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Abstract. According to the work of Truran and Cameron, and of others, on the chemical evolution
of the Galaxy, the first generation of stars in the Galaxy contained principally massive objects. If
big-bang nucleosynthesis was responsible for the formation of helium, the the first generation of stars
would contain about 80 % hydrogen and 20 % helium, to be consistent with the approximately 22 %,
helium found in recent stellar evolutionary studies of the Sun. The present investigation has followed
the pre-main sequence evolution and the main sequence evolution of stars of 5, 10, 20, 30, 100, and
200 M ,. Normal stars in this entire mass range normally convert hydrogen into helium by the CN-
cycle on the main sequence. The present hydrogen-helium stars of 5 and 10 M must reach higher
central temperatures in order to convert hydrogen to helium by the proton-proton chains. Conse-
quently, the mean densities in the stars are greater, and the surface temperatures are higher than in
normal stars. In the stars of 20 M, and larger, the proton-proton chains do not succeed in supplying
the necessary luminosity of the stars by the time the contraction has produced a central temperature
near 108K, At that point triple-alpha reactions generate small amounts of C12, which then acts as a
catalyst in the CN-cycle, the rate of which is then limited by the beta-decays occurring within the
cycle. During the evolution of these more massive stars, the central temperature remains in the vicinity
of 108 K, and the surface temperature on the main sequence approaches 105 K. The star of 200 M,
becomes unstable against surface mass loss through radiation pressure in the later stages of its main
sequence evolution, and these mass loss effects were not followed. Young galaxies containing these
massive stars will have a very high luminosity, but if they have formed at one-tenth the present age
of the universe or later, then the light from them will mainly reside in the visible or ultraviolet, rather
than in the infrared as has been suggested by Partridge and Peebles.

1. Introduction

If current ideas concerning nucleosynthesis in stars are correct, then the first genera-
tion of stars to be formed is likely to contain only hydrogen and helium, and no heavier
elements. There is still considerable discussion about the expected helium content of
the early galaxy, but most studies of stellar evolution are consistent with a large initial
helium content, and as yet no convincing way has been shown of forming large amounts
of helium through stellar processes in the early history of the galaxy. Furthermore,
owing to the extreme scarcity of very old stars of slightly less than 1 solar mass with
extreme deficiencies of the metals, Schmidt (1963) and Truran and Cameron (1971)
have argued that the earliest stars to be formed in a galaxy, which will be responsible
for the early manufacture of the metals, must all be massive ones. This has provided

the motivation for the present study of the structure and evolution of massive hydro-
gen-helium stars.
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In a recent study of solar evolution (Ezer and Cameron, 1971), we have found that
the present characteristics of the Sun can be well-represented with a helium abundance
of 0.223. The absolute value of this helium abundance may be in error due to com-
pensating errors in such physical quantities as the opacity, but to facilitate comparison
of our hydrogen-helium models with normal stars, we have taken the above value as
a basis for adjustment of the helium content of the hydrogen-helium stars. Since
Truran and Cameron (1971) have found that only about 2% of the interstellar hydro-
gen has been converted to helium through stellar evolution by the time of formation
of the sun, we have therefore chosen the composition of our hydrogen-helium stars to
be 809, hydrogen and 209 helium. Opacity tables for the present study have been
computed on the basis of this composition.

In this work the structure and evolution of hydrogen-helium stars of 5, 10, 20, 30,
100, and 200 M, have been followed through the pre-main sequence phases of evolu-
tion and through hydrogen-burning on the main sequence.

2. Computational Procedure

The method of computation was that used in our recent study (Ezer and Cameron,
1971), except that no mass loss effect has been considered in the present study. Initial
models corresponding to the evolution time #=0 were taken at the threshold of energy
stability (Ezer and Cameron, 1967). The number of models calculated in each evolu-
tionary study varied between 70 and 250. The number of mass zones in any one model
lay in the range 160 to 450. The program automatically inserted or deleted mass zones
whenever changes in the physical variables became larger than the desired values.

The opacity for the hydrogen-helium mixture under study was obtained from the
Cox opacity code. The opacity code was run for three mixtures in which the hydrogen-
to-helium ratio was 4, 1, and 0. These three opacity tables were stored in the computer
for temperature-density combinations characteristic of the structure of the stars. The
required opacity of the material was obtained by interpolation between these tables.

