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Graviton creation in a Robertson-Walker universe is calculated usmg a renormalized energy-momentum tensor. If
the background matter has an equation of state p = yp, then for >1 3, graviton energy created near the Planck time

tp can alter the expansion to g ~ 12 in<g 102tp

Particle creation by the gravitational field in differ-
ent cosmological backgrounds has been considered by
various authors [1—13]. Near the Planck time ¢
1043 sec it is a powerful mechanism that could have
strongly influenced the state of the early universe.
Here we investigate the effect of gravitons created by
the expansion near tfpina Friedmann universe contain-
ing background matter with equation of state p, =
YPm:

Graviton creation. Gravitational wave perturbations
hy (x t) in a flat isotropic universe with Robertson-
Walker (RW) metric [i=c=G=1]

ds? = ds? —a2(t)(dx12+dx22+dx32), (1)

obey the Lifshitz equation (here the synchronous con-
dition A, w= 0 and transverse, traceless conditions are
imposed [14]),

hiGe, )+ 3L Rd(x, 1) - ARI(x, 1) =0,
a 22

G,j= @)

where + = d/df and A is the Laplace-Beltrami operator
on a constant ¢ hypersurface with eigenvalues &k and
eigenfunctions G(k) /(x). Each component 4 (O of
the wave h;/(x, 1) = f d3k h ()G J(x), obeys the

1’2’3)7

* Work supported in part by the National Science Foundation
[PHY77-07111 and PHY76-08551].
Present address: Department of Physics, University of
California, Santa Barbara, California 93106, USA.

wave equation in 7-time (defined by df = V dr with
V=a3),

R (1) + Q2 (1) =0,

where ' = d/dr and ©; = Ve, with wy, = k/a. This
equation is of the same form as that of a massless
scalar wave minimally coupled to a flat RW back-
ground. The solution to the wave equation (3) can be
written in the form (the subscript & on 4. will be
dropped hereafter)

€))

T
= e, =exp(xi | Qd7),
h(r) = \/_ m . =exp(i [ (4;
where a and § are complex functions of 7. The
Wronskian condition guarantees that Ja|2 — 1812 = 1.
The quantity s = 8* = 3(2]h|% + Q1A' |?) gives a
measure of the parametric amplification of the wave,
corresponding to quantum mechanical particle produc-
tion. Near the singularity, for small f or low w,
{78 dr| < 1, the sudden approximation to the wave
equation (3) yields [4 (1971)]

s=C 122+ |CH12 0 -3 5

where C; and C, are complex constants satisfying
Ci{C, +C1C5=1/2.

Regularized energy-momentum tensor. Gravitation-
al wave perturbations on the metric of eq. (1) can be
described by two independent scalar waves correspond-
ing to the two polarizations of the gravitational wave,
each of which obeys eq. (2), and can be quantized in
the same way as a minimally coupled scalar field [15].
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The effective energy-momentum tensor T}, of these
quantized gravitational waves is taken to be the sum
of the energy-momentum tensors corresponding to
those two minimally coupled scalar fields. In a semi-
classical theory in which the background metric is
treated classically, the energy density p and pressure p
of the gravitons are given as quantum expectation
values p = (T, p8;/ = —(T; /). The state vector is
chosen such that no quanta corresponding to waves of
the form (4) are present. (Complete specification of
the state vector still requires a choice of initial condi-
tions on « and $.) Then one finds that [6]

p=(Ty% = (16m)12m)3 [ a3k po(k) , ©6)

where pg = 1.(£) 12 + w0, 2(D) [y () 2 = V=2Q(1 + 23).

As is well-known from flat space quantum theory, this
integral is divergent in the high frequency end of the
spectrum, and some kind of renormalization is neces-
sary to yield a physically meaningful energy density.
We expect our results to be insensitive to the renor-
malization method. By means of adiabatic regulariza-
tion [6], one obtains the finite energy density

preg = (1287T4)—1 fd3k [pO(k) - pdiv(k)] 5 (7)
where

paiy(k) = a4k +d2(2k)~1 + A(8K3)~1]

and

A = g*|(@la)? — 2(dla)ala)? — 2dla)dla) + 3(ala)*].

If one restricts oneself to the confines of Einstein’s
theory with only a linear curvature term in the gravi-
tational Lagrangian, then it will not be compatible to
include subtractions, like those involving 4, which are
higher than second order. (However, if such a term
were included, it might give rise to avoidance of the
singularity {17], or other effects.)

Reaction on the background. Near the singularity,
or at low frequencies, s can be approximated by eq.
(5). As our purpose is to investigate the back reaction
of created gravitons, we choose C; and C, such that
the quantity pq(k) — V=28 (proportional to the
energy density in mode k with the usual vacuum
energy subtracted) will vanish at the initial time z,.
Thus, we take [C] 12 = (4824)~1, |G, |2 = /4, where
Qy= a02k, which corresponds to the initial condition
By =0 at t5. At a given time ¢, the graviton energy
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density p consists of two parts, a quantum term Pq and
a classical remnant p . The first part p,, is the contribu-
tion to eq. (7) of all modes k satisfying the condition
w < w, = 1/t. Those are the modes in which quantum
effects such as graviton creation and vacuum polariza-
tion are significant. The second part o, is the contribu-
tion of the higher frequency modes, which will be
treated classically, and consists of the remnant of the
gravitons created in those modes k at earlier times
when they were in the quantum regime. The quantum
contribution Pq is found by integrating eq. (7) over all
k with k = |k| <k, = a/t, using the approximation of
eq. (5). One finds

yo ] [&_4(i_39)2_@3(z)2]

b 128n3L 204 \ap @ a? \4

_ 1 [2sinh2x__1_(£')2:| ®
128m3L 4 2 \a) [

where x = In(a/ag). The expression for Pq does not
vanish at f; because of the higher order subtraction
involving (¢/a)?. That term is only significant for an
interval of less than 0.1 7, after #, and has negligible
influence on the time for graviton creation to alter the
expansion to a ~¢1/2,

