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ABSTRACT

A parameterization for the fluxes of sensible heat by large-scale eddies developed in an earlier paper is
incorporated into a model for the mean temperature structure of an atmosphere including only these fluxes
and the radiative fluxes. The climatic changes in this simple model are then studied in order to assess the
strength of the dynamical feedback and to gain insight into how dynamical parameters may change in more
sophisticated climatic models. The model shows the following qualitative changes: 1) an increase in the
solar constant leads to increased static stability, decreased dynamic stability, and stronger horizontal and
vertical winds; 2) an increase in the amount of atmospheric absorption leads to decreased static and dy-
namic stability, and stronger horizontal and vertical winds; and 3) an increase in rotation rate leads to
greater static and dynamic stability, weaker horizontal winds, and stronger vertical winds. The quantitative
results provide support for the common assumption that the static stability remains constant during cli-
matic changes. Twenty-five percent changes in the external parameters cause changes in the static stability
of the order of only a few tenths of a degree per kilometer. The results also show that the assumption that
the horizontal eddy flux can be represented by a diffusion law with a constant eddy coefficient is a bad one,
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because of the strong negative feedback in the eddy fluxes.

1. Introduction

In a recent paper (Stone, 1972b; hereafter referred to
as I) we derived expressions for the fluxes of sensible
heat due to large-scale atmospheric eddies and demon-
strated that these fluxes have a very strong negative
feedback. This negative feedback will tend to limit the
atmosphere’s response to changes in external param-
eters and tend to inhibit climatic change. In this paper
we present a study of how the equilibrium state of a
very simple model atmosphere that includes these eddy
fluxes and their feedback will respond to changes in the
solar constant, in the amount of absorbing material,
and in the planet’s rate of rotation. The temperature
structure of this model atmosphere will be determined
in the same way as in I, i.e., the only fluxes included
will be the fluxes of sensible heat due to radiation and
the large-scale eddies. Clearly, then, we will not be
calculating true climatic changes. Rather, our goal is to
assess the strength of the negative feedback in the eddy
fluxes and to gain some insight into how the important
dynamical parameters might change in a more sophisti-
cated model.

In our study we will be particularly interested in
checking two assumptions commonly made in studies of
climatic change: 1) the assumption that the static sta-
bility is constant [as, for example, in Manabe and
Wetherald (1967), Saltzman (1968), Wiin-Nielsen
(1970), and Sela and Wiin-Nielsen (1971)7]; and 2) the
assumption that the horizontal eddy transport of

sensible heat can be represented by a simple diffusion
law with a constant eddy coefficient [as in Sellers
(1969), Wiin-Nielsen (1970), and Sela and Wiin-Nielsen
(1971)]). The first assumption is equivalent to assum-
ing that the vertical eddy flux of heat has an infinite
negative feedback, and the second to assuming that
the horizontal eddy flux has zero feedback.

2. Model for the eddy fluxes

The basic equation we will solve for the equilibrium
temperature structure is the temperature equation for
a flat, Boussinesq atmosphere, averaged over time and
longitude:

Jd — 9 _ _
—(v8) +—(wf) =@Q, (2.1)
0z

ay
where Q is the radiative flux divergence, ¥ and z the
meridional and vertical coordinates, v and w the respec-
tive components of velocity, and 8 the potential
temperature,

9~ T+Txz. (2.2)

Here T is the temperature and T' the adiabatic lapse
rate. The bar over a variable denotes the average over
time and longitude.

The expressions we will use for the eddy fluxes, 9
and wf, are those derived theoretically in T [Eqs. (2.22)
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and (2.23)7:

E=——O.86<g;];< >< >(1+Rl)g <1~%>, (2.3)

w0 =-+0.36 fH2<—>——~— i( 1 -i>.
02/ Ri(14Ri)? b4

Here Ri is the Richardson number for the zonal thermal

wind,
f2<T>< >

Ri= (2.5)

Gy

In these equations angle brackets denote averages over
all y(0<y< L) and all 2(0<2< H), L is the equator to
pole distance, H the scale height,

" R(T
H=———< >, (2.6)
g

R the gas constant, g the acceleration of gravity, and f
the Coriolis parameter (which we will evaluate at 45°
latitude).

