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ABSTRACT

A similarity model is developed for the vertical profiles of turbulent flow variables in an entraining turbu-
lent boundary layer of arbitrary buoyant stability. In the general formulation the vertical profiles, internal
rotation of the velocity vector, discontinuities or jumps at a capping inversion and bulk aerodynamic coeffi-
cients of the boundary layer are given by solutions to a system of ordinary differential equations in the simi-
larity variable y=2/h, where 4 is the physical height or thickness, where the system includes six parameters
associated with surface roughness, buoyant stability of the turbulence near the surface, Coriolis effects, bar-
oclinicity and stability of the air mass above the boundary layer. To close the system a new formulation for
buoyantly interactive eddy diffusivity in the boundary layer is introduced which recovers Monin-Obukhov
similarity near the surface and incorporates a hypothesis accounting for the observed variation of mixing
length throughout the boundary layer.

The model is tested in simplified versions which depend only on roughness, surface buoyancy and Coriolis
effects by comparison with Clarke’s planetary boundary layer wind and temperature profile observations,
Arya’s measurements of flat-plate boundary layers in a thermally stratified wind tunnel, and Lenschow’s ob-
servations of profiles of termsin the turbulent kinetic energy budget of convective planetary boundary layers.
On balance, the simplified model reproduced the trend of these various observations and experiments rea-
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sonably well, suggesting that the full similarity formulation be pursued further.

1. Introduction

‘The planetary boundary layer (PBL), formed by the
interaction of atmospheric motions with the earth’s
surface, is a turbulent region of variable thickness
[©(1 km)] across which momentum, heat and moisture
are transferred by turbulent mixing. PBL turbulence
is generated partly by wind shears and partly by
buoyancy fluxes associated with surface heating.

When the surface is warmer than the air above
turbulent fluctuations are generally more intense
(buoyantly unstable or ‘‘convective” turbulence).
When it is cooler fluctuations are suppressed or even
extinguished (buoyantly stable turbulence). Observa-
tions over land and sea surfaces confirm the buoyantly
interactive PBL is the general case (Clarke, 1970;
Clarke et al., 1971 ; Sarachik, 1974), although buoyantly
neutral Ekman-layer-like structures, such as those
analyzed by Blackadar (1962), are also observed under
adiabatic conditions and are an important limit in any
general theory of the buoyantly interactive PBL. Over
land diurnal heating and cooling cycles gives rise to
boundary layer structures which are continually
evolving. Typically, an inversion-capped convective

PBL forms near sunrise, grows during the day by
entraining mass from the overlying laminar layer
(Tennekes, 1973; Carson, 1973), and eventually dissi-
pates and relaminarizes in late afternoon when the
surface heat flux changes sign and a “new” shallow
stable PBL forms near the ground (Businger, 1973).
Unstable, neutral and stable PBL’s are all possible
over the oceans, but the high heat capacity of the sea
surface tends to damp out diurnal cycles.

In most models of the buoyantly interactive PBL
the objective is to find the possibly unsteady turbulent-
mean flow distribution in the vertical above a fixed
point, and corresponding values of surface stress, heat

- flux and evaporation, in terms of boundary conditions

applied at the surface and above the PBL. The central
problem is finding the turbulent fluctuations or model-
ing their moments in terms of turbulent-mean fluid
properties (the “closure” problem). Perhaps the most
general approach is Deardorff’s (1974), who finds the
one-diménsional mean flow by horizontally averaging a
numerical finite-difference solution to the unsteady
three-dimensional problem wherein the larger turbulent
eddies are computed explicitly and subgrid turbulence
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is modeled. Orlanski ef al. (1974) have developed a
two-dimensional model which is similar in concept.
In contrast are the ensemble-mean PBL closure models
of Wyngaard and Coté (1974) and Mellor and Yamada
(1974) in which turbulent covariances or moments
appear as dependent variables. Such higher moment
closure is not a unique solution to the turbulence
problem, but the theorics of Donaldson (1973) and
others and more recently of Lumley and Khajeh-
Nouri (1974) on which the PBL models are based, have
given good results and are more economical than ex-
plicit turbulence calculations, Finally, there are the
eddy diffusivity mixing-length models generalized to
the buoyantly interactive case by DBobileva ef ol
(1967), Businger and Arya (1974), Clarke (1974) and
Wippermann (1974). Again, these are not unique
solutions to the turbulence problem but must be
judged on the basis of their internal consistency,

ability to reproduce observations and computational

economy.

Our purpose in this paper is to develop a relatively
simple model of buoyantly interactive PBL structure
which accounts for most of the observational features
of interest in boundary layer meteorology. There are
two key steps in the development of the model. The
first is a transformation of the onc-dimensional, un-
steady, partial differential equations for PBL mean
quantities to ordinary differential equations by intro-
ducing a similarity variable, the PBL height-normalized
vertical coordinate. The second is a new generalization
of the eddy diffusivity for buoyantly interactive bound-
ary layers which is consistent with observed Monin-
Obukhov similarity in the surface layer and also
reflects the observed wvariation of turbulence scale
through the PBL as a whole. The model describes the
structure of the entire PBL from the surface where the
mean velocity goes to zero to the edge which may
be taken coincident with the base of a capping inver-
sion. The model permits inclusion of such edge dis-
continuities in a self-consistent manncr. Moreover, the
bulk aerodynamic coeflicients emerge as by-products
of the similarity structurc solutions, in contrast to
asymptotic matching methods based on mating inner
and outer profiles at some interior point, and fitting
observational data to the implied functional forms to
get the exchange coefficients (Sheppard, 1970; Csanady,
1972; Melgarejo and Deardorff, 1974 ; Zilitinkevich and
Deardorfl, 1974; Zilitinkevich, 1975a).

2. Governing equations

We consider the unsteady turbulent boundary layer
of thickness % which develops as wind blows over a
 heated or cooled surface. We make the usual geo-
physical boundary layer assumption that Coriolis
forces from the rotating earth contribute to the mo-
mentum balance and allow for the adiabatic lapse
rate’s contribution to temperature change across the
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layer by using potential temperature in the energy
balance. The model will, however, recover the limit
of a shallow diabatic turbulent boundary layer, say, in
a wind tunnel. Radiative absorbtion and phase change
are neglected.

The relevant flow variables are velocity U= (u,7,w)
= (@4, o+, w+w’), potential temperature §=0-+
¢ and specific humidity ¢=¢+¢’, where overbars denote
Reynolds averages and primes denote fluctuations. The
flow is primarily along the horizontal mean wind
@, D(C>w); turbulent mixing is mainly vertical by the
Reynolds stress components 7,=—pu'w’ and 7,=
—pv'w’; and the sensible heat flux F=pC,»'0’ and the
water vapor flux E= pw'q’, where p is the density and
C, the constant-pressure specific heat of air. In the
Boussinesq approximation for air, density fluctuations
relate to fluctuations in wvirinal potential temperature
6,~8(1+0.608g) by p'/p~ —8,'/6. Ordinarily we take
8=~8,, except when differences or fluctuations are in-,
volved. An important quantity in turbulent, buoyantly
interactive flows is the vertical buoyancy flux

Fo=—C ,0p"w'~pC ;0'8, = F+0.608C ,6E,

where F, E and F, are positive upward, and buoyantly
unstable, neutral and stable conditions correspond to
F, positive, zero and neutral, respectively. Other
moments of interest are the kinetic energy per unit mass
in turbulent fluctuations &= (242 +w'?)/2, the ver-
tical flux of turbulent kinetic energy G=p(w'e’)+w'p’
including a component carried by pressure fluctuations,
and the turbulent dissipation rate per unit mass

=2 (Bus/ dacj+-uay/ %)%,
LY

We take the governing equations for this problem
as the definitions of turbulent eddy diffusivity of
momentum K., (assumed independent of the horizontal
wind direction) and of buoyancy Ky [assumed equal
to that of sensible heat and humidity (see Dyer,
1967)], the conservation equations for both horizontal
components of mean momentum, and the conservation
equations for buoyancy flux (the sum of the mean
energy and bumidity conservation equations) and
turbulent kinetic energy (see Monin and Yaglom,
1971, p. 400):

0=011/8z— 72/ (PKm), (1a)
0=00/3z—7y/ (pKm), (ib)
0=06,/0z+F»/ (pCK 1), (1o)
pdit)dt =31,/ dz4p f(5—1,), (1d)
pdi/di= 871,/ 05—pf(G—~u,), (le)
pd8,/dt=—8F /33, (19
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0=~ (pde/dt-+0G/92)+ (r,04/ 32+ ,07/ 3z)

“transport”’ shear production
+@F/(Cob))—  (pe) , (2)
buoyant dissipation
production

where f=2Q sing is the Coriolis parameter with Q the
earth’s angular velocity and ¢ the latitude, (u,,v,)
= (pf)*(—9p/dy,0p/0x) is the geostrophic wind, and
g is the gravitational acceleration.