The energy sources included in the study of the structure and evolution of the
hydrogen-helium stars were gravitational contraction, the proton-proton chain, the
carbon cycle, and the triple-alpha reaction. The nuclear parameters used for the
second and third reactions are the same as in our recent work (Ezer and Cameron,
1971). It was assumed that, under conditions existing in the interiors of these stars,
the equilibrium value of He? is easily maintained, and only the energy generation by
the full proton-proton chain was considered.

The carbon cycle will become operative if a sufficient amount of carbon can be
formed by the triple-alpha reaction. This reaction requires high temperatures to
operate. Under ordinary circumstances the rate of the CN-cycle is basically determi-
ned by the rate of the N'* (p, y) O'° reaction. But at temperatures around 10% K,
the carbon cycle turn-over rate is governed by the beta-decay half-lives, and the most
abundant nuclei are N*? and O'°. The lifetime of a C!? nucleus against proton capture,
relative to the lifetime of a N'* nucleus against proton capture, becomes larger. We
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have assumed that the steady-state abundance of C!? relative to N'# is maintained at
lower temperatures in such a way that 75% of C!? formed by the triple-alpha reaction
would be in the form of N'# thereafter.

Helium burning is limited to the triple-alpha reaction. The rate of destruction of
He* per alpha particle per second is given (Reeves, 1965) by

P,  592x1077
(Qx4)2 S3a Ts3

The electron screening factor for the triple-alpha reaction, f;, never departs much
from unity under the conditions of interest in this paper, and weak screening ex-
pressions have been used.

During the evolutionary study, the changes in the abundances of hydrogen and
helium, and the rate of C'? formation, were followed explicitly.

% 10—18.9/Ts

3. Overall Results of the Computations

The results of the computation for each mass have been plotted in the theoretical
Hertzsprung-Russell diagram in Figure 1. The dots at the starting point of each evolu-
tionary track are the positions of the stars of the indicated mass at an evolution time
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Fig. 1. The theoretical Hertzsprung-Russell diagram for hydrogen-helium stars of different masses.
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of 10° yr, taking this time as zero at the threshold of stability. The zero-age main-
sequence times, defined as the point at which the luminosity reaches its minimum
value before the hydrogen-burning phase, are given in the figure. In each case, the
evolutionary path has been indicated up to the point at which the hydrogen at the
center of the star has almost been depleted, and the corresponding evolution time is
shown. The last point in the evolutionary track of the 200 M, star corresponds to the
model in which the central hydrogen content has been reduced from its initial value
of 0.80 to 0.38. The physical characteristics of the models for the 5, 10, 20, 30, 100, and
200 M, are summarized in Table I, at the zero-age main-sequence, and in Table II
at the end of the hydrogen-depletion phase. In each table, the first and second columns
give the mass in solar units, and the zero-age main-sequence time in years. The third,
fourth and fifth columns give the radius, luminosity in solar units and corresponding
effective temperature. The sixth and seventh columns are the central temperature and
central density; the eighth and ninth columns give the mass fraction of the convective
core and the ratio of the gas pressure to the total pressure, f, at the center of the star.

In Table II, the last column indicates the amount of hydrogen remaining at the
center of the stars.

200 Mg

& X
10 | 100 Mo -

ZERO AGE MAIN SEQUENCE
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————— NORMAL STARS \;\1-‘
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Fig. 2. The comparison of the evolutionary tracks of the hydrogen-helium stars of indicated masses
with those of normal stars, in the H-R diagram.
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In Figure 2, the evolutionary tracks of the hydrogen-helium stars of indicated mass
have been compared with those of normal stars in the H-R diagram. The zero-age
main-sequence positions of these stars occur at effective temperatures higher than
those of normal stars by values ranging between 0.15 and 0.27 in log T,. In Table III,
the zero-age main-sequence time and surface characteristics of hydrogen-helium stars
of 5, 10, 20, and 100 M, are compared with those of normal stars with the same mass.
The symbols in the table have their usual meanings. The zero-age main-sequence times
of these stars are longer than those of normal stars. In Table 1V, the central charac-
teristics of the hydrogen-depleted models are given for these stars and for normal stars
with an initial hydrogen content 0.739. The columns from one to four are self-explana-
tory. The values in the column X, . show the central hydrogen content, and those in
the column M_/M give the fractional mass inside the main convective core. The stars
with mass equal to or larger than 10 M, all have semi-convective regions besides the
main convective core.

