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Rotational energy transfer in gaseous mixtures has been considered within the framework of the infinite
order sudden (IOS) approximation. A new derivation of the IOS from the coupled states
Lippmann-Schwinger equation is given. This approach shows the relation between the IOS and CS T
matrices and also shows in a rather transparent fashion Secrest’s result that the IOS method does not
truncate closed channels but rather employs a closure relation to sum over all rotor states. The general
CS effective cross section formula for relaxation processes is used, along with the IOS approximation to
the CS T matrix, to derive the general IOS effective cross section. It is then observed that this cross
section can be factored into a finite sum of “spectroscopic coefficients” F,(j',j'Jj.jL) and
“dynamical coefficients” Q;(k). The F,(j',/ Ji.jJL) can be calculated once and tabulated since

they do not depend at all on the particular system considered. The Q;(k) can be shown to equal the
integral inelastic cross section for the transition j = O to j = L, so that if these cross sections are
evaluated, either theoretically or experimentally, other types of cross sections can be computed without
any further dynamical calculations. In principle, the factorization permits one to calculate other types of
cross sections if any one type of cross section has been obtained by some procedure. The functional form
can also be used to compact data. This formalism has been applied to calculate pressure broadening for
the systems HD-He, HCl-He, CO-He, HCN-He, HCI-Ar, and CO,-Ar. In order to test the IOS
approximation, comparisons have been made to the CS results, which are known to be accurate for all
these systems, as well as to several exact close coupling, semiclassical, and experimental values for some
of the systems. The IOS approximation is found to be very accurate whenever the rotor spacings are small
compared to the kinetic energy, provided closed channels do not play too great a role. For the systems
CO-He, HCN-He, and CO,-Ar, these conditions are well satisfied and the IOS is found to yield
results accurate to within 10%-15%.

I. INTRODUCTION

A number of gas phase phenomena depend at the mi-
croscopic level on the energy and momentum transferred
in binary molecular collisions.! These have evoked
continued experimental and theoretical study because of
their technological importance and because of the infor-
mation they provide about basic intermolecular forces
and molecular collision dynamics. Perhaps one of the
most extensively studied of the phenomena is the colli-
sional broadening of molecular spectroscopic lines. %3
Unfortunately, application of the theory which relates
the various macroscopic phenomena to the intermolecu-
lar potential via collision dynamics is computationally
formidable, and until recently, nearly all analyses re-
sorted to severe approximations. The last 10 years,
however, have seen great strides in the theoretical un-
derstanding of molecular collision dynamics.* A cul-
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mination of these studies was the application of sophis-
ticated algorithms and powerful digital computers to the
brute force numerical solution of the quantum Schrdding-
er equation for some simple but nontrivial molecular
systems. The intermolecular potentials used in these
studies were obtained by solving for the electronic en-
ergy as a function of nuclear positions, and the close
coupling (CC) scattering equations were solved to deter-
mine the nuclear motion on these electronic potential en-
ergy surfaces. In some of these studies the resulting
scattering amplitudes were also used to calculate colli-
sion-induced pressure broadening cross sections and
other relaxation phenomena.*™® For those systems
where data were available, agreement with experiment
was generally very good. Unfortunately, these accurate
methods are too expensive to be used routinely. On the
other hand, the detailed descriptions they have provided
for a few systems have been invaluable for assessing the
applicability and accuracy of various approximate meth-
ods.

Besides the appearance of a few essentially exact cal-
culations, the last few years have also seen renewed ef-
forts at developing accurate approximate descriptions of
molecular collision dynamics. In many cases, these
have been applied to pressure broadening and other re-
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laxation phenomena and it has been possible to assess the
various approximations by comparison with accurate
quantum calculations or with experimental data. These
methods have ranged from purely classical descriptions
of collision dynamics, *° through a variety of semiclassi-
cal approaches, '3 to purely quantal methods. Among
the latter are the effective potential (EP) method of Ra-
bitz, % the coupled states (CS) approach of McGuire and
Kouri'® and Pack, 2® and the decoupled [-dominant ap-
proximation (DLD) of DePristo and Alexander.!® We
have recently considered the accuracy of these methods
for pressure broadening and other relaxation phenome-
na.!™!® For the systems studied, CS was found to be in
essentially quantitative agreement with accurate CC
quantum values, whereas DLD was somewhat poorer,
and EP, while computationally cheaper, was unaccept-
able for some of the systems.

In the present paper we consider another, even sim-
pler quantum approximation, the infinite order sudden
(10S) method. 2° Only collisions of atoms with linear
rigid rotors will be discussed explicitly; however, ex-
tension to more complex systems is straightforward,
and most of our results and conclusions are expected to
have general validity. This approximation has been dis-
cussed previously by Curtiss,  Pack, and coworkers, 2°
Secrest, 2 and Hunter.?® It is also related to the “adia-
batic” method introduced by Chase?* for nuclear scatter-
ing which has been adapted to electron—-molecule scat-
tering by Temkin and co-workers® and to atom-mole-
cule scattering by Thaddeus®® and by Chu and Dalgarno.?”
The accuracy of this method for rotational excitation has
been considered by comparison with more accurate quan-
tum calculations for a few systems.2°

We begin by presenting, in Sec. II A, a new derivation
of the I0S method by introducing the energy sudden ap-
proximation (i.e., ignoring the energy difference be~
tween rotational levels) into the Lippmann—-Schwinger
formulation of the CS method.?® This derivation serves
to emphasize the intimate connection between 10S and
CS T-matrices, and we are then able to obtain 10S ex-
pressions for pressure broadening and related relaxation
phenomena by employing the general CS formulation re-
cently presented by Goldflam and Kouri.?® The present
derivation also shows that in computational applications,
unlike CC or the decoupling approximations, 10S does
not truncate the molecular rotational basis set; the ener-
gy sudden approximation makes it possible to perform
the infinite sum over basis functions by using closure
properties. This result has also been obtained by Se-
crest,?? As will be seen, this is not always a blessing,
since the I0S method overestimates the importance of
closed channels in certain cases,

Because the CS and 1I0S methods decouple the effective
orbital angular momentum of collision from the molecu-
lar angular momentum, it is possible to introduce a gen-
eralized partial wave opacity function for phenomenologi-
cal cross sections. This is done in Sec. I B. These
opacities may prove to be computationally convenient
since they appear to be smooth functions of the partial
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wave, and this will allow for interpolation of computed
values,

The I0S approximation leads to great conceptual as
well as computational simplifications of collision dy-
namics, In particular, it effects a separation of the de-
pendence on collision dynamics (i.e., properties of the
intermolecular potential) from the dependence on spec-
troscopic levels (i. e., molecular rotational levels).
This separation will allow us in Sec. IIC to express var-
ious collision cross sections—including integral inelas-
tic cross sections and pressure broadening cross sec-
tions—as a sum over a finite and, in fact, a small num-
ber of dynamical terms multiplied by coefficients which
contain all the dependence on molecular rotational lev-
els. From a computational standpoint, this means that
one can calculate a relatively small number of quantities
in the IOS approximation and these can then be used to
generate a wide variety of specific cross sections.