It is convenient at this point to impose lower bound-
ary conditions on (1a)-(1f) at the aerodynamic rough-
ness height zp—a property of surface topography over
land and formally the point in a turbulent boundary
layer above the nominal surface where the mean velocity
may be considered to vanish:

#=0, =0, 6,=48,,

3
7y=0, Fy=Fy,; )

Te=Ts, at g=g¢]

In this paper the subscript s denotes “surface” condi-
tions at =2, and the subscript # denotes “edge” condi-
tions at z=/4 immediately below any edge discontinui-
ties such as inversion lids. Notice in (3) that we have
adopted an #, y horizontal coordinate system in which
the surface stress is parallel to the x axis so the y com-
ponent vanishes at the surface identically.

Generally, both components of horizontal momentum
are retained in PBL models since the effect of the
geostrophic departure terms in (1d) and (Ic) is to
rotate the stress and velocity vectors through an angle
¥=tan~'(—uvp/u;) relative to the x axis. The corre-
sponding edge velocity is (u,m:) = U (cos¥s, —sin¥),
where Uy = (#s*+-v:2)¥ is the edge wind speed magnitude.
In neutral PBL’s the edge velocity can usually be
taken geostrophic to a good approximation, at least
away from the equator, but recent observations of con-
vective PBLs indicate it differs by some value (Au, Avy)
= (u;f —un, v; —v1) at the inversion base (see Dear-
dorff, 1973, and Figs. 5 and 6 of Arya and Wyngaard,
- 1975). These measurements show that adjustment to
geostrophic equilibrium takes place within the in-
version and that the velocity above is very nearly
geostrophic. Idealizing the inversion lid as a constant-
pressure (constant geostrophic wind) discontinuity we
may write (#,n,9) = (up+Auzn, v+ Avy). In the absence
of velocity jumps the edge velocity may be considered
geostrophic and oriented along isobars, and ¥, is
interpretable in the classical sense of a total cross-isobar
- turning angle for velocity due to frictional effects.

Under barotropic or horizontally homogeneous condi-
tions the geostrophic wind is constant .in magnitude
and direction through the PBL. Baroclinically geo-
strophic wind shears are generated within by the
thermal wind relations

(9uy/92,0v,/32) =~ (g/ f) (— 9 1nb,/dy,d Inb,/dx)
(Hess, 1959). Taking 8,~(8,) as the depth-averaged
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potential (or virtual potential) temperature gives con-
stant geostrophic shears and linear profiles (%4,7,)
= [+ (du,/32) (z—h), von+ (8v,/92) (z— k) ]. Combin-
ing the foregoing relations gives the geostrophic wind
profiles in the present model under buoyantly inter-
active baroclinic conditions:

#g(z) =+ Up cos¥ -+ Auy

—[(g/ 1) n¢8,)/8y1(z—h),
v,,(z) = —U} sin¥;,+Aw, T
+L(g/ /)0 In(8,)/9x](z—h). (4b)

The edge velocity jumps are dlscussed in more detail
later in this paper.

In the present formulation we account approximately
for an advective contribution to da/dt, dv/dt, d@,/dt,
etc., by defining the total time derivative operator as
d( )/dt=98( )/at+(0)-V( ), where (U) is the depth-
averaged velocity and V( ) the horizontal gradient
operator. Consistently, the vertical velocity has a linear
distribution; from continuity we get

B(5) = — / v (O)dz=wnz/ I, | (5)

where w,=—£%V-(U) is the vertical edge velocity. The
evolution of the physical boundary layer height is
given by the depth-averaged continuity equation for a
turbulent slab of thickness %, entraining laminar .air
at the top at velocity w. (Deardorff, 1972; Tennekes,
1973):

dh/dt =wr+w.. (6)

To close the system we shall make use of the turbu-
lent kinetic energy equation (2) to derive expressions
for K., and Kpg for the buoyantly interactive (F»#0)
case in terms of quantities generated internally by the
model and a prescribed distribution of the turbulent
mixing length Iy (z) in neuiral (F,=0) boundary layers.
In the traditional Prandtl (1925, 1932) mixing length
theory used by Blackadar (1962) and others with some
success to model a neutral PBL, the momentum eddy
diffusivity is given by Kn.=Ix?|00/8z| with Ix(2)
=(|x|/p)}|00/3z|* empirically prescribed. Near the
surface Iy = kz, where x~0.35 is von Karmén’s constant
(Businger ef al., 1971); near the edge Iy =ch, where we
estimate ¢~0.052 from Clarke’s (1970) PBL data for
near neutral conditions. The interpolation formula

Iy (2) = ch{ 1 —expl x5/ (ch) ]} (1)

is adopted here to smoothly match these limiting forms
through a neutral boundary layer. More generally, a
buoyantly interactive mixing length may be defined in
terms of the momentum eddy diffusivity and the

turbulence dissipation rate by (Heisenberg, 1948)

I(z)=Kte (®

where a dimensionless coefficient of order unity has been

(4a) -
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incorporated in the definition of I{z) for consistency
with the Prandtl mixing length theory in the neutral
limit (Blackadar, 1962).

Now, eliminating 7., 7, Fp and ¢in (2) with the help

of (la,b,c) and (8) and solving for K,. gives a form -

which applies in the buoyantly interactive case:

Kon(z) =81 (01 32)*
+(89/82)* F[1—a(1+v) Ri}, (9)

where
Ri(z) =[(g/6.)008,/92]/[ (98/ 0z)*+(8v/92)*]  (10)
is the local gradient Richardson number,
a(z)=Ku/Kn (11a)

is the local ratio of thermal to momentum eddy
diffusivity,
BE=lIy (11b)

is the local ratio of the buoyantly interactive to the
neutral mixing length, and

v(z)= —C b, (pde/dt+-0G/8z)/ (gFv)  (1ic)

is the local ratio of turbulent kinetic energy “transport”
(local derivative4advection+pressure transport—+tur-
bulent diffusion) to buoyant production terms. Expres-
sions resembling (9) are sometimes quoted in the
literature with some or all of the coefficients «, 8 and
v taken constant. We will show later that constant
values are inconsistent with surface layer similarity
theory. Also to be discussed later is a method for
specifying the closure functions a(z), 8(z) and v(8) in
terms of the surface buoyancy flux and shear stress.

3. Parameterization and similarity

The basic problem in parameterizing PBL effects in
large-scale atmospheric models is expressing the surface
stress, sensible heat flux and evaporative flux in terms
of known boundary conditions and parameters known
from the large-scale model without calculating the
detailed PBL structure for each case. Generally con-
sidered known if the boundary layer height % is known
are the fluid propertics above the PBL (and above any
edge discontinuities) such as U, 0%, etc.; the static
stability of the overlying air mass 86;"/9z; and the PBL
depth- averaged horizontal thermal gradient V{,)
=~V (6},). Such parameterizations may take the form of
bulk aerodynamic exchange coefficients derived from
semi-empirical data correlations or from other considera-
tions (Deardorff, 1972; Bhumralkar, 1976).

