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.Ahstract--An approximate solution ol the steady state two-dimensional diffusion equation. 

obtained b! an integral method. is presented. The solution can be used to predict dispersion of 

pollutants in the atmosphere over an area-source such as an urban area. The method is applied 
to the calculation of sulfur dioxide concentration distribution over a 2-h period in Nashville, Ten- 

nessee. Calculated values are t’ound to agree well with observations in terms of both the correlation 

cocticient and the magnitude of relative error. 

I. INTRODL’CTION 

The problem of advective and diffusive transport ofemissions from area sources is of inter- 
t’st because of its direct bearing on predicting dispersal of contaminants in urban areas. 
Currently used models of pollution dispersion range from those aiming to numericall) 
solve the three-dimensional diffusion equation to those containing only one paramersr. 
Recently one of us has compared the merits of the different models with the conclusion 
that further development of easy to apply but reliable methods is relevant (Hameed. 
1974~). 

In this paper \ve describe a simple solution of the steady state. two-dimensional diffusion 
equation which describes advection in the direction of the wind and diffusion in the verti- 
cal direction. The solution is obtained bq the integral method originally used in boundary- 
layer theory (Schlichting. 1965) and in the study of heat transfer problems (Goodman. 
1964). The basic idea of this method is to replace the problem of solving the partial difl’er- 
sntial equation by that of seeking a solution of an ordinary differential equation. This 
equation is obtained from the original equation by integration over the depth of the con- 
taminated layer such that the total pollutant flux in the layer is conserved. The solution 
satisfies the correct boundary conditions at the ground and at the top of the layer. together 
Lvith other compatibility relations. In spite of its simplicity. the integral method has been 
found to give solutions lvhich usually agree well with exact solutions whenever such a com- 
parison is possible (Goodman. 1964). This encourages LIS in using it to study the mathema- 
ticall), analogous problem of pollution dispersal over area sources. In Section 2 we give 
a description of the integral method. Its adaptation to the air pollution problem is dis- 
cussed in Section 3. while in Section 4 we give an application of the method to the 
calculation of dispersal of sulfur dioxide in a 2-h. steady-state. period in the atmosphere 
of Nashville. Tennessee. 



1. THE INTEGR.-\L METHOD 

Consider the semi-infinite volume bounded bq the planes : = 0 and s = s,,. If wind is 
in the s-direction then. under steady state conditions. concentration X(K) is given by the 
diffusion equation 

where LI is the mean wind velocity and K is the turbulent diffusion coefficient. Diffusion 
in the s- and _r-directions is neglected. It is assumed that the pollutants are emitted as a 
steady Rux at the surface 5 = 0. i.e. 

- . 
K(r)‘-\ = -Q(s): I = 0. 

t-5 
(2) 

It is also assumed that. at a given A-. the pollutants rise to a height 6. i.e. 

.Y(s.:) = 0: : = ii( (3) 

and that there is no flux outside the contamination layer 

From physical considerations it is further assumed that the top boundary of the layer 
varies smoothly in the s-direction. i.e. r’X/Ss = 0 at : = 6. This. together with equations 
(1 and 4). gives the “smoothing condition”, 

i’.k 

The wind velocity and the diffusion coefficient may be written in the empirical form: 

U(1) = II, ( ; )“‘i Kfr) = K, it )’ + K,,. 

Note that K(z = 0) = &. The diffusion coefEcient should be non-zero at the point of emis- 
sion for vertical diffusion to be possible. 

In the integral method one approximates the :-dependence of the solution for X by a 
simple function such as a polynomial. Value of the solution at the ground. X(z = 0). in 
which we are primarily interested, turns out to be insensitive to this approximation (Good- 
man. 1964). Boundaryconditions(3-5)are satisfied ifwe take the polynomial to be of third 
order. and write the solution to equation (1) as 

X(x 1) = c(s) ( 1 - ;r :t 
Condition (2). then. gives 

(7) 
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Thus. the only unknown in the solution is 6(.x), the depth of the polluted layer. An 
expression for b(s) is obtained by integrating equation ( 1) from 0 to 6: 

using equations (4 and 2). Integration over s then gives 

I 
x Q(Y) d.u’ = 

s 
a tl(z)X(s. :) dz = 7 -“K ’ “’ B(m + 1,4)Q(x) 6(.~)~-’ 

J-I o 
(9) 

.x0 0 

where B(m,n) = [r(m)r(n)],‘[r(,n + n)] is the /?-function. It is assumed that c(xo) = 0, i.e. 

