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ABSTRACT

The intensity and polarization for single scattering by large spherical particles are computed using
both the exact Mie theory and the approximation of ray optics. It is found that the ray-tracing method
can yield accurate results for particle size parameters in the range of interest for some meteorological
applications, where the size parameter is the ratio of the particle circumference to the wavelength of the
incident light. Since this method is practical for application to nonspherical particles, it should be of use
in studies of cloud microstructure. The ray-optics method is also useful in the case of spherical particles
because it provides a physical explanation for features which occur in the exact theory.

The ray-optics calculations include Fraunhofer diffraction as well as geometrical reflection and refraction;
rays undergoing one or two internal reflections, which give rise to the observable rainbows, are also included.
Calculations are made for non-absorbing and absorbing spheres for several refractive indices in the range
1.1<n,<2.0. Comparisons between the ray-optics approximation and the exact Mie theory are made for
n,=1.33 and 1.50. It is found that the two methods are in close agreement, if the particle size parameter
is 2400. It is also shown that, to a good approximation, the ray-optics solution may often be used to obtain
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the entire phase matrix for single scattering.

1. Introduction

The laws of geometrical optics may be used to com-
pute the angular distribution of light which is scattered
when a plane electromagnetic wave is incident on a
particle much larger than the wavelength of the
incident light. Such a computation is an approximation
based on the assumption that the light may be thought
of as consisting of separate localized rays which travel
along straight line paths; it is an asymptotic approach
which becomes increasingly accurate in the limit as the
size/wavelength ratio approaches infinity. In this paper
we use the terminology geomeirical optics to include rays
externally reflected by the particle and rays refracted
into the particle; the latter rays may be absorbed in the
particle or they may emerge from it after possibly
suffering some internal reflections. The total energy
scattered and absorbed by the particle in geometrical
optics is hence equal to that impinging on the cross
section of the particle presented to the incident beam.

Particles much larger than the wavelength also scatter
light by the phenomenon of diffraction, which removes
energy from the light wave passing by the particle. The
diffraction is concentrated in a narrow lobe around the
forward direction, and, like geometrical reflection and
refraction, it contains an amount of energy equal to
that incident on the particle’s cross section. In the far
field, i.e., at a distance much greater than the particle
size, this diffracted component of the scattered light

may be approximated by Fraunhofer diffraction theory.
The diffraction depends only on the shape of the
particle’s cross section, i.e., its shadow, and the ratio
of the shadow size to the incident wavelength; for
spherical particles it hence depends only on the size
parameter, £=2x7/X. In this paper, for convenience,
we refer to ray optics as including geometrical reflection
and refraction plus Fraunhofer diffraction. In our com-
putations we add these different contributions without
regard to phase; this is reasonable since we are in-
terested in results for polydispersions for which phase
effects would largely be washed out.

Geometrical optics has been used extensively, e.g.,
by van de Hulst (1957), Shifrin (1951), Shifrin and
Rabinowitz (1957) and Volz (1961), to calculate light
scattering from a spherical water drop in order to help
understand the scattering pattern including the rain-
bow features. Hodkinson and Greenleaves (1963) have
used ray optics to calculate scattered intensities for
spherical particles with scattering angles up to ~40°;
they included comparisons to Mie theory, although the
size parameter for the Mie computations did not exceed
30. Recently a ray-optics approach has also been used
for non-spherical particles by Jacobowitz (1970), who
calculated the angular scattering pattern for hexagonal
ice crystals.

Since the application of ray optics to finite particles
is an approximation, it is important to obtain quantita-
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tive information on the size parameter limits within
which the method can be used to a given degree of
confidence. The primary purpose of this paper is to
obtain such information by comparing Mie scattering
calculations for large spheres to calculations for ray
optics. The results also help provide an understanding of
features which occur in the intensity and polarization
of light scattered by spheres. The Mie scattering re-
sults are obtained for a size distribution of spheres in
order that the numerous interference maxima and
minima, which occur for a single sphere, are smoothed
out; this allows a fair comparison to be made to the
results for ray optics. The computations in this paper
are made primarily for refractive indices of 1.33 and
1.50, which are indices of special interest for applica-
tions to the terrestrial atmosphere.