The specific ¥ and z dependences that appear in (2.3)
and (2.4) are not crucial, since it is the mean values of
the fluxes which determines the mean gradients of 8,
and it is these mean gradients that we will concentrate
on in this study. Since changes in these mean gradients
will be affected by the parameter dependences which
appear in (2.3) and (2.4), we will summarize the
evidence for the validity of these expressions. A number
of indirect checks were made in I. There these same
expressions were used for calculating static stabilities
and horizontal temperature gradients under a variety
of conditions and were found to give good results when
compared with numerical calculations and observations.
Specifically, the results were good not only for Earth,
but also for Mars where many of the parameters have
substantially different values (e.g., L and g). In addi-
tion, the same expressions were used in I to deduce
characteristic response times for the adjustment of the
temperature structures of the atmospheres of Earth
and Mars when perturbations from equilibrium are
introduced. Again the results were in'good agreement
with numerical calculations.

However, one can also obtain more direct checks on
(2.3) and (2.4) by comparing the values they give for
the fluxes with actual observations of the eddy fluxes
in the earth’s atmosphere. It is convenient to compare
the horizontal eddy coefficient K predicted by Eq. (2.3)
with the observations, rather than 6 itself; K is defined

by

(2.4)

0= —K—. (2.7)

ay
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To obtain an equation comparable to (2.3), we identify

2]

(so that the mean value of 36/dy is conserved). Sub-
stituting (2.8) into (2.7) and comparing the result
with (2.3), we identify

K=O.144f;l>2 < >(1+R1)1.

If we take as typical values g= 980 cm? sec) H =8 km,
(Ty=250K, f=1.03%X10~* sec™, (36/z)=3.3K km~,
Ri=56 [correspondmg to (88/dy)=—0.4K (100 km)"l:l,
we use (2.9) to determine K =1.5X10" cm? sec™*. This
is in good agreement with observed atmospheric values.
For example, Wiin-Nielsen and Sela (1971) reported
an average value of K for the year 1963 of 1.7X10%
cm? sec!. In addition, Eq. (2.9) predicts qualitatively
correct seasonal changes in K. If we approximate RiZ>1,
substituting (2.5) into (2.9), we obtain

mAGHEGD)- eo

<T>f2

The main quantity in this expression which varies
seasonally is (86/9y), and one would consequently ex-

pect seasonal changes of w0 to be proportional to
(88/9y)*. Clapp (1970) has summarized the observa-

tions of v¢ in different seasons and correlated them with
the horizontal temperature gradient. His data show that
this square law is, in fact, closely obeyed. The same
square law occurs in Green’s (1970) parameterization
of the eddy heat flux.

Finally, we can check the vertical flux given by (2.4).
Palmén and Newton (1969, p. 53) have estimated the
mean vertical eddy flux necessary to achieve equilibrium
north of 32° latitude in winter. This eddy flux includes
contributions from both large-scale and small-scale
eddies, but since in the mid-troposphere the dominant
contribution will be from the large-scale eddies, Palmén
and Newton’s mid-troposphere estimate should be

(2.8)

(2.9)

K=0.14

.comparable to values calculated from (2.4) with z=3H.

Their value is 2 ly min™ (1.3 X10* ergs cm™2 sec™). To
get a flux from (2.4) in comparable units we multiply
w6 by pC, and take for the density, p=0.7X10"* gm
cm™ (a typical mid-troposphere value) and for the
specific heat, Cp—l 0X107 ergs (°K)=* gm~. For the
other parameters in (2.3) we use the same values as in
estimating K above, except for Ri, for which we adopt
as a typical winter value Ri=25 [corresponding to
(88/3yy=—0.6K (100 km)™"]. The result is pC,w8
=1.2X10* ergs cm™? sec}, in good agreement with
Palmén and Newton’s value.