In what follows a method is developed for finding the
bulk aerodynamic coefficients for drag Cp=1,/(pU}2),
sensible heat transfer Cp= —F,/[pC,U(6,—0,)] and
evaporation Cg=—E,/[pUs(qs—¢.) as by-products of
the similarity solutions to the governing PBL equations.
Consistent with our assumption of the same turbulent
diffusivity for sensible heat and water vapor, we take
Cuy=Cg, so the surface buoyancy flux is Fe~=F,
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4-0.608C ,0,E,~ —pC U4 (8,1, —0,,)Cn. Note also that
75 is generally rotated with respect to U, by —¥,,.
Accordingly, the parameterization problem may be
regarded as specification of Cp, Cy, ¥, and the edge
discontinuities Auz, Avy, A,; (when present) in terms
of bulk similarity parameters known or calculable from
the large-scale dynamics and boundary conditions. To
facilitate the similarity-scale analysis we introduce the
usual friction velocity and buoyancy temperature
scales

u*= (1,/p)t=CpU,, (12a)
y=—Fu,/ (pCou*) =Cp'Cr (6,1 —05), (12D)
and the buoyancy velocity scale
w*= (—ghu*0,/y,)}
=Cr¥ghUn(8rs—0:1)/05s 1%, (12¢)

where 6 is negative in unstable (8,,>8,,) boundary
layers, zero in neutral (6,=6,,) boundary layers and
positive in stable (8,,<8,:) boundary layers; w* is
positive in unstable boundary layers and zero in
neutral boundary layers.

The turbulent entrainment velocity w. in (6) plays
an important role in the similarity model we are de-
veloping here. Deardorff (1974) has developed and
tested an interpolation formula for the entrainment
velocity in terms of the surface stress and buoyancy
flux which can be put in the form

1.8w*3{1+41.1 (* /w*)3[1 —hf/ (xu*)]}

, w*>0
(gh?/8,) 06 / 35+ 9w* [ 1-+0.8 (u*/w*)2] )
201 —hf/ (fu*)] 0

(gh2/6,)06F / d5+Tu*®

The expressions are meant to apply under normal condi-
tions where the overlying air mass is stable or neutral
(86} /922 0). The effect of increasing tropospheric sta-
bility is to retard the growth of the PBL by turbulent
entrainment.

In addition to the physical boundary layer height 4,
at least six independent length scales can be defined
from the boundary conditions, physical constants and
properties of the large-scale flow:

%0=2| .00
L=0,,u*?/ (xgb?)
- _CD§CH_1 thovh[’(g(ovs —evh)]_l

hoe=xu*/ f=CpiU, f
2o=[0*?/ (gh)](8 In(6,)/dx)~

=CpU2(ghd In{8,)/dx)*
yo=[u**/ (gh)1(9 In(6,)/dy)~*

=CpUn*(ghd In(8,)/dy)*

zg=[0*2/(gh)](8 Inb} /9z)1
=Cp-Ujs2(ghd Ino}/02)™

(14)

=V
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These are the surface aerodynamic roughness 2 (an
* empirical property of the underlying terrain over land),
the Monin-Obukhov (1953) surface buoyancy length
L, the Coriolis parameter length scale %,, length scales
for large-scale thermal gradients in PBL coordinates
29 and yg, and a length scale for the stability of the air
above 2. Inclusion of von Kirman’s constant «~0.35
in L and 4, is traditional (Zilitinkevich, 1975a). Note
that % approaches a constant value near % rigorously
in neutral “Ekman layers” only when boundary condi-
tions are constant over time scales of 1/f or more,
although Clarke’s (1970) data averaged over many
near-neutral conditions suggest %=~ (1/3)u*/f~ h, may
be a good approximation for average neutral data.
Now, with the physical boundary layer height %
known, say from the solution of (6) using the entrain-
ment rates of (13), the foregoing considerations suggest
a parameterization of Cp, Cy, ¥, etc., in terms of the
local values of k/z,, B/L, h/h., i/xs, h/ys and h/ze—the
bulk similarity parameters for surface roughness, PBL
stability, Coriolis effects, baroclinicity and stability of
the overlying air, respectively. For such “local simi-
larity” to hold, we shall require that the normalized
dependent variables and ancillary quantities

A=rxa/u*, t=«v/u*, b,=x(6,—0,,)/6"
Fo=71o/ (pu™), Py=1,/(pv™?),
Fy=—Fy/ (0Cu*6})
R.=K.,/(kwu*), K=K/ (xhu*), Ix=In/h

Bo=ru,/u*, Dy=xv,/u*, B=w,/(xu*)

(15)

be functions at most of the similarity independent

variable
n(z,t)=z/h(t) (16)

and the bulk parameters %/zo, 2/ L, etc. That is, they do
not depend on the ¢ coordinate explicity. Implicitly, of
course, a time and/or location dependence is implied
through the local values of the slowly evolving bulk
parameters.

A key step in obtaining the similarity equations is
transforming the d( )/d¢ and d( )/dz operators in the
governing equations to forms involving only derivatives
with respect to 7, henceforth denoted by ( )'=d( )/dn.
To do this we first form the partial derivatives of (16)
dn/0t| .= —zh~%dh/di= —qk~'dk/dt and dn/dz|, =k,
and then apply the chain rule and Eqs. (5) [dz/dt=w
=wyn] and (6) [dh/di=wr+w.] to get

dn/d1=61/ 31| .+ (dz/dt)on/ b3
= —qh(dh/dt—w1) = — (w./B)n.

Again applying the chain rule, the total time and partial
vertical derivatives are

d()/dt=(dn/d)a( )/dn=—wam( )"/, (17a)
0( )/0z=0n/0z].0( )/0t={)'/k, (17b)

where consistent with the local similarity approxima-

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoLUME 33

tion a possible contribution from explicit time denva-
tives in (17a) has been dropped.

4. Similarity equations and closure functions

Applying the relations and transformations (12a)-
(12¢) and (14)-(17b) to Egs. (1a)-(1f), (4a, b), (7)~(10)
and (13) gives the following set of ordinary differential
equations, lower boundary conditions and ancillary
relations:

&' =K%, 4(z0/h)=0, (18a)
¥ =K%, 9(20/h)=0, (18b)
B =R 1P, Bu(20/B)=0, (18c)
#o= —Wendl — (B/ho)(0—19,), #.(z/B)=1, (18d)
#y= —dand'+ (Wb (@—2,), #,(20/B)=0, (18e)
= —w ., Fo(z/l)=1, (18f)
Kn=a'Ky=82013 A"+ 1 —a(1+y) RiJE, (19)
In=0.052[1—exp(—6.79)], . (20)
Ri= (k/ L), (#"+9'2), (21)
3,= —0.35Cp¥ sinW¥;,+Ad,+ (ho/20) (n —1), (223)
8y=40.35Cp* cos¥y+Ads— (ho/ys) (n—1), (22Db)
15(—h/L){14-0.4(—k/L)"[1— (h/he)]}
(h/30)+18(— h/ LY[1+04(— /L)1
@, = R/L<O  (23)
6[1— (h/hc)]’ B/L=0
(h/z0)+7

where the caret denotes a dimensionless transformed
dependent variable or ancillary quantity defined in (15).

To close the similarity formulation we need to
specify a, 8 and y appearing in the eddy diffusivity
expressions (19). It is shown in Appendix B that near
the surface (zo/A<%<K<1) the closure functions take
the form -

a(§) =¢mbn™

8 (C) = d’m_—%‘i’e_% IR

)= =1+ (@n—0);™
where ¢ =z/L is the surface layer stability variable and

(24)

N au (1—15¢)% <t
w* 9z 14478, £>0
200, (0.74(1—90)"} ¢<0

pa)= e [ L )
0% 0z 0.74+477, 20
ke [(1-H05)¢|DE,  £<0

¢‘e(§)5_‘_[

u*s (1+2 558)3, ¢20)
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are the Monin-Obukhov surface layer similarity func-
tions for shear, buoyancy flux and dissipation. The
expressions given in (25) were derived by Businger
et al. (1971) and Wyngaard and Coté (1971) from curve
fits to meteorological tower data. Note the different
functional forms for unstable ({<0) and stable ({>0)

_conditions and that ¢m, ¢.— 1, ¢z— 0.74 as { — 0,
Clearly, a, 8 and v are not constants near the surface
but relate uniquely to ¢m, ¢x and ¢, and therefore to
the relative location and the stability.