2. Ray optics

In this section we describe the method used for the
ray-optics computations with a polydispersion of
spheres. Most of the notation is the same as that used
by van de Hulst (1957) who gave detailed results for a
sphere having a real refractive index #,=4% in the special
case of no absorption (#;=0, where #; is the imaginary
part of the refractive index #).

For a single sphere the different contributions to the
scattered intensity (the diffraction, reflection, and re-
fraction with and without internal reflection) optically
interfere, due to phase differences for these different
contributions. This gives rise, in the case of large
particles, to rapidly oscillating intensities as a function
of scattering angle. However, if the particles are
randomly located and separated by distances much
larger than the incident wavelength, the intensities
from the separate particles may be added without re-
gard to phase; for a polydispersion of such particles
the numerous maxima and minima are then lost in the
integration over particle size. In the case of ray optics
for a polydispersion it is hence reasonable to ignore the
phase altogether in adding the intensities for diffraction,
reflection and refraction. This simplifies the computa-
tions significantly.

We define the gain G, which gives a relative scattered
intensity as a function of scattering angle, such that
the average gain over the entire solid angle 4r is equal
to @q, the albedo for single scattering, i.e., the ratio of
the scattered energy to that scattered and absorbed.
The gain is thus the ratio of the scattered intensity to
that which would exist if the radiation were scattered
isotropically and conservatively, and may be expressed
for ray optics as

N
G1,2=Gf2+2 G(l?% (1)
=0

The subscripts 1 and 2 refer to intensity components
perpendicular and parallel, respectively, to the scatter-
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ing plane; the notation is meant to indicate that Eq. (1)
represents two equations, one for each polarization
component. GY, is the contribution of Fraunhofer
diffraction to the gain and is the same for both polariza-
tion components, while G{% is the contribution to the
gain from geometrical optics, which includes external
reflection (p=0), refraction (p=1), and internal reflec-
tion (p>2). The value of N should theoretically be
infinity, but in practice a small integer is sufficient ; for
most refractive indices N =3, which includes as many
as two internal reflections, is sufficient to account for
more than 99, of the scattered energy.

a. Geometrical optics

The contribution G{% may be obtained from the
laws of geometrical optics for each value of p by making
computations for many values of the incident direction
7 in the full range 0-90°. This direction is measured
with respect to the surface of the particle; it is 90° for
central incidence and 0° for grazing incidence. The
scattering angle, 6(r), is computed individually for
each value of p. The part of the incident ray refracted
into the sphere (p=>1) enters at an angle 7’ given by
Snell’s law, 7, cost’=cosr. Since we are neglecting the
phase, the gain for geometrical optics may be ex-
pressed as

Gipz) (0,x)= Zéi,gD exp(—4an;p sinz’) )

where

y l71,2]2, for p=0,
€1,2=

A=l Dl forp2,

71,2 are the Fresnel reflection coefficients given by Born
and Wolf (1962), i.e.,

©)

sinr—#n sint’

Nn=————"

sinr=+# sinz’ @
?

n sinr—sins’

ry=———-—

n sint4-sint’

and x is the size parameter. The exponential in (2)
accounts for absorption within the sphere; in the case
of a non-absorbing sphere (1#;=0) the gain due to
geometrical optics is independent of the particle size.
The divergence D is given by

sinrcosr

D=———
sind|d6/dr|

(3)
ae tanr
——2 ZP—""
dr tant’

The divergence arises because the incident ray is re-
flected and/or refracted by a curved surface. Eq. (5)
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holds for spheres; it indicates that the divergence, and
hence the intensity, becomes infinite in two special
cases, both discussed in detail by van de Hulst (1957).
The case d6/dr=0 gives rise to the well-known rainbow
rays, while the case sinf=0 with sin27>40 gives rise to
infinite intensities for direct backscattering (the
“glory”) or direct forward scattering. In pature, infinite
intensities do not occur, if for no other reason than the
finite size of scatterers; however, the results for geo-
metrical optics may still be accurate in the vicinity of
the rainbow and glory angles.