6(s,,) = 0. 

We now assume the source strength to be independent of X. It is convenient to first 
obtain the solution for constant source strength and to extend it later to the type of vari- 
able sources appropriate to urban areas. as shown in Section 3. Putting Q(s) = QD in equa- 
tion (9) we get: 

3-m 

6(x) = ‘-I 
Ko 

lil B(m + 1.4) 
(s - so 1 

l,m-2 

. 

Substitution for 6 in equation (7) gives us the concentration at the ground: 

(10) 

An estimate of the error in the solution given by equation (11) may be obtained by consi- 
dering the case when the velocity u is independent of :. i.e. ~1 = 0. Equation (11) in this 
case reduces to 

c(s) = 2 0 -O s(.K - so)1 2. 
\ 3 (U,KO)l - 

while the exact solution is (Carslaw and Jaeger. 1959): 

c(s) = A- Qo T(.K - so)’ 2. 
, n b,KJ)’ - 

(12) 

The error in the approximate solution (12) is less than 2 per cent. 
A weakness of the integral method may be noted by observing that the z-dependence 

of the diffusion coefficient is not incorporated in the solution. as is evident from equation 
(8). Thus only K,,. the value of the coefficient at the point of emission of flux. appears in 
the solution, equation ( 11). 

3. DISPERSION OF URBAN AIR POLLL’TION 

The solution found in equation (I I) is for a source which extends to all x > x0. If the 
source extends up to a finite distance .K = s, and is zero for s > .Y, then the solution for 
s > .Y, is obviously obtained by adding to the solution in equation (11) a similar solution 
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with source strength ( -Q,I) for s > s,. Hence the solution for the --single cell problem” 
for s > si is 

The solution for a source of finite width is thus obtained by the superimposition of two 
complementary semi-infinite sources. for each of which we have the solution in equation 
(I 1). This can be extended to the problem of dispersion of poliutants over an urban area 
where the emission inventory is usually in the form of succeeding area -source’s ul’assigtlcd 

strengths. as shown in Fig. I. The solution for s, < s c s2 is obtained as before. by 

L Qo , Q, , Q* , 0, 

X0 x, X, x, 

(a,“0,) 

(Q-0 1 
(Q;Q,,J-------- 

I---- 
-__----- 

, Qo , ~--L9_-L-__-----~__-_ 
, I 

xc! x, x, x3 
Fig. 1. A typical emission inventory is in the form of succeedin_r area-sources of assigned strengths 
as shown in the upper figure. To obtain the value of concentration at a given point we superimpose 

a number of sources of semi-infinite extent with strengths shown in the lolvrr figure. 

adding to the expression in equation (I l), a similar expression for source strength (Q, - 
Qn) for ,Y > s,. Proceeding in this manner to larger values of s one obtains the appro- 

priate source strengths to be assigned to the urns-~n~nite sources which have to be super- 
imposed on each other in order to obtain the solution for the given source distribution. 
Source strengths to be adopted for the semi-infinite problems are shown in the lower part 
of the figure. Thus. to obtain the solution for a given s we superimpose a number of solu- 
tions like equation (11) and obtain. with reference to the figure. 

X(s,z) = [SO X,(r.:): 9, < s < .Y,%, , 

where each XI satisfies equation (1) and the boundary condition 

- 

K(-_f 9; = -4Qt - Qt-. 1). 
_ ,:_* 

(16) 

For each X, we obtain an expression, like equation (1 l), for the concentration at the 
ground cI. We then have, for .Y, c s < s,~ + ,, the ground concentration 

It is interesting to note that the solution in equation ( 17) has the same functional depen- 
dence on .Y as the solution obtained by Gi&rd and Hanna (1970). The constant factor. 
however, is different. Their assumption that the solution may be represented as a product 
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of two functions is similar to our Ansatz. equation (6). and their use of the continuity con- 
dition is equivalent to our equation (9). However. the integral method goes further by im- 
posing boundary conditions (2-5) at the lower and upper limits of the polluted layer. 

fn the preceding derivation it has been assumed that the emission of the pollutants 
takes place at : = 0. It may be easily shown that if, instead. the emission takes place at 
a height : = h then equation (17) is still valid for values of .Y for which h/6 4 1. if K,, is 
replaced by K(/t). 