The checks described above show that there is good .
justification for using the above expressions for the
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eddy fluxes in climatic calculations. However, it is clear
that more definitive checks are still desirable. Such
checks might be obtained by studying the seasonal
variations in the atmosphere’s eddy transports, or by
using the data available from numerical simulations of
the atmosphere.

3. Model for the radiative fluxes

We will model the radiative flux divergence in the
same way as in I, i.e., by the simple linearized model
introduced by Speigel (1957) and generalized by Goody
(1964). Assuming that the deviations of the tempera-
ture from the radiative equilibrium state, T,(y,s), are
small and that the deviations are characterized by a
single dominant scale, we have

T,~T

(3.1)

b
-
where 7 is the characteristic radiative relaxation time
for the system, and it depends on the characteristic
scale. The temperature deviations from the radiative
state throughout most of the earth’s atmosphere are
less than 209, so this approximation is adequate for
our parameter study.
Substituting (3.1) and (2.2) into (2.1), we obtain

(3.2)

0 — 9 __ »
(08— (aah) =
dy dz T
where 8, is the potential temperature of the radiative
equilibrium state. Substituting (2.3) and (2.4) into
(3.2), we obtain an equation for 8 in terms of {36/9z),
(88/9y), 6, and 7. We find two equations for (96/9z)
and (00/6y) by differentiating this equation separately
with respect to y and 2, and then integrating over all y
and z, i.e.,

-, o
- ”T;fit:;f‘”‘<22>< ) o

The radiative transfer problem is now reduced to
specifying the mean gradients of the radiative state,
(88,/8z) and (88,/9y), and 7. Once these are given the
above two equations can be solved simultaneously for
the two mean gradients in radiative-dynamical equi-
librium, (38/3z) and {88/dy). These equations are
highly nonlinear since Ri itself depends on these
gradients [see Eq. (2.5)7]. The simplest way to solve
these equations is to treat (3.3), (3.4) and (2.5) as
three equations for the two mean gradients and for Ri,
and to derive a single equation for Ri. The result is

R Bp(R) T
= 14
1—5g:(Ri)L 1—-5g1(Ri)]

(3.5)
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where
0.72
—_— (3.6)
Ri(14-Ri)3
1.73(1+Ri)*
Qe=—"T " (3.7)
Ri
6= fr, (3.8)
_ /90,
f2<T><~—>
Ri’'= 3.9)
gH2 a8,
B = 3.10
<T>f2L2< o0

Once Eq. (3.5) is solved for Ri, the mean gradients can
be found from (3.3) and (3.4).

If we replace Eq. (2.3) by the simple eddy diffusion
law [Eqs. (2.7) plus (2.8)], then Eq. (3.4) is replaced by

697> 12K+ < >
dy
This equation can be solved directly for (88/dy),
without solving for Ri, if K is specified.

To determine the gradients of the radiative equi-
librium state in terms of the basic external parameters,
we will use the approximate radiative equilibrium solu-
tion given by Goody (1964, Section 8.4). This solution,

which assumes a grey atmosphere and uses the
Eddington approximation, is

(3.11)

1
T,=27Te(1+%¢*e-z/'l)f, 250, (3.12)

0. (3.13)

1
=—T (2+ >%7 3

Here 7* is the total optical depth of the atmosphere in
the infrared (7*=4), & the scale height of the absorbing
material (£=~2km), and 7T.(y) the effective temperature
of the atmosphere. The global average value of T, is
related to the solar constant 7 and albedo a by

(1—a)

o(T., )4—FT (3.14)

where ¢ is the Stefan-Boltzmann constant.
From (3.12) and (3.13) we calculate for the mean
static stability of the radiative equilibrium state

G

> r———[<2+8 MY (1434 )], (3.15)
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In calculating the horizontal gradient of the radiative
equilibrium state, we will follow I in using the gradient
at 45° latitude as typical. Then from Eq. (3.8) in I

we have ; _
<00T> (T,
o/ L

We note from Egs. (3.2) and (2.2), making use of
the forms of (2.3) and (2.4), that