Insofar as the I0S approximation is an accurate de-
scription of collision dynamics, the separation into dy-
namic and spectroscopic factors also has important con-
sequences for the analysis of experimental data. Spe-
cifically, it implies that various cross sections are in-
terrelated in the I0S approximation. In principle, then,
if the appropriate dynamical factors are obtained from
analysis of one type of experiment, say collision-induced
pressure broadening, they can be used to predict a dif-
ferent kind of cross section, for example, state-to-state
integral inelastic cross sections. As another example,
the integral inelastic cross sections between arbitrary
states j and 7 can all be computed from the inelastic
cross sections out of the lowest, j=0, level. These
ideas are discussed in more detail in Sec. IID.

A sufficient (although perhaps not a necessary) condi-
tion for obtaining all of the simplifications discussed
above is that the I0S approximation provides a good de-
scription of collision dynamics. To examine this point
we have performed 1I0S scattering calculations for a
number of atom-linear rigid rotor systems. We have
chosen to examine pressure broadening cross sections
here because these can be compared readily with other
theoretical results. It would, of course, be interesting
to consider other types of collisional cross sections as
well. In Sec. IIT A, we discuss details of the computa-
tional methods. Pressure broadening cross sections for
a number of systems are presented in Sec. IIIB. Al-
though the 108 approximation is computationally inex-
pensive compared with, e.g., the CS or EP approxima-
tions, it is found to provide predictably good accuracy
for many, although not all, of the systems studied here.
Because the energy sudden approximation ignores rota-
tional energy spacings, it is not surprising that the
method fails unless the kinetic energy of the collision is
large compared with the relevant rotational energy spac-
ings. In addition, if the energy is close to threshold so
that closed channels play an important role, the IOS ap-
proximation breaks down. This is a manifestation of the
use of the closure approximation. These conclusions
are discussed in greater detail in Sec, IIIC. Finally,
Sec. IV provides a summary and concluding remarks.
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il. THEORY

A. Derivation of 10S method

The sudden approximation was first applied to molecu-
lar scattering problems by Kramer and Bernstein. *®
Later, Curtiss® presented several formal studies of mo-
lecular scattering using a rotating frame description and
first derived the 10S approximation in the form common-
ly used today. Next, Pack and co-workers?? studied the
I0S method and were the first.to carry out detailed com-
putational tests of its accuracy (by comparing results of
full close coupling and 10S calculations for Ar +N, colli-
sions), Secrest? derived the I0S method by a technique
which is essentially equivalent to that used by Curtiss,

although the connection was not recognized until pointed
J

(jomo| R?) = Y, () expliky,- R)

o 00 [ R @)
Im

explik \R=R'1) o 0r aiy( s rs
'R_RI| V(R)a)zp(JOmO'RT’)!
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out by Hunter. ¥ The approach involves the use of a con-
tinuous transformation to diagonalize the Hamiltonian.

In this section, we present a new derivation of the 10S
starting from the McGuire-Kouri form of the coupled
states approximation.!® This will clearly demonstrate
the close relationship between CS and the I0S. As a
result, we shall view the IOS T-matrix as an approxima-
tion to the CS T-matrix. Then all previously derived
CS formulas for integral, differential, and relaxation
cross sections?® yield the corresponding 108 formulas
by simply replacing the CS by the I0S T-matrix.

We begin the derivation of the IOS by considering the
CS Lippmann-Schwinger equation (first given by McGuire
and Kouri'® and then rigorously derived by Kouri and
Shimoni?®) for an atom-linear rigid rotor:

1)

where 4 is the system reduced mass, 6’ is the rotor orientation relative to the scattering vector R, V is the inter-
action, and #2#2/2yu is the relative kinetic energy when the rotor is in the jth state. We now replace & in the
Green’s function by some average wavenumber &, and note that the sums over j, m can then be analytically carried

out using the closure relation

; Y, (MYE ) =5(-7).

(2)

The integral over d¥ can be done immediately and the result is then

. N o ) I
(b(]omo|Rr)z Y,omo(r) exp(iky, R)—E;h_—z J d

R’ w
IR-R'|

VR, 8)p{jgmo| R, #) . (3)

We note that the dependence on the initial state enters solely through the inhomogeneity. We can expand the plane

wave as

expliky,+ R)=Var ;F-zm i Y,0(R)jy (ks R)

4)

where we have oriented the space-fixed z axis parallel to k,o, and we also expand the Green’s function as

u exp(ikIR-R’1) 2uk - AL .
—21r—h'z —X‘ET?R__RT_z'T#z' ; Ym(R)qu(R')]z(kRJhx(kR)) .

Then we can define ¥,,{jomq | R¥) by
Bljomo| R?) =Var D V2I+1 ¥, R0,y (jome| RY) .
]

If we substitute Eqs. (4)-(6) into Eq. (3), we obtain
Duuliomol RY) =840y UkygR) Y sgm ()

b [ . .
-2k L AR’ R'%j, (kR i kB VIR, 60, Umo| B') .

We then factor out 6y, (%) by writing
lP;y(jomol R;) = 5M0Yiomu (;’)wtlo(R: 0) ’

where ¥;, (R, 0) satisfies

(6)

1)

8)

(9)

2 -
YrsaBs 6) =y UesgR) = 5 fo AR R, (R I kB, VR', 000, (R, 6) .

Now we note that ¥, J,O(R, ) depends parametrically on the rotor angle 8 only through the 8 dependence of the potential
V(R, 6). Other than this, the scattering behaves just like scattering by a spherically symmetric potential since only
M =0 components of Y”,(}'i) enter and there is no coupling in orbital angular momentum {. It is also noted that in
general, ¥, ,O(R, 8) depends on the rotor state because of the kyoR argument of the initial state Bessel function. 1If &,
in the inhomogeneity is also approximated by &, then we obtain

J. Chem. Phys., Vol. 67, No. 9, 1 November 1977



4182 Goldflam, Green, and Kouri: Rotational energy transfer

4, (R, 9)=j,(kR)—%’3 fo dR'R'%j,(kR )h; (ER,)V(R', 0)4,(R’, 6) . 10)

Thus, the I0S approximation to the full wavefunction is given by
U Gomol R¥) = ¥y ) VAT D VEI+T 8 (R (R, 6) . (11)
7