Figure 3 shows the central temperatures and densities of hydrogen-helium stars of
indicated mass and those of normal stars. The heavy lines correspond to the values
at the zero-age main-sequence, and the light ones to those at the end of the hydrogen-
depletion phase. For hydrogen-helium stars of mass greater than 20 M, the central
temperature on the main-sequence exceeded 10® K, so that helium-burning produced
sufficient carbon for the operation of carbon cycle in the interior. For pure hydrogen
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Fig, 3. The central temperatures and densities of the hydrogen-helium stars of indicated masses
and those of normal stars.

© Kluwer Academic Publishers * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1971Ap%26SS..14..399E

405

09°0 8¥C0 L1 0T X 08P 901 X L'C 6v°0 £VC0 0T X ¥E°1 80T X 811 90T X 8°C 0071
§T0 8000 8L6 0L X 6LY 901X 86 0T°0 £00°0 20T X 981 801 X §T'I 90I X T'6 0¢
Y10 900°0 01 X 20T 01 X 89'% 01 X 9T Iro 010°0 201 X 80°¢ 80l X SO°'L 01 X¥T or
80°0 110°0 orxXery 01 X T6°E 0T X 86 $0°0 010°0 201 X $¥T'8 0T X LE6 80T X 0T s

w

m S

a WP ¥ g W05 00 ML K iy I XY g WO 2L K 1p °win

m 6€L°0 = IPHITLY SIe)s [EULION 08°0 = *wiuty siels HH-H

m sur} uorepdop ws80IpAy = 77 s[opowr pa1d[dop-uadoIpAy JO SOIISIId)ORIRYD [RIIUS))

2 AL FT4V.L

&

=

o)

o

m wy 0s'eT 90T X 8T°[ 701 X €6°1 66’ 8¢'¢ s01 X ¥0°6 <01 X 9b°1 001

m 1304 ILs v01 X L9°E s0] X L9'] 6LV 9Ll 01 X 00V 0l X 18°¢ 0c

= 6ty ¥8°¢€ €01 X 99°F s0T X ¥8°¢ 09'v 123! 01 X LY'S 80T X 89°1 01

S Wy 394 201 X 8v'v 90 X 61°1 6ty £l 201 X 99°¢ 90T X ¥T'v §

B agor ¥/y ©1/7 K SN, ° 8o Culy ©71/1 14 Qun, °nin

SIE)S [RULION siels OH-H

SOIISLIO)ORIBYD S0BJINS PUB SN} 90uaNbas-urew a3e-0197

1 319v.L

© Kluwer Academic Publishers * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1971Ap%26SS..14..399E

p&SS. 14T Z399ED

rT971A

406 DILHAN EZER AND A.G.W.CAMERON

stars, this mass limit has been found to be 26 M, (Ezer, 1961). The presence of 20%,
helium in the initial composition brings the limit down to 20 M.

In Figure 4, the variations, within the stars of indicated masses, of the fractional
mass inside the convective core (M,/M), the central ratio of the gas pressure to the
total pressure (f), and of the relative contribution of the rate of energy generation by
the p-p chain reactions (&,,/ext), and CN-cycle reaction (ecn/ent) to the total rate of
nuclear energy generation at the center of the stars, are shown for the zero-age main-
sequence models. The 5 and 10 M, stars derive their nuclear energy entirely from the
p-p chain reactions. For the 20 M, star, only four percent of the total nuclear energy
is due to the CN-cycle reactions; the rest is supplied by the p-p chain reactions. For
the 30 Mg star about 25% of the total nuclear energy is provided by the p-p chain
reactions and 759, by the CN-cycle reactions. In the case of the 100 and 200 M, stars,
the nuclear energy generation is almost entirely via the CN-cycle reactions.

L.O T 1 \I T T ——=4
.8 -
6 - 7
L 4
4 r ]
2 - -
M .
L C/M ) \\\\ -
0 1 L") 1 T
| 5 10 20 30 100 200
M/Mo

Fig. 4. The variation, with the stars of indicated masses, of the fractional mass inside the convective

core (M./M), the central ratio of the gas pressure to the total pressure (f), the relative contribution

of the rate of energy generation by the p-p chain reactions (¢pp/ext), and by the CN-cycle reactions

(scx/ent) to the total rate of nuclear energy generation at the center of the star for the zero-age
main-sequence models.