The coefficients 7, and 7, are, in general, complex and
hence the expressions for |7;|2 and |7:|? are rather com-
complicated. Following the procedure of Born and
Wolf (1962, p. 627), we obtain

Irll2‘(5inr_u)2+v2 )
(sinr—-u)2 422 l
o] 2= [(n,2~n?) sint—u 2+ (2n.n; sintT—7v)? r ©)
ril*= [(n,2—n:?) sinr~+u i+ (2n.n; sinr+v)2J
where

u=%{n—n2—cos’r
+[ (1,2 —n2—cos?r)?+4n,n 2]}
v=3{—(n,2—n,2—cos?r)
+[(n,2—~n:2—cos?r)?H-4n,2n, ]}
b. Diffraction

U]

The angular gain for diffraction by a single sphere
is given by van de Hulst (1957) as

J1(x sing)
L]

F ra
Gr (6,4) =Gl (8,0)= zxz[
% sinf

where J; is the Bessel function of the first kind. The
diffraction depends on the particle size parameter but
is independent of the index of refraction.

c. Integration over particle size

The ray-optics results for single scattering by a poly-
dispersion of spherical particles is obtained by inte-
grating over the given particle size distribution #(x),
where n(x)dx is the number of particles per unit
volume with size parameter between x and x-+dwx.
Since in ray optics each particle scatters an amount of
energy in proportion to #?, the gain for a polydispersion
is given by

r2

G1,2(6,%)x2n(x)dx
G1.5(6) =—— : ©)

z3

x2n(x)dx

z1
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This integration over particle sizes has no effect on
the geometrical-optics results except in the case where
there is absorption. The primary effect of the integra-
tion is to average out the maxima and minima in the
diffracted light. Hence, it may often be sufficient to
make ray-optics calculations for an appropriate mean
particle size Z, and omit the integration over sizes.
We have made the integration (9) only to allow the
fairest comparison of the ray-optics approximation to
Mie scattering with the same size distribution.

The size distribution we employ is the gamma func-
tion used previously by Deirmendjian (1964) and
Hansen and Pollack (1970), i.e.,

#{(x) o« xbe—0/om, (10)
The distribution has its mode at x=x which in this
paper was given the values 25, 100 and 400. The in-
tegration limits used were x1=0 and x,=2800.

3. Mie scattering

Mie scattering theory (described, e.g., by van de
Hulst, 1957) gives the exact intensity and polarization
for scattering by finite homogeneous isotropic spheres
for an incident plane wave in an arbitrary state of
polarization. The results for a single particle may be
described, using the notation of van de Hulst, by four
functions of the scattering angle:

M.(0)=[4:(6)|%,

My (0)=4:(6) 12,

Sa1(8) = [A2(0)4:*(0)+41(0)A5*(6)]/2, |
Dy (6) =1 42(0)4,*(0) —A4:1(6)4:*(6) ] /2

(11)

where 4; and 4; are complex scattering amplitudes
(van de Hulst), respectively parallel and perpendicular
to the scattering plane; 7 is (—1)%; and the asterisk
indicates the complex conjugate. For a size distribution
(polydispersion) of independent scatterers the func-
tions M1, Ms, Sa1 and D are obtained by simply
adding those functions (M, etc.) for all particles in the
distribution.

Let P be the phase matrix defined with respect to the
Stokes parameters I, Q, U and V; P has four rows and
four columns, with P#/ representing the element in the
ith row and jth column. The non-zero elements for Mie
scattering are given by

P(g) =P (0) =C[M1(0)+M.(6)]/2
Pr2(g) =P (8) =C[M2(6)—M1(6)]/2
P (g) =P*(6) =CS21(6) ’
P8(g)=—P3(8)=CD2(6)

(12)

where My, Ms, Se1 and Dy refer to either a single
particle or a polydispersion, as the case may be; P (6)
is the phase function; and the constant C in (12) is
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F16. 1. Angular gain for geometrical optics for incident unpolarized light including as many as

two internal reflections, 3 [G,(®+G:®7]/2. The small numbers on strong features represent the value of

P
p contributing most to each feature. The vertical scale applies to the lowermost curves (#,=1.45 and
2.00). The other curves are successively displaced upward by factors of 102, with the horizontal bars

occurring where the gain is unity.

defined such that P! is normalized as

1
— / PU(G)de=1.
4 i

In view of the above definitions we compared P from
Mie theory to (G1+Gs)/2@,. We also compared P2/ P4
to (Go—G1)/(G1+Gs); these are labeled “degree of
polarization” in the figures.