Equations (9)—(11) summarize the I0S approximation for the wavefunction from the point of view of the simplest CS
Lippmann-Schwinger equation approach. It is important to note that the IOS wavefunction in the above approxima-
tion (i. e., where k; and k;, are all replaced by some effective k) factors into two pieces. The first contains all the
dynamics while the second has the internal state dependence of the wavefunction. We shall see that such factoriza-
tions are a general feature of the I0OS approach and have far reaching consequences for all types of cross sections in
the 10S approximation. To obtain the IOS approximation to the CS T matrix, we examine the asymptotic form of Eq.
(1) to obtain the CS-differential scattering amplitude as

f(jm‘jomo‘ﬁ):—#h,—g JdR' dr' exp(- ik R R YL, GV(R', 0" ) jomo| R') , 12)
and we replace ¥(jymgIR'?') by Eq. (11), the IOS expression. We then expand the plane wave state via

exp(- ik,R+ R') = 4r ;, LY RV, (Rj (R (13)
and substitute Eqs. (11) and (13) into Eq. (12). After straightforward but tedious manipulation, we obtain®

Flim| jomo| R) =;-5f7';'4-];k— Z (21+1)P,(2- R) Ji d(cos6)P,,,(cos8) Ty, (8] k)P, n(cos) (14)

where Z is the laboratory oriented center of mass z axis, 6 is the rotor orientation relative to the scattering vector,
and 7, !(9 I'k) is the angle dependent or “fixed orientation” IOS T matrix defined by

T,,(elk):%“} w/k,kJ; dR R?j,(k;R)V(R, 0)9,(R, 0) . (15)

With this definition, the “fixed orientation” IOS S-matrix is [1 - 7,,(61%)]. We can express S,;(61#) in terms of a
phase shift 7,,(81k) according to exp[Zin,,(G [k)]. We also note that P,, are normalized associated Legendre poly-
nomials. The IOS approximation to the CS T-matrix can be obtained by comparing Eqs. (14) and (15) to the
McGuire~Kouri!® expression for f(jm|jym,|R), yielding

1
Tyl dol B) = L dlcosh) Py, (cos0) Ty (6] R)P; (cosH) . (16)

In order to completely specify the approximation, we must tell how to choose % and whether %; in j,{kR) will be ap-
proximated. A variety of ways to do this have been suggested. Following Parker and Pack, 3% in this paper we
adopt the simplest choice and set both k and k; equal to &y,

It is important to emphasize that in numerical applications, the I0S approximation, unlike either CC or CS meth-
ods, does nof truncate the internal state expansion of the Green’s function. This fact was noted by Secrest® in de-
riving the I0S; it is shown quite clearly in the present derivation of the IOS equations using the full space-frame CS
Lippmann~Schwinger equation in untruncated form. Instead, the closure property is explicitly employed to analyti-
cally sum over all (open and closed) rotor states in the Green’s function. This is made possible by our having ap-
proximated all %, by % even for the closed channels. The effect is that one has incorrect coupling to closed channels
since ordinarily they are damped by a decaying exponential in the Green’s function. The result is that we expect the
I0S to be inaccurate for transitions which are strongly coupled by the potential to closed channels. Such coupling is
most important near threshold and the IOS will fail for such transitions. As the relative kinetic energy increases,
such coupling by the potential plays a less important role and the IOS improves.

B. Generalized opacity function

As shown by Goldflam and Kouri, ?° the general CS formula for phenomenological relaxation cross sections for lin-
ear molecules colliding with atoms is

] ] -t -7
oGl dahs| B) =37 2 (21+1) <’° Ts n ) (1. gy n )
ln,t m

-m' m'-m/ \m ~-m' wm-m
m
o 25 +1 . , , .
X (= 1y é‘ﬁ (51,1;51,,13—<J§m'| SHE) jym’ Y* {fom| SHE,)| jm)), 1)
a

where S=1-T, n is the tensor rank of the relaxation mechanism, j, and j, are the (spectroscopic) rotational levels,
and unprimed and primed j refer to values before and after a collision. The S-matrices are evaluated at total ener-
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gies such that the initial relative kinetic energy is the same, i.e.,
E=n*F#/2u=E, - E(4,) =E,~ E(j,) , (18)
with E(j) the rotational energy of the level j,
The IOS formula is obtained by replacing the CS S-matrices with their IOS approximation
(§'m| S*(E)| jm) = Sy 5| 5] B) : (19)
In this study it will be assumed that the IOS S-matrices are evaluated at the same relative kinetic energy.

It is convenient to introduce the notion of a generalized opacity within the framework of the CS and IOS approxima-
tions. To do this, we note that the general phenomenological cross section for the CS approximation [ef. Eq. (17)]
can be written in the form

ou 738l iais | B) =3 22 Pualidis| i B) (20)
where we defined
gl s 25, +1 o F A n
Palilia) B-X, B copmann(h B
A S |
x(& oA m'_m><%aﬁf»fr<f’»m’|S’<E»>If»m’>*<f;m|S'(E.>lj,m>). (21)

The quantity P, (jij;1j.d» ! E) is a generalized CS opacity in analogy with the opacity function defined for ordinary inte-
gral cross sections. The generalized IOS opacity is then obtained by substituting the IOS approximation for the S-
matrices. For the systems we have studied, it has been observed that these opacities are smooth functions of the
orbital angular momentum quantum number I. This suggests that one can compute the P, at appropriately chosen
values of [ and interpolate to obtain the sum.

The notion of a generalized opacity is not as trivial as it might at first appear. To illustrate this point, we note
that for pressure broadening of an isolated line Eq. (21) becomes

—m' m,—-

. . ,
an(jJnljJalE)=§ (21+1)(:': Js n m)

X (1 = (Gym'| SUE,)| jym’ V* (Gom| SHE) | j,m)) , (22)

which contains only elastic S-matrix elements. It was therefore expected that this generalized opacity would behave
in the same manner as the elastic integral cross section opacity

Py(j~7)= @1+ 1)) (im| T jm)| 2, (23)

which is usually an oscillatory function of® . That the generalized pressure broadening opacity was usually a
smooth function was therefore somewhat unexpected. To understand this we note that this generalized cross section
is approximately related to inelastic integral cross section opacities

1 Ly
Re{Pyy oy | ol | EV =35 {,2; P,<j,~j'>+,§b Py(jy~j )} : (24)

and the latter are generally smooth functions of I.

Finally, we note that the simple form for the generalized opacity function is effected by the decoupling of angular
momenta. In the CC method these relaxation cross sections involve products of S-matrices evaluated at different
total angular momentum J. Only for integral state-to-state cross sections where n=0 does the double sum over
total angular momenta collapse to a single sum. Thus the CS and IOS approximations have the added computational
advantage over CC of facilitating interpolation schemes for relaxation cross sections.