(T)=(T>), (3.17)

ie., the mean temperature of our model atmosphere is
unaffected by the eddy fluxes (which only re-distribute
heat) and is completely determined by the radiative
fluxes. From (3.12) we have

(3.16)

1
(T,)=——/ sz_ /(1+276~/h s
HJ,

This integral may be evaluated by breaking the integral
into two ranges, where x=3%7"¢2/* is respectively
greater or less than unity, and expanding (14x)* in
appropriate power series in the two ranges. The result is

_ (T
T2‘

[ (G 1]+ H[ (gT*ﬁ]Jr

h 1h
+1——logdr*— —[r*eH/r—1]4-- .- }
H 4 H

The second terms in these expansions are only about
109, as large as the first, so it will be consistent with
our other approximations and adequate for our param-
eter study to neglect them. Retaining only the first
terms from the expansions, we find for the mean

temperature
L (T[4
(T,y= p {’: (37 )4—1:]—|—1——log } (3.18)

Typically, (T,y=(T).

Finally, we need an expression for the radiative
relaxation time 7. Gierasch et ¢l. (1970) have shown
that an adequate approximation for a parameter study,
when the characteristic space scale is H, is

CoPo
og(T)®

where Py is the surface pressure of the atmosphere.

T =

(3.19)

4. Climatic changes

Excluding the universal constant ¢, there are nine
parameters which determine an equilibrium state in
our model. They are: the gas constant, R (i.e., the
molecular weight of the atmosphere); the specific heat
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of the atmosphere, C,; the surface pressure, Py (1.e., the
total mass of the atmosphere); the equator-to-pole
distance, L (i.e., the radius of the planet); the accelera-
tion of gravity, g (i.e., the mass of the planet); the
Coriolis parameter at 45° latitude, f (i.e., the rate of
rotation of the planet); the amount of solar radiation
absorbed at the ground, (¥/4)(1—a); the relative scale
height of the absorbing material in the atmosphere,
h/H ; and the total optical depth in the atmosphere, 7.
Once these nine parameters are specified, calculating
the equilibrium state is straightforward: I' is given by
g/Cp; {To) by Eq. (3.14); (T) by (3.17) and (3.18);
7 by (3.19); # by (2.6); (30,/9z) and (88,/9y) by (3.15)
and (3.16); Ri by (3.5) [see 1]; and finally (36/dz) by
(3.3) and (88/3y) by (3.4). If we use an eddy diffusion
law for the horizontal eddy flux, then (3.4) is replaced
by (3.11), and K must be specified independently.

We will adopt the following values as standard values
for the terrestrial atmosphere:

R=2.9X10% ergs (°K)~! gm™!
C,=1.0X107 ergs (°K)~! gm™?
Py=10% dyn cm™?
L=10° cm
£=980 cm sec™?
f=1.03X10"* sec™!
F(1—a)=8.86X10% ergs cm~2 sec™!
(e.g., F=2 cal cm™? min!, ¢=0. 365)
h/EH =1
=4,

We then calculate in the manner outlined above

(T .)=250K
(Ty=235K
7=1.41X107 sec
H=6.86 km

< > —10.0K km™!

a0,
<~— = —0.892K (100 km)™!
dy

Ri=25.7

a0
<—> =41.45K km™!
a9z
a6
<——> =—0.378K (100 km)™.
Iy

These values differ slightly from the standard terrestrial
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atmosphere calculated in I (Table 1, Model no. 1)
mainly because we have used a grey atmosphere solution
for the radiative equilibrium solution, whereas in I we
used non-grey calculations.

The largest error in our model occurs in the mean
static stability, which is 4+3.3K km™! in the real atmo-
sphere. This error is caused mainly by our neglect of
large-scale latent heat fluxes (Palmén and Newton,
1969, Section 2.6). 1t is this discrepancy which makes
our model inadequate for calculating realistic climatic
changes in the mean gradients. The effective value of
the eddy diffusion coefficient in the above equilibrium
state, calculated from Eq. (2.9), is

K =0.803X10" cm? sec. (4.1)

This is the value which, when used in Eq. (3.11), would
give the same value for (88/dy) as that given above. It
is smaller than typical values in the real atmosphere
primarily because of the smaller static stabilities in our
model atmosphere [cf. Eq. (2.9)].