On the other hand, the surface layer forms of the
closure functions are unlikely to apply unmodified in
the upper regions where turbulence characteristics are
different. To extend the closure functions to these upper
regions we hypothesize that since the turbulence
property which differs most obviously in behavior above
the surface layer is the mixing length (approaching a
constant fraction of the height rather than varying
linearly with distance from the surface), we may apply
Egs. (24) and (25) for a(f), B(¢) and v({) anywhere in
the boundary layer provided we redefine the argument
of these functions as proportional to the ratio of the
local neutral mixing length to the Monin-Obukhov

length, i.e.,
¢=Iy/(kL).

Again it proves useful to incorporate von Kirméin’s
constant since the neutral mixing length has the form
Iy=xz near the surface, so the proper form of the
surface layer stability variable g/L is recovered auto-
matically. Above, { is compressed consistent with the
observed variation of the turbulent mixing length away
from a solid boundary.

Using (20) to express the variation of the normalized

neutral mixing length through the boundary layer we
" may now write the argument of the closure functions as

$(nk/ L) =« (h/ L)y
=015(A/L)[1—exp(—6.79)]. (26)

This implies the closure functions, too, are functions of
relative position with the overall bulk stability as a
Pparameter: “ﬁa(ﬂ;h/L); ﬂ=5(ﬂ;h/L)7 ‘y=7("77k/L)'
Fig. 1a shows a(¢), 8(¢), v(§) computed from (24) and
(25); in Fig. 1b are contours of y(¢) from (26) for
various &/ L’s. Together these give «, 8 and v for any g
between zo// and 1 for the indicated values of the bulk
stability parameter. Notice that the diffusivity ratio
a=Kpy/K, varies markedly on the unstable side
favoring sensible heat (and buoyancy) diffusion as
{~> —oo. The buoyant/neutral mixing length ratio
B=Iiy/l increases for unstable flows but drops off
sharply on the stable side. Note the sign change in the
“transport”’/buoyancy-flux ratio vy at {=~—1.95 and
again at the {=0 singularity. Fortunately, the singu-
larity in v at neutral stability does not lead to problems
since an analysis will verify the term o«(1+4+) Ri.in
Egs. (9) and (19) goes to zero as { — 0 and the proper
form of the Prandtl mixing length theory in the neutral
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CLOSURE FUNCTIONS a,8 AND y

NORMALIZED HEIGHT, 9=Z/h

00
-30

25 -20 -5 -0 -5 O 5 10
PBL STABILITY VARIABLE, {=f/txL)

Fic. 1. Closure functions (a) and similarity height coordinate
n (b) as a function of ¢ computed from Eqs. (24) and (25) in (a)
and Eq. (26) in (b). Such curves effectively define a(y; #/L), 8(n;
h/L) and y(n; k/L) anywhere in the boundary layer.

limit is recovered. (In the same limit v goes to plus or
minus infinity depending on whether { =0 is approached
from the unstable or stable side, respectively.) Thus,
the present formulation of the closure functions in-
sures Monin-Obukhov similarity near the surface and
is consistent with traditional mixing-length theory for
the neutral case. Under buoyantly interactive condi-
tions the formulation for the upper boundary layer is
plausible, but must still be validated against appro-
priate experiments.

Having closed the system of similarity equations
mathematically, we now consider some properties of the
system and problems associated with numerical solution.
Suppose that we have specified the bulk parameters
k)%, B/ L, b/ ke, h/xs, i/ye and k/z, and have some way
of specifying the self-consistent values of Cp, ¥, Adls
and A9, appearing in the geostrophic wind relations
(22a, b). We could then integrate (18a)-(18f) nu-
merically, applying (19)-(26) locally at each step! from
the initial surface point no=2%0/k to any point n in the

1 We find it helps to start such integrations with surface-layer-
consistent derivatives in (19) and (21):
A (1)) =¢mSo)na =~ h/z0, v’ (n0) =0,
By (n6) = (Lo)na 1 =0.74k/ 20,
where the approximations apply because {o=12/L<K1.
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boundary layer to find the similarity profiles 4 (n),
3(n), B,(n), #=(n), #,(n) and Fb(‘r]) At n=n, the solu-
tions will have attained some finite edge values n,
9, Bon, #on, #4n and Fon. From their definitions we may
write the drag and heat transfer coefficients and the
internal turning angle in terms of normalized edge
quantities:

Co=k2(@2 402y, Cu=w2(@2+042) 4,5,

W, = tan“(—ﬁh/dh).

(27)
(28)

Had we chosen Cp and ¥, consistently, the drag
coefficient and turning angle computed from the
normalized edge velocities at the end of the integration
using the above relations would agree with those chosen
initially. Alternately, we can view the initial choice as
the first step in an iterative sequence in which successive
integrations of (18a)-(18f) are performed with new
Cp and ¥, values until these compatibility conditions
are satisfied by the numerical solutions to within some
small error bound.

In the presence of edge discontinuities. additional
iterative loops may be needed since A% and A7 are
initially unknown functions of the bulk parameters as
well. We consider first the “classical” boundary layer
problem where upper boundary conditions on velocity
and temperature are applied at n— o (Schlichting,
1960; Zilitinkevich, 1970, 1975a). For this case the mere
boundedness of #, 4 and 8, at infinity nsures that
vertical derlvatlves at the edge vanish (@', 9/, 8,=0 as
n— ). Since the effective diffusivity of alr (eddy
diffusivity plus molecular diffusivity) is always finite,
Eqgs. (18a, b, ¢) then imply vanishing Reynolds stress
and buoyancy flux at the edge (%5, #,, Fs=0asn— ).
. Note that vanishing turbulent fluxes at the upper
boundary in the classical case are not, properly speaking,
boundary conditions, but consequences of the bounded-
ness of velocity and temperature at infinity.

We now consider the case of interest here with the
boundary layer height defined at a finite height 2=4%
(n=1), where an idealized discontinuity or jump’in
properties may have to be introduced to get the fluxes
to vanish above. Physically, such discontinuities may
represent capping inversion lids—local buoyantly stable
zones (88,/dz, ~F,>0) at the top of well-mixed con-
vective PBL’s which suppress boundary layer turbu-
lence and define the moving upper boundary #k(Z).
Below such discontinuities the generally finite edge
fluxes are given by the integrals of (184, e, f):

1 1 1
Fa=1+ / Fedn, Fon= / #ydn, Fu=1+4 / Fodn.
70 70

70

Imposing a zero turbulence condition above the dis-
continuity, we can find the corresponding jumps in
velocity and temperature by integrating both sides of
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(184, e, f) across a ‘“‘thin” slab centered at =1:

AB=5 — D=4/,
Aéth éj;,—évthbh/we

These jumps are effectively identical to those derived

by Lilly (1968), Tennekes (1973), Deardorff (1973) and

Mahrt and Lenschow (1976) for an infinitesimally thick

inversion lid.

In practice, the nonturbulent regions above PBL
inversion layers are often vertically nonuniform with
gradients of velocity and virtual potential temperature
which affect the structure of the upper PBL, particularly
the inversion layer. We now consider a slight modifica-
tion of the similarity formulation which accounts for
such “gradients at infinity”’, treating only the influence
of a finite stable lapse rate above 96;/9z at this
point, but recognizing that extensions to flows with
finite (du*/dz, 9vt/dz) are also possible and fairly
straightforward.