C. Factorization of 10S cross sections

In the 108 approximation it is possible to choose &, and & so that the fixed orientation S-matrix, S,(81k), is inde-
pendent of the molecular rotational levels, j and j’. It is also independent of their projection m. This fact allows
for great simplification of the IOS formulas, It effects, as shown below, a separation of the various cross sections
into dynamical and spectroscopic factors. The dynamical factors contain all the information which varies from sys-
tem to system, for example, the collisional reduced mass and the shape and strength of the interaction potential.
The spectroscopic factors contain all the dependence on the angular momentum, of the rotor; they are independent of
the specific system and depend only on the usual properties of angular momentum coupling.

To effect this reduction, it is convenient to expand the angle dependence of the IOS fixed-orientation S matrix in
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the same set of functions as the ones used to expand the interaction potential.

an atom these are the Legendre polynomials. Thus,
CNE Z S} (k)P (cosb),
L

where

1
S(k)=%(2L + 1)J d(cos)P, (cos8)S, (6] &) .
-1
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For a linear molecule colliding with

(25)

(26)

The above expression indicates the normalization of the Legendre polynomials used here. 3

With this expansion, the integration over rotational functions to obtain S-matrix elements can be done analytically

to give

Simli' 3] ®) Z SLR)(j'm| Py | jm)

= SLR=1)"VZ+ 1) @57+ 1) (7 7
L m

~-m 0

)G 7 3)

(27a)

{270)

Note that the sum on L is finite, restricted by the triangle relations |j-j'l< L<j+j4'; also only even values of j+j'

+ L enter. It is also convenient to express the Kronnecker delta function as
- i 7 L\(j §
b= (1Y 152’1)(’ ] )(
6”;()(“(’J'm-moooo

>6L0¢

Inserting Eqs. (27) and (28) into the expression far the generalized relaxtion cross section then gives

O Juds | s BV =5 25 (2L 6108500 SL RS e (8)*]
IL
iz

x Z (= 1Yedbmem’ (35 1 1) V{25, + 1) (251 +1) (

mm

(3 L')(ja Ja L)(J'u B L
0 0 0/\m -m 0/ \m' -m' O

The sum over m, m' can be performed using the identity

Ja L><,-,, 7 L')(j, A n )(j{. PA n >
-m O0/\m' -m' O0/\m -m' m'-m/ \m ~-m' m'-m

Z (- 1)!,,+I',,~m+m’ <ja
mm’ m

IECEV PR
@L+1)*\f 4 L

Performing the sum over L’, the cross section Eq. (29)
can then be written in the form
0,Uias| ol E) == D Folisds) dufs] L)QL(R) (31)
L

where the spectroscopic coefficient is given by

Fol il Gl L) = (= 1" 25, + V)V 2F +1) (25, +1)

% (ju Ja L) (jb s L) Ja Jo m
0 0 0/\0 O O s Ji LY’
(32)
and the dynamical coefficient is given by
B) = a2 @I+1) (| SLB)|2-6,0) . (33)
‘QL k2(2L+1),Z I L | Lo

Before considering the specialization of this formula
to specific types of phenomena, several properties of the
F, and @, factors are noteworthy. First, we note that
the sum over L is limited since the spgctroscopic coeffi-
cients F, vanish unless

(=1)ea= (- 1) = (- 1)F . (34)

(28)
Jo Ja L)
0 0 O
. . o !
)(" ro ><’ B, > (29)
m -m m —-m m -m m -m
(30)

f

The F, vanish unless the L index is within the finite
range determined by triangle inequalities. Second, we
note that the partial wave sum in Eq. (33) will converge
for each value of L. As long as the anisotropy of the in-
teraction potential decreases faster than R'%, for suffi-
ciently large partial waves, S;(61k) will become indepen-
dent of the angle 4, and the S will vanish except for the
L =0 term; furthermore, because of unitarity, S}l will
then approach unity. Finally, we note that the only com-
plex valued quantities which enter the expression for the
generalized cross sections are the S}, and these enter
only as 18} 1%, Therefore, within the IOS approximation
for rigid rotors, all of these generalized relaxation
cross sections are real quantities. In particular, this
means that 108 predicts zero pressure~induced line
shifts for pure votational spectra.

D. Relationships among cross sections

We now will specialize the IOS general relaxation
cross section to some specific cases. Because all the
system dependent information is contained in a small
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number of dynamical @, factors, it will follow that the
various cross sections are interrelated. Thus, having
determined the @, from one type of cross section, it is
possible to predict other types of cross sections., Also,
because the dependence on spectroscopic levels is con~
tained entirely in the F, coefficients it is possible to
make some generalizations about the dependence of
cross sections on rotational levels.

The collision-induced broadening of the isolated (i.e.,
nonoverlapping) spectral lines between rotational levels
J. and j, is described by the cross section

CACEAFRAD )

=~ ; Fo(Gsluisl L) Qu(R) (35)
where n =1 for dipole spectra and »=2 for Raman spec-
tra. It is apparent that only even values of L enter this
sum; by the triangle inequalities, L ranges between zero
and two times the smaller of j,, j,. For the L=0 term,
which is therefore always included, it is readily shown
that

Fo(Gdsl 5udy| 0)=1 . (36)

Furthermore, for higher values of L, the spectroscopic
coefficient decreases sharply and is only a weak func-
tion of j, and j,. Thus, for dipole spectra,

Fi(jda+117,4.+1]2)20.25,
Fi(jja+1]jj,+1]4)20.13 .

Therefore, the pressure broadening cross section is
dominated by the L=0 term, and is expected to depend
only weakly on spectroscopic level. Because @, is posi-
tive for L> 0, the pressure broadening cross section de-
creases for higher rotational levels. These conclusions
are borne out in the computations presented in Sec. III.

(37)
(38)

Nuclear magnetic resonance spin-lattice relaxation is
described by cross sections for spin—rotation (n=1) and
spin-spin {n=2) coupling of the form

0,53 37| E)

== 2R3 15 1) k) (39)
T

Except for the tensor rank of the interaction, these are

similar to the ordinary integral inelastic cross section

which can be shown to be given by (j #j)

olj= 3| E) =~ ool 5’| ji| E)

=20 Pl ] D)w k) (40)
We note that for n=0, the L=0 coefficient is identically
zero. It can be shown that the integral elastic cross
sections cannot be described in an analogous manner;
these depend on the dynamics via Re(si) as well as

1St 12,

Insofar as the IOS approximation provides a valid de-
scription of the collision dynamics, it is seen that the
variation of pressure broadening with spectroscopic line
contains the same dynamical information as integral in-
elastic cross sections with even 4j. In principle, mea-
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surement of the former is sufficient to determine the
latter. However, since the variation of linewidth is
small compared with the linewidth, it will be difficult to
obtain adequate experimental accuracy to do this. In
other words, pressure broadening is dominated by the

L =0 term whereas this term is excluded from inelastic
integral cross sections by the triangle inequalities since
j#5. Inthis sense, pressure broadening and integral
inelastic cross sections will provide complementary in-
formation about collision dynamics.