4. Evolution of 5 M and 10 M, Stars

The evolutionary tracks for these stars are shown in the theoretical H-R diagram in
Figure 1. The pre-main sequence evolution of these stars is similar to that of normal
stars. But the time during which they stay fully convective is much shorter. The low
opacity of the material with no heavy elements favors the development of a radiative
core at lower temperatures through a rapid decrease of the temperature gradient. The
luminosity decreases until a large part of the stellar mass becomes radiative, but it re-
mains higher than that of normal stars. The increase in luminosity during the approach

© Kluwer Academic Publishers * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1971Ap%26SS..14..399E

p&SS. 14T Z399ED

rT971A

THE EVOLUTION OF HYDROGEN-HELIUM STARS 407

to the main-sequence is not so pronounced. The main difference of the evolution is on
the approach to the main sequence and during the main-sequence phases as seen in
Figure 2. In the evolution of normal massive stars, when the purely gravitational con-
traction phase is completed, energy generation by nuclear burning begins to contribute
to the total energy output of the star, and hence a moderate increase in the luminosity
of the star takes place. This nuclear energy generation is mostly due to C*? depletion;
when a steady-state equilibrium with N4 occurs, the full CN-cycle becomes operative.

= NORMAL STAR ~

TIME (years)

Fig. 5. The variation, with time, of some of the physical and compositional variables of the 5 M
star. The upper portion of the figure is for the hydrogen-helium star; the lower one is for a normal star.

In Figure 5, some of the details of the evolution of a 5 M, star are presented; the
lower part shows the evolution of a normal star and the upper part that of a H-He star.
L and L /L represent the variation with time of the total luminosity in solar units and
the relative contribution of the gravitational contraction energy to the total luminosity,
respectively. The curves X, in the bottom figure and X; in the upper figure give the
variation with time of the abundances of C'? and H at the center of the star. The mass
fraction inside the convective core is also indicated by shading the figure. While C*?
is being burned, the nuclear energy released supplements the contribution of the
gravitational contraction to the total energy output; hence the luminosity shows an
increase during the evolution of a normal star. The sudden development of the convec-
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tive core at the center, due to nuclear burning, reduces the gravitational contraction
energy of the star and absorbs some of the nuclear energy produced, so that the lumi-
nosity declines. Once C'? has been substantially converted to N'*, the central region
contracts with a net rate of release of gravitational energy, and there is a second
moderate increase in the luminosity. The rising interior temperature and density
concentrates the nuclear sources near the center, and again the boundary of the central
convective region extends to a larger mass fraction. Finally, gravitational energy
release vanishes and the luminosity drops to its zero-age main-sequence value. These
features of the evolution of normal stars were discussed by Iben (1965) and Ezer
and Cameron (1967).

In the evolution of H-He stars, toward the end of the purely gravitational contrac-
tion phase, p-p chain reactions start to supplement the gravitational contraction
energy. The p-p chain has a low temperature dependence. As the nuclear burning
gradually takes over the total energy output of the star, the luminosity shows a moder-
ate decline. The 5 M and 10 M, stars reach the zero-age main-sequence in 4.24 x 10°
and 1.68 x 10° yr, respectively. The zero-age main-sequence radius of the H-He star
of 5 My is 1.33 Ry and that of the 10 M, is 1.54 Ry. These values are less than half
of the zero-age main-sequence radii of normal stars with the same mass. Hence the
surface temperatures of the stars are higher. At the center of the stars partial degeneracy
of electrons occurs. The increases in central temperature and density are not quite
proportional to T,~R™ ' and g.~R™3, since the degeneracy provides part of the
support in the interior layers of the stars. Low temperature-sensitive p-p chain reac-
tions produce only a small convective core at the center; the size of the convective
core at the zero-age main-sequence is 0.10 and 0.12 of the total mass for the 5 M
and 10 M, stars, respectively. The central convective core disappears when the central
hydrogen content has dropped to 0.60 for the 5 M, star and to 0.48 for the 10 M, star.
The distribution of physical and compositional parameters versus mass fraction are
given in Table Va for the 5 M and in Table VIa for the 10 M, stars at the zero-age
main-sequence. The first column gives the fractional mass of the star. The other
columns give, in turn, the radius (cm), density (g cm™?), temperature (°K) and lumi-
nosity (ergs™1'), at the selected mass fractions, X, X, and X, are the abundances,
by mass, of hydrogen, helium and carbon, ¢,, is the rate of energy production per
gram per second by the p-p clain, ¢cy by the CN-cyle and ¢5, by the triple-alpha
reaction. The last column, S, is the ratio of the gas pressure to the total pressure.