We will now describe how the above equilibrium
state responds to changes in some of the input param-
eters. Specifically, we will vary 7%, §=F(1—a), and /.
Changes in the first two are commonly studied as
Potential sources of climatic change (e.g., Manabe and
Wetherald, 1967; Sellers, 1969). Changes in f are of
interest because rotation is so fundamental to the
baroclinic instability process which gives rise to the
large-scale eddy fluxes.

Tig. 1 illustrates the response of the static stability to
changes in the above three parameters. The abscissa is
a generalized climatic variable, ¢, and the three curves
show how (86/9z) changes when ¢=7*, 8 or f. In all
the figures the zero subscripts refer to values in the
standard atmosphere given above, and parameters
normalized to their standard values are plotted along
the abscissa. Quantitatively, the changes in (88/dz) are
small. The largest plotted change occurs for 7*=2 and
is an increase of 0.63K km™. Tn this same case {86,/0z)
increased by 4.3K km™!, The great reduction in the
magnitude of the increase in the static stability when
the dynamical fluxes are included illustrates their very
strong negative feedback.

Qualitatively, the static stability is decreased by an
increase in absorbing material, 7*. This decrease is
caused directly by an increase in the greenhouse effect,
which causes the radiative equilibrium state to be more
unstable [Eq. (3.15)]. The static stability is increased
by an increase in rotation rate f. An increase in f tends
to suppress the horizontal eddy flux [Eq. (2.3)], and
thus the horizontal temperature gradient is increased.
This, in turn, decreases the Richardson number
[(Eq. (2.5)] and this leads to an increase in the static
stability [Eq. (3.3)]. Finally, increases in the solar
constant 8 have very little effect on the static stability.
This is because of two competing effects. Increasing 8
increases (T), and this affects both (88,/8y) [Eq. (3.16)]
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F1G. 1. Mean static stability vs normalized values of 7%, 8 and f.

and 7 [Eq. (3.19)]). The increased differential solar
heating leads to larger horizontal temperature gradients,
thence to smaller Ri and increased static stability. On
the other hand, the higher temperatures lead to a
shorter radiative relaxation time, which makes the
radiation more efficient at destabilizing the atmosphere
and decreases the static stability. The two effects
almost cancel each other.

Fig. 2. illustrates how the mean horizontal tempera-
ture gradient responds to changes in the amount of
absorbing material. The solid line shows the response
according to our model, i.e., Eq. (3.4), and the dotted
line shows the response according to the eddy diffusion
law with constant K, i.e., Eq. (3.11), using the value
of K given by (4.1). The two models give nearly the
same results. The horizontal gradients are increased by
an increased amount of absorbing material, because the
increased greenhouse effect causes a rise in the mean
temperature [cf. Eq. (3.18)] and therefore an increase
in the differential solar heating [cf. Eq. (3.16)].

Fig. 3 shows the response of the mean horizontal
temperature gradient to changes in the solar constant.

/100km|

-40

-30 |-

-20 -

L 1 ! "
0.5 1.0 .5 %

I16. 2. Mean horizontal temperature gradient vs normalized
values of the amount of absorbing material. The solid and dotted
lines refer to calculations with non-constant and constant eddy
coefficients, respectively.



JOURNAL OF THE

| i B
0.5 1.0 1.5 Po

Fi1c. 3. As in Fig. 2 except for normalized values
of the solar constant.

Again the solid and dotted lines represent the response
for non-constant and constant K, respectively. In this
case the assumption of a constant eddy diffusion
coefficient leads to an overestimate of the changes by
a factor of about 2. The horizontal temperature
gradients are increased by an increase in the solar
constant, because of the increased differential solar
heating.