An interesting relationship among different integral
inelastic cross sections can be obtained by considering
the explicit form of the spectroscopic coefficients,

. ! 2
Fo(j'j'ljle):(Zj'u)(g g g) 41)
Then
a(j—-7'| E)= (25" +1)
H ! 2
XZ(é p §> QB . (42)
L

Cross sections calculated via Eq. (42) do not satisfy
microscopic reversibility, but one can correct for this

by setting &=k, in the 7/k? factor of the @, (k) plus choos-
ing k in the IOS dynamical equations as a symmetric
function of j and /. In cases where the IOS approxima-
tion provides an accurate description, the rotational en-
ergy differences should be unimportant compared with the
kinetic energy. Therefore, one might expect results to
be insensitive to specific choices of k.

Finally, the individual @, (k) can be shown to be equal
to a single integral inelastic cross section by noting that

0 ] L 2 "

(O p 0) @5 +1)=6,, , (43)
so that

o0~ L|E)=Q,(k) . (44)

Then, one can obtain the entire matrix of inelastic cross
sections from a knowledge of cross sections for excita-
tion out of the =0 level. Specifically,

0(j~ | E+Ey)=(ky/By)? (25" +1)

. ] 2
% (] 7 L) o0~ LI E+Ey), (45)
L

0 0 O
where we have explicitly insured microscopic reversibil-
ity in the manner suggested above. It is interesting that
a similar expression has been obtained previously by
Goldflam and Kouri* from an alternate analysis of atom-
molecule collisions. An analogous expression was also
obtained by Varshalovich and Khersonsky® from yet a
different analysis.

1. CALCULATIONS

A. Computational methods

The I0OS method requires solution of a one-dimensional
radial scattering equation, as a function of “fixed” orien-
tation. As usual, the relevant information is contained
in the asymptotic behavior which can be described by a
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TABLE 1. Partial wave cross sections
6,(0 —2) in a} for Ar—N, at 300 K,

l WKB Exact
1 0.4105-2 0.4183-2
3 0.9331-2 0.9560-2
5 0.1397~1 0,1447-1
7 0.1773~1 0.1865-1
9 0,2034-1 0.2169~1
11 0.2162-1 0.2302-1
13 0.2148-~1 0,2228-1
15 0.1999-1 0.2014-1
17 0,1739~1 0.1789~1
19 0.1420-~1 0,1553-1
21 0.1128-~1 0.1211~-1
25 0.1202~-1 0.1144-1
30 0.1963 0,1912
37 0.3068 0.2977
44 1.088 1,075
51 2,622 2.601
58 3,796 3,786
65 0.9656 0, 9458
72 1.137 1,073
time?® ~2 min ~20 min

2CPU time on a Univac 1108 for partial waves
0-80,

phase shift 7 or an S matrix. These depend on the Kinet-
ic energy, partial wave, and orientation and are related
by

S,(61 k) = exp[2in, (6] B)] . (46)

The S matrix can be obtained by solving the integral
equations derived in Sec. IT A, e.g., by the numerical
method of Sams and Kouri.*® Alternatively, the equiva-
lent differential equation,

B @# miu+1) h‘zkz] _
[_ﬁ EEE—_E‘__L}{T_-FV(R, 9)— 2“ Zp;(Ra 9)—0, (47)

can be solved, e.g., by numerical integration such as
the deVogelaere algorithm” or by a more sophisticated
technigue such as the method of Gordon. %

A third possibility is to approximate the phase shift
with the WKB expression

nelw= [,/ vmo- (53]
"o
) kz'(%%z} ar

where 7, is the classical turning point. The WKB ap-
proach is very attractive computationally since the in-
tegral can be evaluated efficiently using Pack’s?*® ap-
proach based on Gauss~Mehler quadrature,

(48)

In the present study, various results were obtained us-
ing the Sams-Kouri method, deVogelaere integration,
and/or the WKB approximation. As expected results
from the exact integral equation and the exact differen-
tial equation agreed to numerical accuracy, four to five
significant figures, in systems where both were em-
ployed. The WKB approximation was also found to give
good accuracy, better than 1% in the final cross sec-
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tions, for most systems considered. To demonstrate
the accuracy, Tablel compares some partial wave opac-
ities computed from the WKB approximation with numer-
ical solution of the integral equations. The WKB method
was tested using 10 and 20 Gauss-Mehler points; 10
quadrature points were found sufficiently accurate.

The IOS integral over rotor orientation was done with
a standard Gauss—Legendre quadrature. The necessary
number of Gauss points can be inferred by noting that an
N-point quadrature is exact for polynomials with orders
less than 2N+1. For a given @, the integrand is the
product of the Legendre polynomial of degree L times
the fixed-orientation § matrix. The angle dependence of
the S matrix reflects the angle dependence of the poten-
tial; a first approximation suggests that the S matrix
can be accurately represented by a polynomial of order
Anax Where A, is the highest important term in the
Legendre expansion of the interaction potential. The
highest @, which is needed is given generally by L=2j_,,
where j,, is the highest molecular rotational level of
interest. In general then, the number of Gauss points
should be chosen such that N > (j,a +Ane)- Table I
presents the dependence on number of Gauss points for
pressure broadening of HC1 by He where the interaction
has A, =2. For broadening of the (j,j+1) line one
needs L values to 2j and N> j+2 is seen to give good ac-
curacy as expected.

B. Pressure broadening cross sections

To test the accuracy of the I0S approximation we have
computed pressure broadening cross sections for a num-
ber of molecules perturbed by atoms: HD-He, HCl-He,
CO-He, HCN-He, HCl-Ar, and CO,~Ar. These were
chosen mainly because of the availability of other theo-
retical values against which the TOS results could be
compared. The first four of these systems have been
studied within the accurate CC formalism; we have also
previously used these four systems to test the CS, DLD,
and EP decoupling approximations.!® The last two 5ys-
tems have been treated previously semiclassically'?!3;
for these we have now performed CS calculations as well
to provide further comparisons. As shown in Sec. IIA,
I0S is an approximation to the CS approximation, so it is
particularly instructive to compare results obtained by
these two methods. Furthermore, in the first four sys-

TABLE II. Convergence of IOS pressure broadening cross sec-
tions with number of Gauss~Legendre points for He + HC1. ?

