976, Ap. J., 205, 162.

Stellingwerf, R. F. 1975, Ap. J., 195, 441.

. 1976, in Proceedings of the Solar and Stellar Pulsa-
tion Conference, ed. A. N. Cox and R. G. Deupree (Los
Alamos: Los Alamos Scientific Laboratory), p. 267.

Stobie, R. S. 19694, M.N.R.A.S., 144, 461.

. 19695, M.N.R.A.S., 144, 485.

. 1969¢, M.N.R.A.S., 144, 511.

Stothers, R., and Chin, C.-w. 1978, Ap. J., in press.

Vemury, S. K., and Stothers, R. 1977, Bull. AAS, 9, 360.

RICHARD STOTHERS and SASTRI K. VEMURY: Institute for Space Studies, Goddard Space Flight Center, NASA,

2880 Broadway, New York, NY 10025

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1978ApJ...225..939S&amp;db_key=AST