Fig. 4 illustrates the response of the mean horizontal
temperature gradient to changes in the rotation rate.
Again the dotted line refers to the response for a con-
stant K, and in this case there is no change in the
horizontal temperature gradient. Since the radiative
equilibrium state does not depend on f, a constant K
leads to a solution for (39/9y) which is also independent
of f. This result emphasizes how bad the assumption of
a constant eddy coefficient may be. The solid line shows
the response of (38/dy) when K is not assumed to be
constant. Increasing the rotation rate tends to suppress
the horizontal eddy flux [cf. Eq. (2.3)], thereby in-
creasing the horizontal temperature gradient.

@
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P <

-.50
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Fi1c. 4. As in Fig. 2 except for normalized values
of the rotation rate.
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Fi1G. 5. Mean zonal wind vs normalized values of 8, 7* and f.

Fig. 5 shows the mean baroclinic component of the
horizontal wind U, as a function of 8, 7* and f. Here
U is computed from the thermal wind relation,

(2 -r(5)
o

The horizontal winds are increased by increasing the .
solar constant or the amount of absorbing material, or
by decreasing the rate of rotation.

In Fig. 6 we give the response of the Richardson
number to changes in 7*, 8 and f, using Eq. (2.5). The
atmosphere’s dynamic stability is increased (i.e., Ri
increased) by increasing the rate of rotation, or by
decreasing the solar constant or the amount of absorbing
material, The changes in Ri are primarily due to
changes in (88/dy) and thus in {34/0z).

In Fig. 7 we show how the longitudinal wavelength A
of the large-scale eddies responds to changes in 8, 7*
and f. This wavelength is calculated from the approxi-

U= (4.2)

45 |-
a0l

35

25

20

t 1 1 1

5 1.0 1.5

e

F16. 6. Richardson number vs normalized values of 7%, 8 and /.
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Fic. 7. Scale of the eddies vs normalized values of 8, 7* and .

mate formula

5/2

f

(Stone, 1966). The calculated scales are smaller than
those of real atmospheric eddies because of the model’s
underestimate of the real atmosphere’s static stability.
The eddies increase in size when the amount of absorb-
ing material or rotation rate is decreased, or when the
solar constant is increased.

Fig. 8 gives the Rossby number Ro as a function of
¥, 8 and f, using the relation

N U
)

The motions become more highly geostrophic if the
amount of ahsorbing material or solar constant is
decreased or if the rotation rate is increased.

Fig. 9 shows the corresponding response for the for-
mation time ¢ for the eddies, i.e., the time for an eddy to
increase in amplitude by a factor of e during its linear
growth phase, as calculated from the approximate

21rU(1+Ri>‘;' 4.3)

Ro (4.4)

Ro

L. . | 1 1

¢
0.5 1.0 15 %

I'16. 8. Rossby number vs normalized values of 7*, 8 and f.
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F16. 9. Formation time of the eddies vs normalized values
of 8, 7* and f.

formula (Stone, 1966)
1 (1+Ri)%
f=—{ ——).
S\ 5/54
The formation time decreases as the solar constant,
amount of absorbing material, or rotation rate are
increased.

In Fig. 10 we give the response of the magnitude of
the vertical velocity w accompanying the eddies to
changes in 8, 7* and f. This magnitude was taken to
be the maximum value of Eq. (3.5) of Stone (1972a),
with the appropriate scale factors inserted, and the

amplitude given by Eq. (2.19) of I. The resulting
formula is

(4.5)

FH(1.09)}

(4.6)
1+Ri

w=1()

In order of magnitude this is equivalent to
w=(H/\) RolU. The vertical velocities are increased
by increases in the solar comstant, the amount of
absorbing material, or the rotation rate.

w

cm/sec

0.8
0,6

0.4

I} . 1

&le

0.5 .0 L5

F16. 10. Vertical velocity vs normalized values of 8, 7* and f.
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Fre. 11. Mean ground temperature vs normalized values
of 8, 7* and f.