No. points

Line 4 5 6 8 10 12

0-1 7.9148 7,9157 7.9156 17,9156 7.9156 77,1956
1-2 7.7234 7,7234 7,7233 7.7233 7.7233 7.7233
2.3 7.6960 7,6951 7.6951 7.6951 7.6951 7.6951
3-4 7.6296 7,6852 7,6857 7.6857 7.6857 7,6857
4-5 6.1697 17,6406 7,6812 7,6815 7.6815 7,6815
5-6 5.2713 6.5414 7.6487 T7,6792 7.6792 7.6792
67 4,8646 5,8347 6,7826 7,6777 7.6779 7.6779
7-8 4.6217 5,4967 6,2075 17,6575 7.6770 7.6770
2L =300 cm™!, Loaded sphere potential (see Ref. 10). Results
include partial waves [ =25, Cross sections are in Az,
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TABLE III, He-HD pressure broadening cross sections (&%
computed with various scattering approximations, ?

Rotational energy transfer 4157

TABLE V. He+HCI pressure broadening cross sections (Y
at £ =480 K.

Energy
(em™)

a
a
Q
w
3
w
S
£
S
=
o

Line

0-1 60
100
200
400

Wt
SR

1-2 60
100
200
400

LN = RN O

WO N UlWw Y ©
N = RN O

SN o kN ®
—
S oy = ook

—
OO W Wwomo
DN =t ®
o . .
[0
O W N .0507[\70—‘
NO O © U

3See Ref. 6 for the potential employed,

tems CS has been found to be in quantitative agreement
with accurate CC values; it is expected to be comparably
good in the last two systems as well, so that CS values
should provide an accurate standard for comparison.

These systems sample a range of collision parameters.

For example, the rotational constant decreases by two
orders of magnitude along the sequence HD, HCl, CO,
HCN, and CO,. Paralleling this decrease in rotational
constant is an increase in the anisotropy of the interac-
tion potential. Both of these trends lead to an increase
in inelastic cross sections. For the Ar perturbers, the
deeper van der Waals well also leads to larger inelastic-
ity. Being heavier, the Ar projectile also samples much
higher partial waves than are needed to describe colli-
sions with He. For both Ar and He, however, the im-
portant scattering occurs at short range; i.e., none of
these systems are dominated by strong long-range in-
teractions which might be expected to be described poor-
ly by the CS and IOS approximations.

1. HD-He. Details of the interaction potential and
CC calculation have been reported previously.® Since
this system has a rotation constant (B,~40 cm™) large
compared with the kinetic energies considered (E< 400
em™) 108 is not expected to give an accurate description
for the reasons discussed in Sec. II. The results given
in Table III bear out these expectations. At the lowest
energies considered, I0S gives cross sections a factor
of 5 too large; although IOS improves at higher energies,
it is still some two to three times too large at the high-
est energies considered here. As noted before, CS is

TABLE IV, He-HCI pressure broaden-
ing cross sections (%) computed with
various scattering approximations, 2

Energy
Line (cm™) CC CS 108 EP
0-1 100 5.1 5.1 7.2 4.5
1.2 5.4 5.4 6,8 5.9
0-2 5,1 5,1 7.2 -
0-1 300 8.2 8.2 87 7.5
1-2 8.0 80 8.4 9.1
0-2 8.1 8.1 8.7 -

*The interaction potential was the loaded
sphere model of Gordon, 10

Line LS potential® LJ-fit potential®
CS 108 Cs Semiclassical
0-1 8.63 9.09 5.51 6. 86
1-2 8.47 8. 82 5,45 5,68
2-3 8.50 8.78 5,43 6.04
3-4 8. 44 8.77 5,38 6,27
4-5 8.15 8.76 5.27 6.05
5—6 7.60 8.76 5.06 5.58

2] oaded sphere model potential of Gordon, 10
bLennard-Jones fit!® to the loaded sphere potential,

in excellent agreement with CC for this system, so the
error here is due to the energy sudden approximation
and not to approximations related to the CS method (i.e.,
the centrifugal sudden approximation).

2., HCl-He. For this system we have used the loaded
sphere model potential of Gordon, !® who used it to com-
pute pressure broadening cross sections from classical
trajectories. This system has also previously been
treated within the accurate CC formalism, ® the approxi-
mate CS formalism, !® and a semiclassical framework. !*
Because the rotational constant of HCI (B,~10 cm™) is
smaller than that of HD, the IOS method is expected to be
generally better for the former than for the latter, and
this is confirmed by the results presented in Table IV.
As was the case for HD, the IOS method is seen to im-
prove, for a given spectroscopic line, at higher collision
energies. It is also seen here that for a given collision
energy, IOS is less accurate for higher rotational lev-
els. This can be understood simply in terms of the en-
ergy sudden approximation since, for higher rotational
levels, the energy spacing between levels increases.

We have also done calculations to compare with the
recent semiclassical treatment of this system by Smith
et al.'® These authors use approximations expected to
be better for higher rotational levels, and it is of inter-
est to compare I0S values in these higher rotational lev-
els. It appeared initially that the IOS values were some
30%-40% higher than the semiclassical results (see Ta-
ble V). Since IOS was in better than 10% agreement with
CC and CS values for a somewhat lower energy in the
previous calculation, we were led to consider possible
errors in the semiclassical values. One obvious prob-
lem was that the semiclassical calculation was done with
a “Lennard-Jones fit” to the loaded sphere potential.
First, CS calculations were done for comparison and
agreement of these with the I0S values was within 10%-
15%, as expected, with the larger differences occurring
in higher levels. Second, CS calculations were done with
the Lennard-Jones fit used in the semiclassical study.
These results demonstrated that these potentials give
significantly different results. Table V also compares
CS and semiclassical values where both used the LJ-
fitted potential. These should provide an indication of
the accuracy of the dynamical approximation used by
Smith ef al. It is seen, however, that their procedure of
fitting a Lennard-Jones form to the potential can lead to
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TABLE VI. He-CO pressure broadening cross sections (Az), 2

Energy
Line (cm™) cc Cs JOS DLD EP
0-1 60 33 35 37 26 46
120 28 29 31 26 41
200 26 26 28 26 37
1-2 60 30 31 34 24 51
120 26 26 28 23 43
200 24 24 26 “ee 38

The interaction potential is the modified ab initio (MAI) inter—
action in Ref. 8.

larger errors than the semiclassical approximation to
the dynamics.

3. CO-He. The interaction potential used here was
obtained from an ab inifio calculation and has been used
previously in CC calculations for this system®; it has
also been used to compute pressure broadening within
the CS, DLD, and EP approximations.!® 10S results for
this system are presented in Table VI along with the
other theoretical values for comparison. The rotation
constant for CO (B,~1.9 cm™) is much smaller than the
collision energy, so that the IOS approximation is ex-
pected to be better here than for HD or HCl. As seen in
Table VI, 1I0S is, in fact, within about 10% of the CC
values, with better accuracy at higher collision energies
as expected.