Unlike the situation in normal stars, two-thirds of the hydrogen-burning in the
5 My, star and more than half of the hydrogen-burning in the 10 M, star occurs in
the radiative part of the core. This prevents the formation of a large discontinuity in
composition in the interior of the star. Hydrogen-burning occurs in a larger fraction
of the stellar mass. Due to this condition and the partial degeneracy of the interior,
the central contraction is very slow during the last part of the hydrogen depletion
phase. The surface layers expand only slightly, and the evolutionary track moves along
the main-sequence as shown in Figure 2, until the hydrogen content at the center has
dropped to 0.07 in the 5 M, star and to 0.37 in the 10 M, star. By that time, the central
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temperatures and densities have risen to 8 x 107 K, 9 x 107 K and 1.28 x 103 gcm™3,
2.70 x 102 g cm ™3 for 5 M and 10 M,, stars, respectively. Even though the fractional
carbon abundance is quite small (8.8 x 107! for 5 My and 9.47'* for 10 M), the
continued operation of the triple-alpha reaction in the core makes the contribution to
energy generation from the CN-cycle become progressively more important. This
again causes the development of a central convective core, but this never exceeds 0.5%
of the total mass of the 5 M, star. Since at this time the hydrogen content has been
depleted to 0.07 at the center, the development of the small convective core causes
only a small discontinuity in composition. The turn-off from the main sequence occurs
at this point, accompanied by a moderate increase in the radius. When the hydrogen
abundance at the center has dropped to 0.01, the energy generation is almost entirely
via the CN-cycle reactions over 10% of the stellar mass, and the p-p chain reactions
occur throughout roughly 709 of the stellar mass.

In the evolution of the 10 M, star, the CN-cycle reactions extend the boundary of
the second convective core up to a fractional mass 0.19 when the central hydrogen has
fallen to 0.26. The extension of the convective core prevents a rapid increase of the
energy generation by the CN-cycle by reducing the C'? at the center of the star.
However, there is not a sharp discontinuity in the hydrogen profile, since the p-p
chain reactions operate throughout a large extent of the stellar mass. When the central
hydrogen abundance drops to 0.01, the energy generation by the CN-cycle exceeds
that of the p-p chain reactions inside 159 of the stellar mass, and the p-p chain reac-
tions operate throughout an additional 65%; of the stellar mass.

In Table Vb and VIb, the physical and compositional characteristics have been
summarized for the models corresponding to the end of the hydrogen depletion
phase, for the 5 My and 10 M stars, respectively. The columns correspond to
those in Tables Va and Vla.

5. Evolution of More Massive Stars

The theoretical evolutionary tracks for stars of 20 My, 30 M, 100 My, and 200 M,
in the H-R diagram are also shown in Figure 1.

The evolution of these stars until the completion of the purely gravitational contrac-
tion phase is not very different from the evolution of normal stars. The luminosities
are comparable to those of normal stars since the opacity is mostly due to electron
scattering. In the evolution of a normal star with a mass of 20 M, when it contracts
to a radius of 12 Ry with a luminosity of 5x 10* Ly, the central temperature and
density have risen to about 20 x 10° K and 1 g cm ™3, respectively. At this temperature
and density, energy generation by C'? depletion is the main contributor to the energy
production. This will cause a moderate increase in the luminosity of the star. Even
though the C'? depletion time is quite short, the development of the convective core
reduces the contribution of gravitational energy to the total energy output of the star,
and hence causes a decline in the luminosity. This produces the first minimum value
in luminosity, before it drops down its lowest zero-age main-sequence value. As the
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star contracts to half of the above radius, the full p-p chain and CN-cycle reactions
have replaced gravitational contraction as the entire source of outgoing energy, and
the luminosity achieves its final minimum value representing the zero-age main-
sequence state in 1.7 x 10° yr. The surface temperature is then about 3.3 x 10* K.