For the ray-optics results to be useful in multiple
scattering theory it is also important to obtain approxi-
mations for P®¥ and P*. However, Hansen (1971) has
shown that the element CD,; often has a negligible
effect on the multiple scattering. This is a result of the
fact that CDs;, and hence also the phase difference
between the scattered intensities in the directions per-
pendicular and parallel to the scattering plane, are

(13)

TaBLE 1. Scattering angles for the first four
components of geometrical optics.

External Two One internal Two internal

reflection  refractions reflection reflections
e (»=0) (=1 »=2) =3
1.10 0-180° 0-49° 85-180° 0-180°
1.33 0-180° 0-82° 138-180° 0-129°
1.45 0-180° 0-93° 153-180° 0-102°
1.54 0-180° 0-99° 161-180° 0-86°
1.75 0-180° 0-110° 140-180° 0-57°
2.00 0-180° 0-120° 121-180° 0-35°

small at most scattering angles. We therefore propose
that the ray-optics approach described in this paper
may often be used with a sufficient accuracy by as-
suming that P#=0=PF%* and that P* is approximated
by (GiG2)}. A partial test of this is obtained below.

4. Numerical results

The calculations for geometrical optics were made
with 181 equally spaced incident directions, i.e., for
intervals of 0.5° in 7. The scattered intensities were ob-
tained separately for each of the first four components,
p=0, 1, 2 and 3, at the resulting scattering angles.
Linear interpolation was then used on each component
to obtain results at each degree of scattering angle in
the range 0-180°. For each of the refractive indices
consldered, the energy contained in the neglected com-
ponents was <19, of the total scattered energy.

a. Geometrical optics

Tig. 1 illustrates the average gain for the two polar-
ization components for geometrical optics. This is
proportional to the single-scattered intensity for in-
cident unpolarized light. Results are shown for six
refractive indices in the range #,=1.1-2.0; the indices
include 1.33, which is approximately valid for water at
most wavelengths from the visual to the near infrared;
1.45, which has been deduced for the refractive index
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TasLE 2. Incident (7) and scattering (6) angles for the glory and rainbows.

Glory Rainbow Rainbow Rainbow Rainbow Rainbow

for p=2 for p=2 for p=3 for p=4 for p=35 for p=6
7, T [} T /] T [/ T /] T [} T [}
1.10 — — 15° 84° 9° 139° 7° 170° 5° 119° 4° 71°
1.33 — — 30° 137° 18° 130° 13° 43° 10° 42° 9° 123°
1.45 3° 180° 37° 152° 22° 102° 16° 4° 12° 92° 10° 178°
1.50 7° 180° 40° 157° 23° 93° 17° 9° 13° 109° 11° 158°
1.54 11° 180° 43° 161° 24° 86° 18° 19° 14° 121° 11° 142°
1.75 30° 180° 56° 173° 31° 58° 22° 60° 17° 175° 14° 78°
2.00 57° 180° 90° 180° 38° 35° 27° 94° 21° 140° 17° 24°

of the Venus cloud particles at visual wavelengths
(Hansen and Arking, 1971; Hansen and Hovenier,
1971); and 1.54, which is sometimes used for terrestrial
aerosols. The small numerals on the strong features in
the gain indicate the value of p contributing most to
the feature.

The contribution to the scattered light from p=0
(external reflection) does not leave any apparent
feature on the gain for the case of no absorption (#,=0)
with 1.1<#,< 2.0. This is partly a result of the fact that
the amount of energy in p=0 is a relatively small per-
cent of that in all components; for the refractive indices
considered, it is greatest at #,=2.0 where it is ~159%,.
Also the reflected energy is distributed smoothly over
the entire range 0< < 180°, increasing to a maximum
at §=0° where the energy in p=1 is greater.

Most of the scattered energy is contained in the p=1
component (twice refracted rays), increasing from
~173% at n,=2.0 to ~95%, at n,=1.1. The energy
for p=1 is concentrated in the forward direction (see
column 3 of Table 1 and Fig. 1), increasingly so for
decreasing #,. This component, along with diffraction
(Section 4b) and p=0 in the case of large #n, or n;,
primarily determines the value for the asymmetry of
the phase function (Hansen and Pollack, 1970), which
is a basic parameter in radiative transfer.