A fundamental principle of similarity-transforming
partial to ordinary differential equations is to choose
dependent variable transformations which also recover
the relevant boundary conditions. In the present in-
stance, we seek a variant of the dimensionless thermal
variable 8, () =x(8,—6,,)/6} such that 8, is bounded at
infinity (§,=0 as 7— ) as the physical slope 86,/dz
approaches 807 /8z. A transformation with this prop-
erty is

av (U)EK[év_ovs_ (2_20)60?-/62]/0:)

which reduces to the form in (15) when 86, /2=
Rearranging and assuming 96, /9z is a constant gives
physical virtual potential temperature derivatives of
the 51m11ar1ty form [cf. (17a, b)] db,/dt= (6,/x)dB/dt
= —[w0/%(kh) Jnb, and

36,/92=[07/ (xk) 1LB,+ (xh/ 6796 / 9z]

=[63/ (k) JL8:+4*(L/ 20)].
When the stability of the overlying air mass is ac-
counted for in this way, Eq. (1851) is unchanged, but
(18¢) and (21) are modified with 8,+*(L/z) replacing
8,. In particular, the normalized buoyancy flux Eq.
(18c) becomes

Adp=df — iy =40/,
. (29)

Fb = Ky[a ,‘l"’(z (L/ZlI)]

where «2(L/%)<0 for convective PBL’s with stable
layers above. The desirable properties §,(zo/%) =0 and
f,(0)=0 (the limit as 98,/dz—> 80, /9z) can thus be
retained relatively easily in the similarity formulation
when 60+/62?£0

To summarize, the present sxmllanty formulation
indicates the proﬁles a(n), 9(n), b, (), _ #2(n), -r,,(-q),
Fo(n) as well as Cp, Cu, ¥4, Adl, Afy, Ab,, depend, in
general, on six dimensionless parameters: %/zo, #/L,
h/he, B/ %o, B/¥s, h/2. For the general case, and treating
inversion layers as discontinuities, numerical integra-
tion of (18a)-(18f) is required, with (19)-(26) applied
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locally. In the present initial-value formulation a four-
fold iteration for the initially unknown values of Cp,
W), Ady, A9y, appearing in (22a, b) using the compati-
bility relations (27)-(29) is needed.

In view of the many parameters and the fourfold
iteration associated with the general case, we sought
some reasonable approximations to the full system to
test the integration and iteration schemes, and the
realism of the closure model against field observations
and laboratory experiments. Perhaps the simplest ap-
proximations of this type involve ad hoc specification
of the stress and buoyancy flux profiles in some analytic
form, e.g., linear, parabolic, etc. Linear profiles can be
rationalized somewhat more formally by ignoring in-
ternal rotation and replacing the righthand sides of
the left-hand column (184, ¢, f) by constant depth-
averaged values (Lilly, 1968; Csanady, 1974). Assuming
further that turbulent ﬂuxes vanish at the edge (%s»,
Pubs Fop= 0) leads to what we will call the linear flux
wmodel:

fo=—1— () =1—n, (18d")
#,=0— #,(n) =0, (18¢')
Fy=—1- Fy()=1—n. (18f")

Computatlonally, replacing (18d)-(18f) by these ap-
proximate profiles has the effects of eliminating any
need for iteration. The similarity equations for the
linear shear layer problem are straightforward integra-
tions from initial values in two parameters, #/z, and
h/L. Physically, the approximation may be justified
where the major cffects are roughness and bouyancy,
e.g., wind tunnel boundary layers with strong surface
heating or cooling. Csanady (1974) makes a similar
approximation to analyze the barotropic PBL with
negligible turning below an inversion lid. Under baro-
clinic conditions the detailed computations of Wyn-
gaard and Coté (1974) show stress profiles which are
more nearly parabolic.”

-However, approximations based on depth-averaging
{18d, ¢) cannot propetly account for internal turning
¥y, driven by the depth-dependent geostrophic depar-
ture (d—1,, 9—9,). To check the turning calculation
we used the quasi-steady Ekman model:

#r.= — (B/h)(§4+0.35Cp~t sin¥}), (18d"”)
=4 (h/hc) (’ﬂ —0.35Cp~* COS‘I’k), (186”)
Fr=—1. (18f")

This can be derived from the full similarity formulation

2 Parabolic stress profiles are also obtained from the present
model under baroclinic conditions by retaining the linear variation
of the geostrophic winds in (22a,b), depth-averaging the other
terms in (18d,e,f) and integrating:

72(m) =1 +-[Pan—1— &) b/ 20) I+ (3) b/ z)n?,
7y () =[Fun— &) (/ye) I+ (§) B/ yo)o?,
Fy(n) =1+ (Fon~1)g.
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by neglecting the entrainment terms compared with
the geostrophic departure terms in (184, ) and assum-
ing a constant (barotropic) geostrophic wind and negli-
gible edge velocity jumps in (22a, b). Strictly speaking
the quasi-steady Ekman model applies only to the sta-
tionary nonentraining neutral PBL with upper bound-
ary conditions at infinity such as that studied by
Blackadar (1962). We have, however, extended the
model as an approximation to buoyantly interactive
cases as well where we retain the simple flux gradient
of the linear model. Computationally the quasi-steady
Ekman model requires specification of three bulk
parameters %/, /L and k/h,, and involves a double
iteration on Cp and ¥, after each trial integration until
convergence.

To implement these approximations we developed
computer codes for solving the linear flux model and
the quasi-steady Ekman models on the IBM 360/95
at the Goddard Institute for Space Studies. A pre-
dictor-corrector scheme was used for upward integration
through the boundary layer with a variable step size
chosen by the program to give uniform accuracy as the
computation progressed through regions of large
gradient (the surface layer) to upper regions where the
gradient becomes much less steep and larger steps are
appropriate. The iterations on Cp and ¥, needed for
the quasi-steady Ekman model are done by establishing
linear relaxation factors from trial calculations and
varying the drag coefficient and turning angle to reduce
the difference between the guessed values and values
computed from (27) and (28) at the end of each integra-
tion. Convergence is generally obtained after four to
ten integrations, a few seconds or less on the IBM
360/9s.

5. Comparison with observations

As initial tests of the similarity model we compared
the boundary layer structures computed from the
foregoing approximations with selected field observa-
tions and laboratory experiments.

We sought first to determine whether the turbulence
closure hypothesis used with the quasi-steady Ekman
model would give a reasonably good description of the
influence of buoyant stability on PBL structure, in-
ternal turning, drag coefficients, etc. For this purpose
the balloon measurements by Clarke (1970) during the
Kerang and Hay field trials in Australia seemed repre-
sentative of PBL observations over a wide range of
stability conditions [see also the discussion of this
data by Sheppard (1970)]. Clarke has subsumed his
PBL profile data into four stability classes whose
average properties in terms of similarity model param-
eters are given in Table 1. Here we interpreted Clarke’s
dimensionless roughness 2o as x2o/h, and his stability
parameter s« as k./L. We determined #/h. from esti-
mated class-mean inversion lid heights for the unstable
classes (I and II) and from Deardorff’s interpolation
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TaBLE 1. Model parameters for Clarke’s (1970) measurements of
vertical flow profiles in the planetary boundary layer.

Stability class

I
Param-  Very un- II 111 v
eters stable Unstable Near-neutral Stable
k2 2.4X108 1.2X10% 3.4X108 5.9X103
/L —140 —-33 0 +22
A 1.00 0.40 1.00 0.26

formula 4/h.=[1+h./(30L) ] for the stable class IV
[Zilitinkevich (1972) suggests a correlation of the form
R/ hee (ho/L)~% when h./L>>1, but such correlations
are likely to be ineffective in data analysis when en-
trainment and other unsteady effects are present].
This gave %/z0= (x20) (h/k.) and k/L=si>(h/h.), except
for class III modeled as strictly neutral.

The similarity profiles % (z), 9(n) and 8,(n) computed
with the quasi-steady Ekman model for stability
classes I, IT, and IIT using the Table 1 bulk parameters
are compared with Clarke’s class-averaged measure-
ments in Fig. 2. For these unstable and neutral cases

,’ CLARKE (1970) \ \
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06} (a} { _’ﬂD_E_‘:.__ L { - l
S l ! |
~
2 04 ‘, T‘ VT |
q { :
oz} - -
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o-o 1 1 ~L '} 1 J le/ 1 1 J
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o8} it & -
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MODEL L L |
osft D |
J\: ° \}
3 i L]
* 04f l
L !
02 r 1
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1or { | cLARKE(970) [ r
| | DATA,cLASS I ‘\
08F (o) | SENT \ i
‘ { | MODEL . \
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Fic. 2. Dimensionless mean wind component and potential
temperature profiles. Similarity solutions of the quasi-steady
Ekman model are compared with Clarke’s (1970) observations
for the (a) very unstable, (b) unstable and (c) near-neutral stabil-
ity classes using the bulk parameters of Table 1.
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this approximation to the full similarity model gave a
reasonably good description of the profile data including
a qualitatively correct picture of internal rotation of
the horizontal velocity vector. However, some of the
detailed structural features of inversion-capped con-
vective PBLs are left out because the quasi-steady
Ekman model doesn’t consistently account for the
edge discontinuities generated at finite-height entrain-
ment surfaces.