We have also performed some calculations for this
system to compare with semiclassical results of Smith
et al.'® The semiclassical calculation used a Lennard-
Jones fit to the loaded sphere potential of Gordon; we
have done 10S calculations using the exact loaded sphere
potential. Results are presented in Table VII. The
agreement between the 108 and semiclassical result is
quite good, but the IOS approximation predicts somewhat
weaker line dependence than the semiclassical approxi-
mation.

TABLE VII, He-~CO pressure broadening
cross sections in A% at E =272 K.

Semi-

Line classical? I08°
0-1 25.8
1-2 24.3
2-3 22,3 24.0
3-4 22,0 23.9
4-5 21.9 23.8
5—6 21.7 23.8
67 21,6 23.8
7-8 21.5 23.8
8-9 21.3 23.8
9-10 21.0 23.8

10-11 20.9 23.8

11-12 20,7 23.8

aThe Lennard-Jones fit'® to the loaded
sphere potential of Gordon'® was used in
these calculations.

PThe loaded sphere potential!® was used
in these calculations,

‘adopted their interaction potential.
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TABLE VIII. He-HCN pressure broadening cross sections
(87,2
Energy
Line (em™ cC cs 108 DLD  EP
0-1 120 29 30 31 30 43
200 28 28 29 29 38
1-2 120 26 26 27 27 38
200 26 25 26 27 35

2The interaction potential is described in Ref, 7.

4, HCN-He. CC calculations on this system have
been presented by Green and Thaddeus, " and we have
CS, DLD, and EP
calculations have also been reported for this system.!®
108 values are compared in Table VIII with these previ-
ous results., HCN has a rotational constant somewhat
smaller than CO, and, as expected, the IOS approxima-
tion is quite good for this system.

5. HCl-Ar. Rotational relaxation in this system has
been studied in some detail by Neilsen and Gordon'? with-
in a semiclassical scattering framework. We have
adopted the interaction potential labeled “potential 52”
by these authors. In addition to the semiclassical pres-
sure broadening cross sections given by Nielsen and
Gordon, we have computed coupled states values to com-
pare with the IOS results. These are all given in Table
I1X, Itis seen that the CS and semiclassical results are
in good agreement where both are available. Unfortu-
nately, the IOS results are not so good, with the error
ranging from 20% to a factor of 2 too high. If accuracy
of the I0S approximation were controlled only by the ro-
tational energy spacing relative to the translational en-
ergy, one would expect I0S to be as good for this system
as it was for HCl-He; since the errors here are much
larger, we must look for additional criteria. The main
difference is believed to be the stronger inelasticity in
this system. Because of the larger anisotropy, larger
reduced mass, and deeper van der Waals well, one finds
here larger inelastic cross sections and especially a
higher probability for multiple quantum transitions. In-
sofar as accuracy of the IOS method depends on the size
of the rotational energy spacing, it must depend on the
spacing between strongly coupled levels; the energy
spacing between the collisionally coupled levels in HC1-
Ar is then much larger than in the weakly inelastic HCl~
He. Furthermore, a major failing of the I0S values is

TABLE IX. Ar—HCI pressure broadening
cross sections (39,

E=150 K
Line 10S SC* CS 10S SC* Cs
0-1 126 98 8 101 80 75

E =398 K

1-2 123 85 82 99 57 54
2-3 122 69 65 98 45 46
3-4 122 51 46 97 37 35
4-5 121 37 32 96 31 (AN

2Semiclassical values of Neilson and
Gordon, 12
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that they do not decrease rapidly with higher spectro-
scopic level as do the more accurate values. Due to the
larger energy spacing at higher rotational levels, the
inelasticity drops sharply; this is properly described by
accurate dynamical approximations, but not, of course,
by the I0S method where gl rotational energy spacing is
ignored. Finally, it should be noted that the relatively
deep van der Waals well in this system increases the
importance of Feshbach resonances, i.e., the detailed
coupling to closed channels, and, as we have discussed
in Sec. IIA, this is not properly described by the 10S
approximation.

6. COy;-Ar. Ar-CO, is a very interesting system
since many experimental results are available for rota-
tion~vibrational pressure broadening with j=2-40. To
date, only semiclassical calculations, in which the vi-
brational effects were neglected, were reported. We
performed the IOS calculations of pressure broadening
for the j=2-8 lines. We also computed the CS pressure
broadening cross sections using a limited basis set
(j<18 states included). These yield reliable cross sec-
tions for j=0-10. The potential used is a Lennard-
Jones fit'® to the potential surface of Parker, Snow, and
Pack.* The unaveraged results are tabulated in Table
X at four energies for the lines j=2-8, within the CS and
10S approximations. We note a marked improvement in
agreement of the results as the kinetic energy increases.
Also, the accuracy of the I0S approximation becomes

TABLE X, Ar-CQ, pressure broadening
cross sections in A2,%

Energy
Line {em™) (o] 108
2-3 69,5 130 158. 8
138.0 122 136. 6
347.5 98.0 97.8
458.5 89.0 89.0
3-4 69.5 121 156. 4
139.0 108 134.4
347.5 91.0 96.8
458, 5 85.2 88.1
4-5 69.5 109 154.3
139.0 100 132.9
347.5 86.5 95.9
458.5 81.1 87.3
5-6 69,5 107 153.0
139.0 90.3 131.8
347.5 80.6 96.1
458.5 78.5 86.6
6-7 69,5 105 152
139.0 88.5 131.0
347.5 78.1 95.5
458.5 74.0 86,1
7-8 69.5 105 151.3
139.0 82.8 130. 4
347.5 73.4 95.0
458, 5 72.3 85.6
8-9 69.5 101 105. 9
139.0 78.0 129, 7
347.5 68.6 94.5
458.5 69.1 85.1

®The potential is a Lennard-Jones fit'® to
the ab initio potential of Parker et al. 3
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TABLE XI, Ar-CO, pressure broadening cross
sections in A% at room temperature.

Semi-

Line CSs* I0S classical®  Experiment®
2-3 100 96 102 93+14
3—-4 101 94 95 90+ 10
4-5 92 93 91 9611
5-6 100 93 88 97112
6-7 96 92 85 107 +12
7-8 100 92 83 96+ 11
8-9 93 91 80 101+11
9-10 91 78 8918

10-11 91 76 90+ 8

11-12 90 75 86+ 7

12-13 90 74 88412

13-14 90 74 83+10

20nly a four point thermal average quadrature
was used to obtain the CS result, Thus these
results should be expected to be within 10% of
the exact quadrature,

dThese results are taken from the Ref. 13,

worse with higher j. The thermally averaged CS and
I0S results are given in Table XI for T=198 K and com-
pared with the semiclassical and experimental results,
The agreement of CS and IOS with experiment is seen to
be generally within uncertainty of the data. Of course,
because of the nature of the Lennard-Jones fit to the po-
tential, and the fact that vibrational motion is ignored in
the calculations, this is perhaps to be taken with caution.
More significant is the generally excellent agreement
between the I0S and CS results. The agreement with the
semiclassical results is somewhat worse for the higher
lines, but still not bad.