The components involving one or more internal re-
flections (p22) contain $119%, of the scattered energy
for #,<2 with #,=0, and this percentage decreases
to zero as #; increases. However, these rays can give
rise to easily observable optical phenomena, the glory
and rainbows, which are very useful for cloud particle
identification (Hansen, 1971).

Rainbows occur when the scattering angle 8 has an
extremum as a function of the angle of incidence 7 on
the sphere. For #,=1.33, as 7 is varied from 90° (central
incidence) to 0° the scattering angle for rays internally
reflected once (p=2), computed using Snell’s law, de-
creases from 180° until it reaches ~137.5° (the angle of
“minimum deviation’’) where it then increases again.
The resulting concentration of energy at 137.5° and
just greater angles is the “primary rainbow.” Similarly,
the p=3 rays for #,=1.33 have an angle of “maximum
deviation” at 129.9°) corresponding to the “second
rainbow” for water drops. As indicated by van de
Hulst (1957), the location of the rainbows can generally

be obtained from the condition d8/dr=0, which yields
sinr=[(n2—1)/(p*—1) ] (14)

Table 2 gives the corresponding scattering angles for
the first five rainbows for several values of 1.1<#%,<2.0.
Fig. 1 also illustrates how the rainbows move as the
refractive index is varied. In this figure the sharp
peaks at angles other than 0° or 180° are all rainbows
for p=2 or p=3. In each rainbow, according to
geometrical optics, the peak in the intensity or gain
extends to infinity; in the figures, however, the peaks
are finite because the calculations are made only at
integral degrees of the scattering angle.

Infinite intensities, as indicated in Section 2Za, can
occur in one case other than the rainbows, namely in
the glory at §=180° and the comparable phenomena
at §=0°. The condition for having a glory for the p=2
rays is that the refractive index be between 2% and 2.
For #n,=2 the glory and rainbow, both for p=2,
coincide at 6=180° giving rise to greatly enhanced
backscattering (Fig. 1), as previously found from Mie
theory by Hansen and Pollack (1970). The glory shown
for n,=1.1 is due to p=3 with the incident angle
72235°. For all other refractive indices shown in Fig. 1,
except #,=1.33, there is an infinite intensity at §=180°
caused by the glory for p=2. There is, however, no
comparable phenomena at 6=0° for the refractive
indices and components considered (p<3).

For n,=1.33, as discussed by van de Hulst, there
is no glory in geometrical optics for <4, and the
higher components contain a negligible amount of
energy. The fact that a glory is observed in nature for
water drops points out one of the greatest discrepancies
between ray optics and Mie theory (see Section 4b).
For finite particles there is a contribution to the back-
scattering from edge rays (r=0°), apparently con-
nected with surface waves generated on the sphere
(Bryant and Cox, 1966; Fahlen and Bryant, 1968; van
de Hulst, 1957). However, a satisfactory mathematical
description of the glory, other than that hidden in the
complete Mie formalism, is still lacking.

Fig. 2 shows the degree of linear polarization com-
puted from geometrical optics. Unlike the case for the
gain (Fig. 1), the external reflection (p=0) has a strong
influence on the polarization. This is partly because
the external reflection is strongly polarized; e.g., for
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¥16. 2. Degree of linear polarization for geometrical optics for incident unpolarized light,
3
Zo {[G:P— G PT]/[G1® +G2@]}. The small numbers on strong features represent the value of p con-
=

tributing most to each feature. The vertical scale applies to the lowermost curves. The other curves are
successively displaced upward by 0.8, with the zero points of the polarization indicated by dashed lines.

the refractive indices 1.33, 1.54 and 1.75, the external
reflection alone has a maximum polarization of 97, 71
and 489, at scattering angles of 82, 97 and 108°, re-
spectively. It is also partly due to the fact that at
angles where the polarization for p=0 is strong, the
intensity for the higher components (p2>1) is small.
For some refractive indices, e.g., #,=1.1 and 2.0,
features due to different components overlap causing
unusual polarization patterns. The polarization should,
of course, be studied in conjunction with the gain; as
an example, the negative polarization associated with
p=1, though it does not appear particularly prominent
in Fig. 2, can be very important because of the large
amount of energy in that component.

b. Comparison of ray optics and Mie theory

Mie scattering computations were made for com-
parison to ray optics for two refractive indices, #,=1.33
and 1.50. The particle size distribution was that given
by (10) with z, equal to 25, 100 and 400. The Mie
calculations were made at 245 scattering angles, 0(0.1)
2(0.25)5(0.5)10(1)170(0.5)175(0.25)178(0.1)180°. The
integration over particle size was made from ;=0
to x2=800.