In the evolution of H-He star of 20 M, toward the completion of the purely
gravitational contraction phase, the contribution of the gravitational contraction
energy greatly exceeds that from the p-p chain reactions, which have low temperature
dependence. In order for the star to maintain its energy output, it must keep contrac-
ting, reducing its radius to about 2 Ry near the zero-age main-sequence. Therefore,
the zero-age main-sequence surface temperature is about twice as high as that of a
normal 20 M, star. Because of the small temperature sensitivity of the p-p chains at
these high temperatures, the energy generation is only moderately concentrated toward
the center. The convective core covers about 319, of the total mass in the 20 My, star.
The zero-age main-sequence time is 3.81 x 10° yr. The physical and compositional
parameters of the zero-age main-sequence model of the 20 M, star are given in Table
VIla, which has a format identical to those of Table Va and VIa.

The main sequence evolution of this star depends on the central temperature that
it attains at the zero-age main-sequence. A temperature of 1.03 x 10® K and a density
of 1.3x10% gem™? are then reached at the center and the energy generation by the
triple-alpha reaction becomes 4.12x 10~ 5 erg g~ s ™. The fractional mass of carbon
has reached 4.26 x 1072, The rate at which the carbon cycle turns over is governed
by the beta-decay half-lives. The rate of energy generation by CN-cycle is 8.5 x 10?
erg g ~'s™!, which is still small compared to 2.03 x 10* erg g~ ! s™! generated by the
p-p chain reactions.

After an evolution time of 1.6 x 108 yr, the rate of energy generation by the CN-
cycle exceeds that by the p-p chain reactions. At this time the hydrogen abundance
has dropped to 0.73 at the center and the fractional mass of carbon is 1.06 x 107*°,

The main-sequence evolution depends on the conditions prevailing in the interior
of the star. The central temperature should stay high enough so that carbon formation
can continue at a very slow rate.

During the hydrogen depletion phase, the high value of the nuclear energy generation
rate at the center favors the expansion of the central convective core and the reduction
of the central temperature, T,, and density, ¢, slightly; but T, never becomes less
than 1.02 x 10® K. Meanwhile, the total luminosity increases and L~ u*M?-> for
an opacity due to electron scattering, with u being the mean molecular weight. Once
the conversion of hydrogen to helium sufficiently increases u, the central temperature
starts to increase. The total radius also increases. When the hydrogen content is
reduced to 0.003 at the center of the star, the central temperature T,=1.25x10® K
and the central density ¢,=186 gcm ™3, and 8,=0.70. The high value of § still keeps
quite a large part of the star convective (M, ~0.20 M;). Within the central 309, of the
stellar mass, the energy generation is mainly due to CN-cycle reactions. At the frac-
tional mass 0.3, the temperature is 6.5 x 107 K and the density is 24 gcm™>. The
consumption of hydrogen will continue by the p-p chain reactions outside this point
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up to a mass fraction of about 0.80. The physical parameters of the star at the end of
the hydrogen depletion phase are given in Table VIIb. The change of the physical and
compositional characteristics with time is illustrated in Figure 6, for the 20 M, star.
In the upper figure, the curves L,/L and L/L; give, in turn, the variation of the relative
contribution of the gravitational energy to the total luminosity and the total lumi-
nosity. The scaling factor is L;=10% L. ¢,,, scx and e, represent the variation of the
rate of energy generation by the p-p chain, by the CN-cycle and by the triple-alpha re-
actions, respectively. The scaling factors are £,=2.8 x 10° erg g7 s ! and &,,,=1073
erg g~ s~ 1. In the lower figure, the change of the central temperature (T,), the cen-

tral density (¢.) and the central abundances, by mass of hydrogen (X,), helium (X,)
and carbon (X, ,) are shown. The scaling factors are T,=1.25x 10® K, ¢.=186 gcm ™3
and X,,,=4x1078,

In the evolution of the 30 M H-He star, the pure gravitational contraction phase
lasts about 1.7 x 10° yr until the central temperature and density reach the values of

8.1 x 107 K and 43 g cm™3. At this stage, the rate of gravitational contraction energy
1

release at the center is 1.36 x 10* erg g 7! s~ ! and the rate of energy generation by the

_ -8
X6 =4x10

| T, =125xi0°

2

=186x10
A x

TIME (years)