Finally, Fig. 11 shows the response of the average
ground temperature 7', to changes in 8, 7* and f. This
temperature is defined as

1 L
T,=- / Ty,0)dy, @
LJo

L

and upon substituting (2.2) and (3.2) into (4.7), and
making use of the properties of (2.3), (2.4) and (3.3),

we find
o _ Hr /06 a6,
Py =TAT.=(T), z=o>—;[<5;>—< = ] 4.8)

These ground temperatures are higher than those in the
real atmosphere because in our model the motions only
extend up to one scale height. In the real atmosphere
the motions extend significantly higher, and the result-
ing mixing has a greater cooling effect on the ground
temperatures. (However, quantities like Ri and
(88/9z) are virtually independent of this scale in our
model.) Fig. 11 shows that the average ground tem-
perature is increased by increases in the solar constant
and the amount of absorbing material and slightly
decreased by increases in the rotation rate.

The ticks on the ends of the curves in Fig. 11 indicate
how much the ends would be displaced if the static
stability had been assumed to have the same value as
in the standard model in all the calculations. These
displacements are very small, which shows that the
changes in the average ground temperature are almost
completely determined by the changes in the radiative
equilibrium solution. This would not be true, however,
of ground temperatures at locations far from y=%L,
since at these locations heating and cooling by the
horizontal eddy flux is important, and this mechanism
has a stronger response to changes in 7*, 8 and f (cf.
Figs. 2-4).
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Since the curve in Fig. 11 for ¢ =8 is essentially un-
affected by changes in static stability, we may compare
it with the same curve calculated by Manabe and
Wetherald (1967). They assumed a constant static
stability, but had a much more sophisticated treatment
of radiation. Their curve (their Fig. 7, for fixed absolute
humidity) is indistinguishable from ours, except that it
is systematically cooler because of the greater extent of
the vertical mixing in their model. For example, both
curves give a difference of 38K in 7', between the states
with F=1.5 and 2.5 cal em™® min~'. This comparison
indicates that our simple treatment of radiation is more
than adequate for our purposes.

5. Summary and conclusions

The results of Section 4 show how many of the im-
portant dynamical parameters will change when only
the transport of sensible heat by the large-scale eddies
is taken into account. These changes are likely to be a
good guide to the qualitative changes in more sophis-
ticated models since most of the physical processes
neglected in our model also have negative feedback.
For this same reason the quantitative changes calcu-
lated in Section 4 will in many cases represent upper
bounds to true climatic changes. The qualitative
changes are as follows:

1) An increase in the solar constant (or equivalently
a decrease in the albedo) will lead to increased static
stability but decreased dynamic stability, stronger
latitudinal temperature gradients and horizontal winds,
larger eddies that form more rapidly and are less
geostrophic, and stronger vertical motions.

2) An increase in the amount of absorbing material
in the atmosphere will lead to decreased static and
dynamic stability, stronger latitudinal temperature
gradients and horizontal winds, smaller eddies that
form more rapidly and are less geostrophic, and stronger
vertical motions.

3) An increase in rotation rate will lead to greater
static and dynamic stability, stronger latitudinal tem-
perature gradients but weaker horizontal winds, smaller
eddies that form more rapidly and are more geostrophic,
and stronger vertical motions.

Perhaps the most important conclusions that can be
drawn from our simple model concern the assumptions
that can be made in modeling the large-scale eddy fluxes
in more complicated atmospheric models. Referring to
Figs. 1 and 11, we see that the negative feedback in
these eddy fluxes is so strong that changes in the ex-
ternal parameters of 25% only lead to changes in the
static stability of the order of a few tenths of a degree
per kilometer, and that these changes have a negligible
influence on ground temperatures. This result gives
considerable justification for the common assumption
that the static stability remains constant during
climatic changes. The negative feedback provided by
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the large-scale eddies will make it difficult to achieve
large changes in this parameter. On the other hand,
referring to Figs. 2-4, we see that the changes predicted
by a model with a constant eddy coefficient law for the
horizontal eddy flux may be very bad. Thus, one should
treat with caution predictions based on models which
assume a constant K. For example, Sellers’ (1969)
estimate of how large a decrease in solar constant is
necessary to initiate an ice age is low because of his
assumption of a constant K.
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