Fig. 3 compares phase functions from Mie theory
to the corresponding results for ray optics. The phase
functions for each size parameter are successively dis-
placed by two orders of magnitude to allow a clear
comparison. There are thus three curves for ray optics
even though they differ from each other only in their
Fraunhofer diffraction peaks. From these comparisons
we note the following.

There is close agreement between ray optics and Mie
theory when the size parameter is as large as 400. An
exception is the glory for #,=1.33 which, as discussed
above, does not occur in the ray-optics results. Other-
wise, most of the discrepancies and their variation with
the size parameter can be qualitatively well understood
in terms of the increasing inapplicability of the localiza-
tion principle for decreasing size parameters. This
causes the light in the individual features to be blurred
over a wider range of angles than predicted by ray
optics. This affects higher values of p first because they
have a more detailed ray path within the particle.
Thus, the secondary rainbow (p=3) is quite smooth
at x,=100, and is lost at x,=25, while the primary
rainbow (p=2) is still easily visible. The number of
rainbows visible in the intensity thus gives some indica-
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¥16. 3. Comparison of ray optics and Mie theory for phase functions. Two refractive indices are shown and three
size distributions [Eq. (10)]. The vertical scale applies to the lowermost curves (x»=400). The other curves are
successively displaced upward by factors of 10?, with the horizontal bars occurring where the phase function has the

value unity.

tion of the particle size, but the polarization, discussed
below, provides a much more precise means for particle
sizing.

The rainbows, in addition to being smoothed out,
tend to move away from their ray-optics locations as
the size parameter decreases. This is apparently just
another manifestation of the spreading out of rays for
finite size parameters; indeed, simply applying a
smoothing function to the ray-optics rainbows would
cause the peaks to move in the observed senses, due to
the asymmetry of the rainbows. Note also that regions
where the intensity is very low for ray optics, e.g.,
#=90° for #,=1.33 and #=130° for #,=1.50, tend to
be filled in for smaller particles. However, the region
of twice-refracted light is approximated well by ray
optics even for ., as small as 25, because it arises from
a small value of  and does not involve a sharp feature.

Finally, we note the following minor features in Fig. 3.
For Mie scattering with x,,=400, the small secondary
peaks on the less steep side of the rainbows are super-
numerary bows. These are interference phenomena
and hence are not rendered by ray optics in which the
phase is neglected. There is also a small but noticeable
discrepancy in the diffraction peak. The higher value
for Mie scattering may perhaps arise from surface

waves which scatter in the forward direction. For
#,=1.50 and x,, =400 the feature at §=~115° is probably
the rainbow for p=3.

Fig. 4 compares the degree of linear polarization for
ray optics and Mie theory. The polarization for ray
optics is illustrated only in the case x,, =400, the results
for the other size parameters do not differ significantly
from that case. As was the case for intensities, ray
optics and Mie theory are in rather good agreement
for x,=400, but the discrepancies increase rapidly for
smaller size parameters.

The polarization, compared to the intensity, contains
much stronger imprints of most of the features occurring
in the scattered light, as illustrated by Figs. 3 and 4.
Furthermore, for the polarization these features remain
visible to much smaller size parameters. These conclu-
sions hold for the rainbows, the supernumerary bows,
the glory, and the external reflection. The strength of
these features under single scattering is a major reason
why there is a high information content in polarization
observations. The importance of polarization as com-
pared to intensity is further heightened by the fact
that there is much less tendency for multiple scattering
to wash out such features in the polarization results
(Hansen, 1971).
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Fi16. 4. Comparison of ray optics and Mie theory for the degree of linear polarization. Two refractive indices are
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other curves are successively displaced upward by 0.6, with the zero points of the polarization indicated by dashed
lines. The border is broken at = 180° so that the glory may be illustrated.
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F1c. 5. Comparison of ray optics and Mie theory for the phase function in cases for which the absorption within

the particles is significant. All curves are for a real refractive index #,=1.33 and a mode size parameter x,, =100. The
vertical scale applies to the lowermost curves (7;=0.01 and 0.1). The other two curves are displaced upward by a

factor 10.
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F16. 6. Comparison of ray optics and Mie theory for the degree of linear polarization in cases for which the
absorption within the particles is significant. All curves are for a real refractive index #,=1.33 and a mode size

parameter x,, = 100.