For example, the potential temperature profiles in
Clarke’s unstable classes exhibit slope reversals near

_the edge which are not exhibited by the model solutions

[(#),<0 in the data whereas the model gives #>0
everywhere—see also the original plots in Fig. 1 of
Clarke (1970)]. These elevated stable zones are
apparently finite-width inversion lids which are further
spread out by averaging over the many realizations.
Notice however that negative 8, gradients near the
edge give Fy<0 from (18c) associated physically
with entrainment of negative buoyancy through the
capping inversion. Deardorff (1972) suggests param-
eterization of the surface-flux-normalized, inversion-
base buoyancy flux as a negative constant Fu~—02
for strongly convective conditions, although we have
assumed Fp,=0in (18f”"). We do thls as a simplification
and because Lenschow’s (1974) observations indicate
values closer to zero in the —0.1 to —0.05 range, while
the detailed calculations by Zeman (1975) show a
marked variation of ¥y, with the bulk stability param-
eter #/L. The variation of Fy, with the bulk param-
eters /L, h/h,., etc., is given in principle by the full
formulation of the similarity model.

On the other hand, the edge Reynolds stresses com-

. puted with the quasi-steady Ekman model can depart

appreciably from zero, particularly in the unstable
cases, as shown in the #,(») and #,(5) profiles computed
with the Table 1 parameters and plotted in Fig. 3.
The possibility of finite edges stresses was discussed
earlier in connection with upper boundary conditions
imposed at a finite height as opposed to infinity. In the
full similarity formulation the velocity (#,5) would
jump to geostrophic conditions and (#.,#,) would jump
to zero just above n=1; but by neglecting (A#;,A%)
in (22a, b) and the associated entrainment terms in
(184, €) in the quasi-steady Ekman model, we have
introduced a potential source of error in the stress
profiles near the edge, as well as an inconsistency?

3 Little is known observationally of inversion-base Reynolds
stresses, but following Zeman’s (1975) approximate analysis of
convective PBL’s we can make some estimates: He assumes a
well mixed layer (d=~d,; @', A#,=0) with no internal rotation
(9,9, %4 ~0) but with a normal velocity component induced above
the upper boundary jump (Aw.»vv;‘,l~ =~1,). Under these conditions
(18d) gives -rz~ (h/he) AT, and (29) gives

b=t [ Fodn =1+ (/) B9 =1, 584 0.
0

Accordingly, Ads=—h/h, so the normal edge stress component
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between the zero th and finite #,, and #,,.. None- 1op 'gk&mésgggql

theless, the model does recover the neutral limit of o8 '"—'—Paeszm

Blackadar (1962), and despite missing the inversion-

lid details in the unstable case, gives eddy diffusivity 06 r

profiles Kn(m) for classes I, IT and III shown in Fig. 3 .‘\, 04 i

which are plausible and qualitatively correct. Some & =

caution is appropriate in interpreting Clarke’s (1970) 02 3

“observational” curves for stress and diffusivity as o0 )

these are not direct measurements but quantities de- 0 N GLARKE (1970)

rived from the geostrophic departurcs and their oTR

integrals. 08 wooet"
Although numerical integration of the quasi-steady _ 4¢

Ekman model was straightforward with the unstable 3

and neutral classes of Table 1, we were not able to get © 04

a converged solution for Clarke’s stable class IV. The 02

inability of the computer code to find a solution to the

stable case apparently stems from the fact that the 0.0 e

middle part of the boundary layer was nonturbulent, 10 [} %ﬁﬁggﬁ?

consistent with Businger’s (1973) picture of the un- 08 L/ PRESENT

steady stable layer which forms during the diurnal )

cycle, indicating that a continuous, turbulently linked 06 Foy ()

structure may not exist for these bulk parameters. § L/

This conclusion is supported by Clarke’s estimate that & °° \ -

the critical Richardson number (Ri.,=~0.2) was ex- 0.2 . /_/‘<zeufml surface loyer

ceeded above the first 109} of %, in class IV leading to a ! e~ m %

nonstcady laminar behavior he calls “undulance”. 00 0 04 08 00 o1 o0z 03 04 o5
In view of the problems associated with entraining £ 5/ put?) Km

inversion lids, Coriolis effects and nonturbulent regimes meu'n

in stable layers, we sought a validation for the closure
model in which these effects were absent and where
the dominant effects on the boundary layer profiles
and exchange coefficients were surface roughness and
buoyancy. These conditions have been created and
studied in the laboratory by Arya (1975) by thermally
forcing the turbulent boundary layer formed over the
floor of a wind tunnel test section. The analogy be-
tween such flows and PBL’s formed in the atmosphere
has not been fully explored, but minimum scaling re-
quirementsincludea bulk Reynolds number Re, = Upk/v
large enough to get a turbulent boundary layer, and
the ability to generate a range of bulk Richardson
numbers Rip=gh(0,—6,)/(6,U,2) which overlaps a
significant range of atmospheric stability variations.
Arya (1975) has reported on such experiments at
Colorado State University in a wind tunnel (test
section, 1.8 mX1.8 mX28 m), wherein a heated or
cooled aluminum floor plate and an ambient-air air
conditioning system were used to generate a range of
turbulent, buoyantly interactive boundary layers.
Mean and fluctuating velocity and temperature profiles
in these layers were measured with Pitot-probe, thermo-
couple and hot-wirc anemometer instruments with a
cold-wire resistance thermometer used to correct for

from (29)'is Ty —b.{(h./1). Since (23) indicates &, can be order
unity or greater when —/%/L>>1, this analysis implies inversion-
base stresses of order the surface stress under strongly convective
conditions.

?’R TY./‘ pu‘a)

Fic. 3. As in Fig. 2 except for the dimensionless Reynolds stress
component and momentum eddy diffusivity profiles.

temperature fluctuation effects. Boundary layer thick-
nesses % in these experiments were roughly 0.5 m
[(#/he;)~0.5X107%]. Reynolds numbers in the turbu-
lent range (Re,~10% were obtained by driving the
flow with boundary layer edge velocities U in the
range of 3-9 m s, comparable to atmospheric wind
speeds at the PBL edge. Accordingly, the bulk Richard-
son number was controlled essentially by manipulating
the 2X A8 product. Thus to compensate for the small
(compared to atmospheric) boundary layer thickness
% rather large temperature differences across the layer
were used, Af=0,—0;~ —150 K in the most unstable
runs. Table 2 gives the measured values of Uj/u*,
(6,—6,)/6* and k/L for six stability classes used by
Arya. [The definition of stability classes in Table 2
and some of the numerical values differ somewhat from
those in Arya (1975) but are consistent with an earlier
preprint of the work from which we derived them.
The variations between these sets of numbers is real
but small and does not materially change the results
presented here. | The roughness height z, was not tabu-
lated or otherwise cited by Arya, so we estimated a
constant value of %/2, by fitting the drag data.

Since the primary factors shaping the profiles in these
experiments were roughness and buoyancy we used
the linear flux model approximation to compare with the
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TaBLE 2. Model parameters for Arya’s measurements of turbulent, thermally stratified wind-tunnel boundary layers.

Stability class

Parameter VI v v I II II1

h/ 20 1.7x10? 1.7x10? 1.7X10? 1.7X 103 1.7x10% 1.7x103

/L —-3.2 -1.6 ~-1.0 +0.1 +0.3 +1.4

g/he 0.0 0.0 0.0 0.0 0.0 0.0

Un/u* 19.6 22.2 244 286 323 41.7

@s—0,)/6* 12.5 13.7 14.9 333 a7 52.6
data. Fig. 4 compares the observed velocity and tem- data using

perature defect profiles with the linear flux model pro-
files using the Table 2 parameters. To get these curves
we computed the theoretical defect profiles from the
similarity variables using

(Us=) /"= Cod =),
(6;,-—6)/0* =CD%CH"1—K_19(11).