Fig. 6. The variation with time, for a hydrogen-helium star of 20 M, of several quantities. In the
lower figure are plotted, the central temperature (T%), the central density (oc), and the central abund-
ance, by mass, of hydrogen (X1), helium (X4), and carbon (X12). In the upper figure are plotted, the
total luminosity (L), the relative contribution of the gravitational energy to the total luminosity
(Lg/L), the rate of energy generation by the p-p chain (¢pp), by the CN-cycle (ecx) and by the triple-
alpha reactions, at the center of the star. The scaling factors are indicated in the figure.
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p-p chain has the value 4.27 x 10% erg g~! s ~!. When gravitational contraction energy

supplies half of the total energy output of the star, the central temperature has risen
to 1.11x 108 K, and the density is 102 g cm™3. Thereafter, a sufficient amount of
carbon forms by the triple-alpha reaction to make the rate of energy generation from
the carbon cycle comparable to that from the p-p chains at the center of the star. The
high rate of energy generation by the CN-cycle causes the rapid development of a
central convective core, and reduces the total luminosity. It covers about 519, of the
total mass of the star when the star reaches the zero-age main-sequence in 2.5 x 10° yr.
At this time, one-fourth of the total energy is supplied by the p-p chain reactions, and
three-fourths come from the CN-cycle reactions at the center of the star. The physical
characteristics of the zero-age main-sequence model are given in Table VIIIa.

During the hydrogen depletion phase, the central temperature slightly decreases
even though there is a slow contraction of the central convective core; the large amount
of carbon formed at the center of the star is distributed throughout the large convec-
tive core, thus reducing the effective amount of carbon in the CN-cycle at the center.
The central temperature starts to increase again when the convective core recedes to
0.40 of the total mass. By then, the hydrogen content at the center has dropped to 0.45
and the helium content has increased to 0.55. The p-p chain only contributes 29, of
the total nuclear energy at the center of the star. Outside the convective core, the
energy generation rate by the p-p chain exceeds the rate by the CN-cycle and extends
out to about 809, of the stellar mass.

As the convective core recedes and T, and g, keep increasing with increasing u, the
importance of energy generation by the triple-alpha reaction becomes pronounced.
When the central helium content has increased to 0.998 at the center of the star, the
rate of energy generation by the triple-alpha reactions already exceeds that of the
p-p chain reactions inside 7% of the total mass. The physical characteristics of the
H-He star of 30 M are shown in Table VIIIb at the end of the hydrogen depletion
phase.

In the evolution of the H-He star of 100 M, more than half of the total pressure is
due to the radiation. Therefore, the adiabatic and radiative temperature gradients are
very close. The central convective core starts to develop at 5 x 10? yr and it extends to
0.60 of the total mass toward the end of the purely gravitational contraction phase.
In the evolution of a normal star of 100 My, the purely gravitational contraction
phase ceases when the central temperature and density have reached about 2 x 10’ K
and 0.2 g cm ™3, respectively. By then, the star has contracted to a radius of about
30 Ry with a luminosity of about 10° L. But the purely gravitational contraction
phase of the H-He star of 100 M, lasts until it contracts to a radius of about 5 R with
a corresponding central temperature of 1.26 x 10® K and a density of 41 g cm 3. At
first the contribution of nuclear energy to the energy generation is mostly due to
p-p chain reactions. The star reaches the zero-age main-sequence in 1.46 x 10° yr
with a radius of about 3 R, and a surface temperature of 9.7 x 10* K. At the zero-age
main-sequence, the rate of energy generation by the CN-cycle is 1.5x 10° erg g™ * s~ !
and by the p-p chain the rate is only 4.2 x 10® erg g~! s~1. The central convective core
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extends to a fractional mass of 0.72. The physical characteristics of the zero-age main-
sequence model for the H-He star of 100 My are given in Table IXa.

One interesting point concerning the evolution is the occurence of a density inver-
sion in the central part of the star. The high radiation pressure provides most of the
pressure balance up to 209 of the star’s mass. The highest interior density is not the
central one, but the one corresponding to a fractional mass 0.20. From this point
outward, the gas pressure becomes the main contributor to the total pressure and the
density distribution is governed by the gas pressure. During the hydrogen depletion
phase, the central temperature stays near 1.2 x 10® K, enabling the CN-cycle to operate
with the continuous formation of C!? from the 3o-reaction.

Once the central hydrogen content is sufficiently depleted and the central convective
core has receded to 409 of the stellar mass, the central temperature starts to increase.
This increases the ratio of the radiation pressure to the total pressure, since P,~T*
and P,~Tg. Therefore, the highest interior density is 3.18 g cm ™ 3 at the point corres-
ponding to the fractional mass 0.20. The physical characteristics of the star at the end
of the hydrogen depletion phase are given in Table IXb.