While most of the features in Fig. 4 can be understood
on the basis of our discussion of Fig. 3, the following
additional comments may be useful. For 7,=1.50 both
#=0 and p=3 contribute significantly to the polariza-
tion for §~90°. The feature at #=~120° for n,=1.33
and x, =25 is primarily due to the p=3 rainbow. For
%n=100 the first supernumerary bow of the primary
rainbow is easily visible for both #,=1.33 and 1.50.
For #=10-20° Mie theory gives a higher polarization
than ray optics.

Figs. 5 and 6 illustrate how absorption (7;70) affects
the comparison of ray optics and Mie theory. As could
be anticipated the comparison improves considerably
as n; increases. Thus, most of our comparisons have
been made in the extreme for which ray optics is least
accurate (n;=0); however, in terrestrial and other
planetary applications #; is commonly negligible. The
reason that the comparison improves with increasing #;
is that the absorption cuts out the highest components
(largest p) first; these components are the least ac-
curately rendered by ray optics because they have a
complicated ray path and because they include the
rainbows and glory. Increasing #; also increases the con-
tribution of external reflection which should be the
component most appropriate for application of geo-
metrical optics.

If the ray-optics solution is to be used in multiple
scattering theory, it is necessary, in principle, to know
the entire phase matrix. Therefore, in Fig. 7 we com-
pare P¥ computed from Mie theory to (G:1G:)* com-
puted from ray optics; the comparison is for the case

1,=1.33 with x,=100. The two curves are almost
identical for scattering angles <70°, where most of the
photons are scattered. In the same region P# is much
smaller than P*. Hansen (1971) has found that for
scattering of sunlight (unpolarized) by water clouds
the error introduced by neglecting P# (i.e., setting
P8=0=P*) usually has a negligible effect on the in-
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F16. 7. Comparison of ray optics and Mie theory for a real
refractive index »,=1.33, a mode size parameter xn, =100, and no
absorption (#;=0). The two curves from the Mie calculations are
the matrix elements P% and P®. The curve for ray optics is
(G1G4)? which approximates P® where P% has a large value. For
6270°, |P%| is of comparable magnitude to P%; however, nega-
tive values of P% are not included in this figure.
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tensity and degree of polarization in multiple scattering.
Therefore, we believe that the ray-optics approach
described in this paper can often be used as a good
approximation for the entire phase matrix for a poly-
dispersion of spherical particles. We have, however,
not yet tested this by using a ray-optics phase matrix
in a multiple scattering program.

5. Discussion

The computations illustrated in this paper are useful
for establishing how reliable ray-optics calculations are
for different particle size parameters. The accuracy
required depends, of course, on the intended applica-
tion, but the agreement between ray optics and the
exact Mie theory is quantitatively quite good for size
parameters of the order of 400. For smaller size param-
eters, the comparison of ray optics to Mie theory for
different size parameters provides some understanding
of several features which occur in Mie theory, and of
the dependence of these features on refractive index
and particle size parameter.

For many shapes of non-spherical particles it will
be very difficult to obtain an exact solution for single
scattering, comparable to the Mie solution for spheres.
However, ray optics may provide a more tractable
approach. The computations that we have made for
spheres are therefore useful as a quantitative test of
the ray-optics approach in a case for which an exact
solution is available. The light scattered by non-
spherical particles is also divided among the various
components, p=0 (external reflection), p=1, etc., and
hence the validity of ray-optics calculations, once they
are obtained, can be estimated based on these com-
parisons for spheres and on the geometry involved in
causing the given features for non-spherical particles.
For example, particles in terrestrial ice clouds usually
have a mean radius 220 x; hence, ray-optics computa-
tions such as those by Jacobowitz (1970) for hexagonal
cylinders can potentially yield an accurate description
of the scattering at visual wavelengths. On the other
hand, O’Leary’s (1970) claim that particles 1-4 u in
radius can produce a halo a few degrees in width in the
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visual and infrared at the scattering angle predicted
by ray optics is extremely doubtful.
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