Shown in Fig. 5 are the bulk Richardson number and
drag coefficient variations computed with the linear
flux model as a function of the bulk stability parameter
h/L with &/zy held constant at 1.7X10%. Also shown
are the wind-tunnel values computed from the Table 2

10 OBSERVED:

ARYA (I1971) WIND
\ . TUNNEL DATA

n=2/h

INCREASING
STABILITY

VELOCITY DEFECT (Uy-0)/u*

OBSERVED:
ARYA (1971) WIND
TUNNEL DATA

Co= (Us/u*)2, Ca= (Un/u¥) [ (01 —0/6*T7,
Riy=«"1CpiCy! (h/L) .

Figs. 4 and 5 indicate qualitative agreement between
the linear shear layer predicted boundary layer be-
havior and Arya’s wind tunnel data. Particularly en-
couraging is the fact that the similarity behavior of the
aerodynamic -exchange coefficients in Fig. 5 -was
properly predicted for the stable as well as the un-
stable classes.

As a final test of the approximate formulations we
looked at the quasi-steady Ekman model’s prediction
of individual terms in the turbulent kinetic energy
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Fic. 4. Velocity defect and temperature defect profiles. Similarity solutions of the
linear flux model are compared with Arya’s (1975) data for thermally-stratified
boundary layers in a wind tunnel using the bulk parameters of Table 2.
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Fic. 5. Richardson number and drag coefficient as a function of
the bulk stability parameter. Coefficient variations computed
from similarity solutions of the linear flux model are compared
with Arya’s (1975) data for thermally-stratified boundary layers
in a wind tunnel using the bulk parameters of Table 2.

balance throughout the PBL in comparison with
Lenschow’s (1974) aircraft field measurements under
convective conditions. Three sets of observations were
compared corresponding to the conditions of Table 3.
For each set Lenschow plots the vertical profile of
“transport”, shear production, buoyant production
and dissipation components of the turbulent kinetic
energy balance [Eq. (2)] normalized by the value of
buoyancy flux at the surface. In terms of the present
similarity variables we may write these terms as

— 3G/ dz—pde/dt

Tr(n)= =y Fs(n), 30
(= o (O v () Fo(n) (302)
T20%/ 0%+ 714,00 Fo(
RO b B L VR
gf' bs/ (Cpev) “("l) Ri (77)
ng/ (Cpev) -
_B E—“M:Fb 5 30
(n) o Cot) () (30c)
€ K4Km3
D)= ? = (7) . (30d)
8F o/ (Co0,) (h/L)B* (m)in*(m)

By definition these terms arc in balance when
Tr+S+B—D=0. The fact that a(y), B(n) and v(n)
arc uniquely related to S(y), D() and Tr(n), respec-
tively, makes this type of comparison particularly
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useful for checking the behavior of the similarity
closure functions in the upper PBL. But note that the
“transport” term (30a) is itself resolvable into four
components

Co[d(w'e) 19(w'p’) de
rr=-2 -+ =+ ()]
ngxl. 9z p 02 ot
diffusion pressure unsteady advection
transport  effects

In many field measurements of the turbulent kinetic
energy budget the “transport” term cited is the diffu-
sion component only. Wyngaard and Coté (1971)
refer to the nondiffusive parts of the transport term
as an “imbalance” in the turbulent kinetic energy
equation. Lenschow, too, equates the measured diffusion
component with the transport term although in his
5 November 1970 experiment an additional advective
component was measured and plotted. In general, how-
ever, the pressure transport and unsteady terms are
difficult to measure and are left out of Lenschow’s
balance on grounds that the other terms’ algebraic
sum is near zero. This contrasts with Wyngaard and
Coté’s finding of an “imbalance” in the surface layer,
and should be borne in mind when comparing results.

The similarity profiles of T7(n), S(n), B(y) and
—D(7) computed with the quasi-steady Ekman model
using the Table 3 parameters are compared with
Lenschow’s (1974) data in Fig. 6. The agreement
between our theory and the observed shear production,
buoyant production and dissipation profiles seems ac-
ceptable, but an apparent discrepancy exists between
our “transport” profile 77(n) and some of the Fig. 6
data insofar as our 77 becomes positively large near the

- surface. This profile differs also from the transport

profile in Lenschow’s (1974) turbulence budget model,
which is negative near the surface, positive near the
top and integrates out to zero over the PBL. The dis-
crepancies are related to the fact that Lenschow’s
(1974) transport data points represent only the diffusive
part of 77, his model transport term represents diffusion
and possibly pressure transport, whereas our ‘‘trans-
port” term contains the vertical diffusion of turbulent
energy plus the “imbalance” of Wyngaard and Coté
(1971)—pressure transport, unsteady effects and ad-
vection. In this sense our model simply reproduces the
surface layer energy balance consistent with the
Monin-Obukhov functions of (25).

TaBLE 3. Model parameters for Lenschow’s. (1974) measure-
ments of turbulent kinetic energy budget terms in convectively
unstable planetary boundary layers.

Date 25 April 1968 5 November 1970 13 November 1970

Location Eastern Colorado  Lake Michigan Lake Huron

Surface Short grassland Water Water
k20 5.2 X104 3.6 X108 4.6 X108
h/L —32 —7.8 -38
h/he 0.60 0.57 0.99
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Fre. 6. Turbulent kinetic energy budget profiles. Similarity
solutions of the quasi-steady Ekman model are compared with
three sets of Lenschow’s (1974) observations of convective PBL’s
using the bulk parameters of Table 3. The data points denoted V
on 5 November 1970 are a measured contribution to transport
from advection.

Thus, while it is clear from the data of Wyngaard
and Coté (1971), Pennell and Lemone (1974) and
Lenschow (1974) that vertical diffusion is an energy
loss (negative) near. the surface of convective PBLs, it
follows from the similarity functions of (25) that
“transport” is positive. This can be seen in Fig. 7 of
Wyngaard and Coté (1971) based on these functions
which shows the imbalance term of opposite (positive)
sign and greater magnitude than the diffusion term
(called “turbulent transport” in this figure). Since our
Tr(n) is proportional to the algebraic sum of these
divided by the positive surface buoyancy (in the con-
vective case), a positive ‘“‘transport’” term near the
surface of convective PBL’s is expected, as shown in
Fig. 6. On the other hand, our method for defining
the closure functions in the upper PBL, while plausible
and asymptotically correct at the surface, does not
necessarily insure the proper balance of turbulent
kinetic energy terms at the top, say, within an elevated
inversion lid. In this connection we note Zilitinkevich’s
(1975b) recent observations on the importance of un-
steady effects on ‘“‘transport” in the vicinity of the
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inversion layer. In principle, the present similarity
formulation. can be modified to account for a specified
energy balance at the PBL top, possibly different from
that implied by the present closure method. We shall

. not pursue this further here, however.

6. Concluding remarks

Our objective in this paper was to formulate a
relatively simple, computationally economical model
of the planetary boundary layer which accounts for
most of the observational features of current interest.
The early part of the paper deals with the formulation
of a general similarity theory for the structure of en-
training, buoyantly interactive, turbulent boundary
layers, particularly those formed in first kilometer or
so above the earth’s surface. '

For the general case we found the similarity profiles
and bulk aerodynamic coefficients depend on similarity
bulk parameters for surface roughness (%/z,), buoyant
stability of the turbulence near the surface (%/L),
Coriolis effects (%/k.), baroclinicity (k/xs) and (%/ys),
and stability of the air mass overlying the PBL
(h/%); and that a consistent similarity model with an
entrainment surface at finite height forming the upper
boundary may imply jumps or discontinuities in the
flow variables. The jump conditions in the similarity
model are the same as those derived for inversion lids
by other authors.