The classical remnant of created gravitons behaves
like a relativistic fluid. Its energy density o at time ¢
is given by the sum of all previous increments
8p(ky(t), t') at earlier times ¢' <1, arising from the
change of k., (¢') with time, and being red-shifted by
a factor [a(t")/a()]?. Thus, the energy density of the
classical remnant of all previously created gravitons is

TN T el 1)) k()
to (9)

where the subscript 2 on apq/ 0k, indicates that a(t)
is kept fixed during differentiation. One can write
p.(t) in the form

pe(t) = (1673) L (ag/a()*F (@) , (10)
where F(¢) can be found by integration of (9) if a(¢")
is given.

For a Robertson-Walker background containing a
fluid with equation of state p, = yp, (0 <y <1),
which is not interacting with the created gravitons,
the conservation law T+”. = 0 yields
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P = Pom(VIVe)~ 1) (1)

To find the effect of graviton creation, one adds the
graviton energy density Py =Pqt P to the matter
source p.,, and solves the Einstein equation

3(dfa)? = 87(pyy + o) - (12)

With p(¢) given as a functional of a(¢), the above
equation becomes an integro-differential equation.
However, the integrand of eq. (9) will become small
after a short time interval, so that pCa4 becomes con-
stant after that time. Therefore, one only needs a(¢)
at early times (¢ < 1) to find p_(¢). Because p, + Py~
Py for £ < 1, we approximate a(¢) for t <1 as the
solution of the Einstein equation with Pq neglected
relative to p.; namely a = aqy(¢/ty)®, with a =
2[3(y+ D]~ L. [In this case pg,, = 302/(8722).]
Thus, substituting p, from eq. (8) and a = a(t/t()*
in eq. (9), one finds that

2(3-2/a)x _ 2(1-2/a)x _
Flx)= 14[6 30— 2 = oa—2 1
8t¢ 6
64(1_1/"))‘ -1 o2
e — (1 *7’)} ’ (13

where x = In(a/ag). For the case o = 2/3, the first term
is replaced by 2x/a. If the (¢/a)? subtraction were
omitted from p, then the factor of (1 + a?/2) would
be replaced by 1 in eq. (13). The function F(x)
becomes constant after a short time (except for

o= 2/3, when it goes as In(z/ty)). With o, Pg and p,
given by egs. (11), (8), (10) and (13), respectively,
Einstein’s equation becomes

o2 24n 24

o)) o

We have solved this equation for x(¢) numerically for
different values of 7. The initial time 7, was taken as
the time when p_ is about equal to the Planck energy
¢"i~1G=2 ~ 10114 erg/cm3, which gives 7o ~
o(3/8m)1/2. The behaviour of a(¢) is shown in fig. 1
for several values of 7.

The graviton energy density depends on the time
tog when particle creation begins. In the present models,
as tg is between 0.1 and 0.2, the effect of the second

2 inh2
2 (£ gt 0
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Fig. 1. Relative radius x = In(a/ag) versus time In ¢ for a RW
universe with graviton creation. The v = 0.2 solution starts at
to = 0.192 and remain Friedmannian all along with a slope «
[=2/(3(y + 1))] = 5/9 (shown in parentheses) while the y =1
solution starts at £ = 0.115 with o = 1/3 but turns into a
«=1/2 solution in g ~ 2 (unit of time is the Planck time
tp=5.4 %1074 sec).

order subtraction term in eq. (8) is largely insignifi-
cant. The densities o, and Pq build up to a maximum
almost instantaneously, and then decrease as a result
of the expansion and the rapid fall off in production
rate [pq is initially negative (not shown in figures) but

-
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Fig. 2. In p versus In r for ¥ = 0. py, dominates for all ¢ (unit
of energy density is the Planck density pp = 5 x 10114
erg/cm3).
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Fig. 3. In p versus In ¢ for v = 1. p overtakes bq almost im-
mediately, and becomes equal to pyat fo = 2.

becomes positive almost immediately.] The graviton
energy comes mainly from the classical remnant after
a short time ¢ < 1. For v < 1/3 (see fig. 2), p,, domi-
nates and ¢ ~ ¢ for the entire time (for y = 1/3 there
is no graviton creation in the exact solution). For

v > 1/3 (see fig. 3), p,, dominates (¢ ~ ) until a
time £, when Py = P> after which pg(~pc) becomes
dominant and @ ~ ¢ {?2. In general, for non-interacting
fluids p,, ~a—3(1*7) and Py~ a4 50 that pg must
eventually dominate for y > 1/3, as noted previously
by Grishchuk in ref. [7 (1976)]. We find from our
numerical solution that for y=1, £, ~ 2, for y=0.7,
te ~ 20, fory=04,t, ~ 60, and fory <1/3,1, =
(see fig. 1). For the values of y > 1/3 considered, the
expansion becomes radiation dominated by ¢ < 102.
Our calculations show that in these models graviton
creation can have a significant effect on the expansion
of the universe.
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