The evolutionary trend of H-He stars of 200 M, is similar to that of the 100 M
star. But, due to the larger radiation pressure, the convective region extends to a
larger fractional mass of 0.80 when the star reaches the zero-age main sequence in
1.71 x 10° yr. The peak of the interior density is at the fractional mass 0.30. The purely
gravitational contraction phase lasts about 6 x 10* yr until the central temperature
and density attain the values of 1.41 x 10® K and 37 g cm™?, respectively. By the
end of the purely gravitational contraction phase, the fractional amount of C'? is
4.6 x 10712, The sudden increase of the rate of energy generation from the CN-cycle
extends the boundary of the convective core up to a fractional mass of 0.80, reducing
the central temperature to 1.28 x 108 K and density to 11.9 g cm™3. During the main-
sequence evolution, hydrogen depletion will continue mainly through the CN-cycle.

The evolution of H-He stars of 200 M, was followed until the central hydrogen
content dropped to 0.38. As the luminosity increases during the main-sequence evolu-
tion, the radiation pressure becomes a large fraction of the total pressure throughout
the star. In Tables Xa and Xb, the physical characteristics of the H-He star of 200 M,
have been summarized for the zero-age main-sequence model and for the last com-
puted model, respectively.

The last computed model of the star, with a central hydrogen content of 0.38, has
a total luminosity L=1.39 x 10*° erg s ™!, and a radius R=4.25 x 10" cm. Consider
the radiation emitted from the surface of the star at this time. The radiative flux will
transfer momentum to a gram of material in the surface layers at a rate (x/c) (L/4nR?).
At the high temperatures under consideration, the opacity x of the surface material
will be primarily due to electron scattering, and hence the above expression amounts
to 6.96 x 10* dyn per gram. The gravitational force exerted on a gram of material at
the surface of the star is (GM)/R*~1.46 x 10° dyn per gram. It may be seen that the
radiation pressure is nearly able to expel material from the surface of the star. Since
the luminosity of the star has been increasing substantially throughout its main-
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sequence evolution, it is evident that the evolutionary study cannot be carried further
than that indicated above, since the radiation pressure will shortly cause loss of mass
from the surface, which would have to be taken into account in the evolution. Since
this refinement has not be attempted in the present study, the evolutionary calcula-
tions were terminated at this point. It is evident that this radiative expulsion of
mass would even more rapidly become a dominating feature of the evolution of
still more massive hydrogen-helium stars.

6. Discussion

The most important difference between the hydrogen-helium stars and normal stars
is the much higher surface temperature of the former. This temperature lies in the
vicinity of 10° K for the massive stars which have been studied.

If massive hydrogen-helium stars are formed in the early stages of galaxy formation,
then their luminosity will be extremely high, and the color temperature of the radiation
will also be extremely high. The problem of the detection of extremely luminous young
galaxies has been discussed by Partridge and Peebles (1967). Their motivation was the
seeming requirement to manufacture large amounts of helium from hydrogen in the
early stages of galactic evolution. This requirement is not present in the chemical
evolution studies of Truran and Cameron (1971), but nevertheless the latter authors
require a great deal of mass to participate in the first stellar generation, leading to
formation of a very large number of massive black holes. In any case, the current
calculations seem quite relevant to a discussion of the observability of very young
galaxies or star clusters.

If these were generally formed at about one-tenth of the present age of the universe,
as proposed by Partridge and Peebles (1967), then the radiation with a color tem-
perature of the order 10° K which would be emitted from them would have been
subjected to a redshift of a factor 10, bringing the color temperature down to 10* K
at the present time. Such objects may not be easy to distinguish from current galaxies
on the basis of color temperature; they would certainly not emit strongly in the infra-
red as suggested by Partridge and Peebles. If the objects are formed at a still later stage,
perhaps one-third of the present age of the universe, then the present color temperature
of the radiation from them would be of the order of 3 x 10* K. They would appear as
extremely blue objects, and it is interesting to speculate that the very large number of
blue stellar objects, some of which are quasars, may include clusters containing the
first generation of hydrogen-helium stars. A further investigation of this suggestion
would require a much more extensive spectroscopic study of faint blue objects.
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