As preliminary tests of the full similarity model, we
compared the profiles computed with simplified versions
against suitable field observations and laboratory ex-
periments. The purpose of these tests was to check the
properties of the turbulence closure model we derived
from a combination of surface layer similarity theory
and a special hypothesis which accounts for the ob-
served variation of the turbulent scale or mixing length
with distance above a surface. On balance, the com-
parisons are encouraging and suggest the full similarity
formulation should be pursued. Eventually, this could
well lead to an ordinary differential equation model
which describes many of the observational features of
interest in boundary layer meteorology. Such an
approach would compliment multi-dimensional simula-
tions, compensating for its lack of turbulence detail
by computational economy, adaptability to param-
eterization, and possibly a more physically insightful
representation of this interesting flow.
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APPENDIX A
List of Symbols

normalized buoyant production rate of turbulent
kinetic encrgy

{=LgF s/ (0C0:) 1/ [gF 1/ (0C100:) 1}

constant (=0.052)

drag coefficient [— 7o/ (pUn?) = (u*/U1)?]

evaporative transfer coefficient
{=—E,/[oUn(gr—g.)]}

sensible heat transfer coefficient
{=—F./[oC,Ur(6—0.)]}

specific heat at constant pressure of air
[=7R/2~1000 | kg~ K]

normalized dissipation rate of turbulent kinetic
energy {= <"/[ngs/ (pcpew)]}

kinetic energy per unit mass in turbulent fluctua-
tions [ = (#2+v'*+w'?)/2]

vertical water vapor flux per unit area by turbu-
lent fluctuations [ =p('q’)]

Coriolis parameter [ =2Q sing |

vertical sensible flux per unit area by turbulent
fluctuations [ = pCp(w'0’)]

vertical buoyancy flux per unit area by turbu-
lent fluctuations [ =pC,(x8,)]

dimensionless buoyancy flux

= —Fy/ (oCou*6;)]

gravitational acceleration at sea level
(=9.81 m s7?)

vertical turbulent kinetic energy flux per unit
area [ =p(w'¢’) +(w'p)]

overall boundary layer height or thickness

Coriolis or Ekman layer scale height [ =xu*/f]

turbulent eddy diffusivity of sensible heat
[=—(w'e)/(3b/02)]

dimensionless eddy diffusivity for sensible heat
L=Ku/(ku*h)]

turbulent eddy diffusivity of momentum
[=— v/ (94/95) = — (') (95/02)]

dimensionless eddy diffusivity for momentum

L=Kan/ (xus*h) ]

turbulence mixing length scalc [ =K, te 1]

turbulence mixing length scale under neutral
conditions

dimensionless neutral mixing length [ =1y/k]

Monin-Obukhov-buoyant stability lengthscale
L=0u*2/ (kgf3)]

air pressure

specific humidity

gas constant of dry air (=287 J kg™! K1)

Bulk Reynolds number [ =Uxk/v]

local gradient Richardson number
{ =[(e/6.,)00./021/[ (91/ 3z)*-+ (9/ 02)*]}

bulk Richardson number
E‘:gh(evh_gvS)/ (6.:U32)]
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normalized shear production rate of turbulent
kinetic energy
{=L(r/p)(93/02)
_ +(7y/p)(85/02) 1/ [gF v/ (pC 182) 1}
time
temperature
normalized “transport” rate of turbulent kinetic
energy
(= —[(1/0)3G/s+dz/d1]/
L&F ve/ (pCo00s) 1}
horizontal velocity in x direction
dimensionless horizontal velocity in x direction
[=wa/u*]
geostrophic wind component in # direction
[=—(2p/8%)/(of)]
dimensionless geostrophic wind in x direction
{=ruy/u* = —[he (ou*?) 10p/dy}
frictional velocity scale
[=(zs/p)i=(—u'w)*]
horizontal velocity in y direction
dimensionless horizontal velocity in y direction
L=«d/u*]
geostrophic wind component in y direction
[=(3p/0%)/ (o)) ]
dimensionless geostrophic wind in y direction
{ =kvy/w*=[he/ (pu*)]0p/dx}
vertical velocity in z direction
entrainment velocity [ =dh/di—wy_|
dimensionless entrainment velocity
C=w./ (ku*)]
buoyancy velocity scale
{=(—ghu*6,/6,)}=[gh(w'8,)s/8:: 1%}
horizontal intrinsic coordinate parallel to surface
Reynolds stress
horizontal thermal gradient scale in x direction
{ =L/ (gn)1(3 In(6,)/ 0x)~"}
horizontal intrinsic coordinate normal to surface
Reynolds stress
horizontal thermal gradient scale in y direction
{=[u*/ (gh)1(0 In(0,)/3y))
vertical coordinate
surface roughness length scale
vertical scale for stability of air mass above PBL
{ =L/ (gh)](8 In6;"/02)™)
turbulence closure function [=Ky/Kn]
turbulence closure function [ =#/Ix]
turbulence closure function
[=—C0,(pde/dt+0G/dz)/ (gFs)]
dissipation rate per unit mass of kinetic energy
in turbulent fluctuations

[=3v 3 (9ui/dm;+0us/ 3x:)7]

generalized stability variable [=Iy/(L)]; in
the surface layer { — z/L

similarity variable [ =2/k(t)]

dimensionless surface roughness scale [ =z¢//]
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0 potential temperature
L=T(ps/p)"/»=T+gz/C,]
0y virtual potential temperature [ =~6(140.608q)]
6, dimensionless thermal variable
. [=K(0v_0vs)/ov]
b, buoyancy thermal scale
[= “'Fbs/ (Pcp“*) = (wlaé) s/u*]
von Kérmén’s constant (=0.35)
molecular kinematic v1sc051ty
air density
Ta Reynolds stress in x direction [ = —p(#'w’)]
Tz dimensionless Reynolds stress in x direction

I:= 72/ (pu™?) ]

Ty Reynolds stress in y direction [ = —p(v'w’) ]

7y dimensionless Reynolds stress in y direction
' L=,/ (pu*)]

Ts Reynolds stress at the surface [=7.(20)]

¢ latitude

ou Monin-Obukhov function for buoyancy ﬂux

[=(xz/67)36,/0z]

bm Monin-Obukhov function for shear

[=(xz/u*)04/dz]

[ Monin-Obukhov function for dissipation

[=(kze)/u*?]

¥y cross-isobar turning angle in quasi-steady Ekman

model
[ =tan~!(— vh/uh)]
Q angular velocity of the earth’s rotation

(=17.29X10"* rad s7%)
v horizontal gradient operator [ = (8/dx, 8/dy)]

( )» denotes conditions at z=/h immediately below
discontinuity (when present)
( )if denotes conditions in the free atmosphere im-

mediately above discontinuity
(). denotes conditions at the surface =2,
(7)  denotes turbulent-mean value
() denotes turbulent fluctuation about the mean
[=()=()]; also .denotes differentiation
with respect to the similarity variable

[=d( )/dn]

()  denotes dimensionless quantity [defined in (15)
and in this List of Symbols]
(()) denotes depth-averaged quantity

[=(1/h) fo " )'dz]

APPENDIX B
Closure Functions Near the Surface

The behavior of the turbulence closure functions
near the surface can be derived in a consistent manner
from relations associated with Monin-Obukhov (1953).
surface layer similarity theory. In particular,
following relations are known to apply near the surface
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(20K 2Kh):
re=pu*?, Fy=—pCu*f Iyn=«z \
01/ 0z=u*dn/ln, 00,/02=0,pu/ly, e=u*p./ly".
=2/L=gin0,/ (0,u*). J

The corresponding eddy diffusivities, mixing length and
Richardson number are

_ 7a/p w'ly —Fo/(oCy) u*ly
Tou/os gm . 00,/05  om

Kt Iy g 000 ten
T a eaded B 00/ o

The asymptotic form of the closure functions can now
be evaluated. From (11a)

a=KH/Km=¢m¢H_1) (Al)
from (11b) v
B=l/ly=¢n ¢t (A2)
and from (9)
1 Kt
y=-—1 +—<1 ——————)
a Ri B4n*(31/92)?
= —1+(¢m_¢e)§—l~ (AS)
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