C. Discussion

Several conclusions can be drawn from the results
presented above. First, it is apparent that accuracy of
the I0S approximation varies for the systems studied
here. The accuracy appears to be determined mainly
by the energy spacings between the relevant rotational
levels compared with the collision energy. In order for
the energy sudden approximation to be accurate, the ro-
tational spacings must be small compared with the colli-
sion energy, and closed channels must be unimportant.
Thus, IOS is generally more accurate (for a given colli-
sion energy) for systems with smaller rotational con-
stants. This is readily seen along the sequence HD,
HCl, CO, and HCN. For the thermal collision energies
treated here, I0S is poor for HD with its rotational con-
stant of about 40 cm™; it becomes acceptable for HCI
with a rotational constant of about 10 em™; it is nearly
quantitative for CO and HCN with rotational constants of
less than 2 em™. For a given spectral line, IOS be-
comes more accurate at higher collision energies be-
cause the rotor spacing becomes smaller compared to
the collision energy. Conversely, for a fixed collision
energy, 10S becomes less accurate for higher lines, be-
cause the rotational energy spacing increases for higher
rotational levels.

If the accuracy of I0S depended solely on the ratio of
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rotational to collisional energy, we could expect similar
accuracy for HC1 perturbed by Ar and by He, However,
there also appears to be a dependence on the interaction
strength since HCl-Ar is not nearly as well treated by
10S as is HC1-He. For the former system, the well
depth is significant compared to the collision energy and
the closed channel coupling can be very important in
such cases. It is then expected that the I0S will fail be-
cause the closure approximation does not build in closed
channels in the correct way.

For higher rotational levels, I0S pressure broadening
cross sections are seen to decrease too slowly with in-
creasing rotational level when compared with CC or CS
values. This can be understood as follows. The pres-
sure broadening cross section is given approximately by
the sum of inelastic cross sections out of the two spec-
troscopic levels. In general, inelasticity decreases for
higher rotational levels because of the larger energy
transfer required for a given &j transition. This is
readily seen for example, in a perturbation treatment
where the cross section is related to a matrix element
of the interaction potential divided by the energy differ-
ence; the coupling matrix elements are roughly indepen-
dent of rotational level while the energy denominator in-
creases with rotational level. This is the basic reason
why pressure broadening cross sections are generally
found to decrease for higher spectroscopic levels, and
this effect is readily seen, e.g., in CC and CS calcula-
tions. In the IOS approximation, however, this effect of
rotational energy spacings is ignored, leading to the
weak dependence on rotational level observed for 10S
pressure broadening cross sections.

We have also performed calculations to compare with
the semiclassical approximation recently introduced by
Smith ef al.*® These confirm the accuracy of semiclass-
ical dynamics, although, as noted by Smith et al., lower
rotational levels are treated less accurately by this tech-
nique. Since IOS is most accurate for the lower levels,
it might be profitable to employ these methods in con-
junction, In this context, however, we note that the Len-
nard-Jones fit to potentials employed by Smith et al. was
found to introduce unacceptable errors for some cases.
The complementary nature of the semiclassical and 108
approximations may be further illuminated by the follow-
ing observations. The semiclassical method assumes
relative collisional motion on the spherical average of
the interaction potential, i.e., the potential is averaged
over rotational motion. IOS, on the other hand, treats
relative motion at fixed molecular orientations, i.e.,
the rotational motion is frozen during the collision., The
former corresponds to a rotational period short com-
pared to the collision time while the latter corresponds
to the opposite extreme. Since the molecule rotates
more rapidly in higher rotational levels, it is easy to see
that I0S will be more appropriate for lower levels and
a semiclassical treatment will be more reasonable in
higher levels,

It is also important to note here that the CS approxi-
mation has been found to be of quantitative accuracy for
all the systems treated here. If one has an accurate po-
tential and wants to predict line shapes accurate to 5% or
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better, and if the rotor energy constant is not too small,
then the CS method should be used. In addition, the CS
approximation can be used as a standard against which
other simpler approximations (e.g., the I0S and semi-
classical approximations here) can be tested. This
point is of great importance, in particular, in cases
where the CC calculations are impossible to carry out.

IV. SUMMARY AND CONCLUSIONS

We have given a new dervivation of the IOS method
which emphasizes that it can be viewed as an approxima-
tion to the CS approximation. This serves to emphasize
the relationship between the two methods in a direct
way. The correct I0OS expressions for phenomenological
cross sections can then be obtained in a transparent
manner from the CS expressions derived previously, 18
A byproduct of this approach is the elucidation of the
role of closed channels in the I0S method.

To provide numerical tests of the accuracy of the 108
approximation, we have computed collision-induced
pressure broadening cross sections for several systems
and compared these with more accurate theoretical val-
ues. Accuracy was found to vary widely among the sys-
tems considered. Not surprisingly, in view of the ener-
gy sudden approximation, I0S was found to be best when
the rotational energy spacing between strongly coupled
levels was small compared with the translational energy.
In all cases, results were found to improve at higher
collision energies, and for a fixed collision energy,
higher rotational levels were less accurate. Perhaps
the most important computational finding was that for
“typical” molecules (CO, HCN, CO,) which have 10~20
or more rotational levels accessible at thermal energies
108 provided quantitative accuracy (better than 10%) for
the lower rotational levels; it was only for hydrides
(HC1 and HD) at thermal energies that results appeared
unacceptable.

One of the most significant results of this work is the
demonstration that (in this the simplest I0S choice of
wavevector independent of rotational level) all the relax-
ation cross sections, including ordinary integral inelas-
tic cross sections, can be separated into spectroscopic
and dynamical factors. The spectroscopic factors are
totally independent of parameters specific to the system
of interest and can be computed separately once and tab-
ulated. All the system dependent character of the colli-
sion can then be expressed in a small number of dynami-
cal factors. Because the various cross sections can be
expressed in terms of a few independent dynamical fac-
tors, it follows that they are closely interrelated. Thus,
if the dynamical factors are obtained from analysis of
some experimental or theoretical cross sections, they
can be used to predict a variety of other cross sections.
As one example, all the integral inelastic cross sections
can be expressed in terms of inelastic cross section out
of the =0 level. Accuracy of the IOS approximation is
a sufficient condition for this factorization to be valid.
However, it may prove to be of more general validity;
as evidence of this we note that the same interrelation-
ship of inelastic cross sections has been obtained previ-
ously®*'® from different analyses. We note finally that
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a similar factorization can be obtained for differential
scattering cross sections and, therefore, for transport
phenomena, such as viscosity and diffusion coefficients,
as well.
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