1. DISPERSIOx OF SL’LFUR DIOXIDE IN NASHVILLE 

A merit of equation (17) is that it is very easy to appIy to practical pollution dispersion 
problems. The area sources in the emission inventory need not have regular geometrical 
shapes and the wind direction may be arbitrarily oriented. The calculation does not 
require an electronic computer. To calculate pollutant concentration at a given point one 
draws a straignt line. along the wind direction. from this point to the upwind edge of the 
source distribution. Intersections of this line with different source areas can then be 
marked and the straight I.ine resembles the upper part of Fig. 1. Application of equation 
(I 7) to the problem is then straight forward. 

Table 1. Comparison of observed and calculated sulfur dioxide concentrations in Nashville. Concentrations are 
given in pphm (1 pphm = 2.7 x 10w5 g rn-’ of SOz) 

Ob~rvation 
station No. 

19 
48 
52 
56 
60 
S’ 
90 

Observed Integral 
cone method 

5.8 5.7 
13.6 17 
2.9 6.2 
4.9 8.9 

20.9 20 
Ix! 9.7 
4.1 6.8 

Correlation coefficient 0.92 
Mean relative error 0.37 

Numericat 
model 

;*: 

0:4 
0.9 

14 
4.2 
1.7 
0x9 

-0.53 

hfulti-cell 
model 

4.0 
1.3 
3.2. 
5.9 
6.5 
3.6 
2.9 
0.70 

-0.33 

We have applied equation (17) to the dispersion of sulfur dioxide in the atmosphere of 
Nashville, Tennessee over a 2-h period. Source inventory and the me~oro~ogical data for 
the problem have been given by Randerson (1970). The source distribution covers an area 
of 12 x 13 miles. Observed wind speed and direction were steady for the 2-h period. The 
vertical profile of wind may be represented by ~(1) = 0.97 Z”.32 m s- ‘. Sulfur dioxide is 
assumed to be emitted at a height of 15 m above the ground, this being approximate aver- 
age buiiding height. The turbulent diffusion coefficient at 15 m is estimated to be 3 rn’ s-l. 

Measured values of concentration at seven observation stations in the city are compared 
with the values calculated by equation (17) in Table 1. Results obtained by a numerical 
solution of the three-dimensional diffusion equation (Randerson, 1970) and by a multi-cell 
model (Hameed, 1974b) are also given. A comparison of the correlation coefficients and 
the mean relative errors of the three theoretical calculations shows that the integral 
method yields satisfactory results, 

5. CONCLUSIONS 

We have found that the integral method is readily adaptable to the modelling of atmos- 
pheric dispersion of pollutants over area sources. The method was applied with the 



assumption that the distribution of pollutants in the vertical is given by a simple poly- 
nomial. The solution thus obtained agrees very well with the exact solution in the case 
of uniform wind velocity. i.e. ~2 = 0. see equations (17 and 13). Application of the solution 
to the calculation of dispersion oi sulfur dioxide in Nashville {with Tut = 0.32) yields results 
in satisfactory agreement with observations. These results and the simplicity of the soiu- 
tion obtained show that the integral method can be a fruitful technique in studying disper- 
sion problems. 

The form of the method presented in this paper ignores the r-dependence of the diffusion 
coefficient K(z). Also we expect the error in the solution to become significant if the z- 
distribution of wind velocity is highly non-uniform, i.e. MI >> 0. In view of the potential use- 
fulness of the integral method it would be desirable to study the possibility of removing 
these difficulties and to extend the applicability of the method to cases where the wind 
velocity and the diffusion coefficient are given by functions more general than those 
assumed in this paper. Work in these directions is in progress. 
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