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ABSTRACT

The electrical conductivity and the conductive opacity are computed for a system of relativistic
degenerate electrons in the presence of a system of ions. In the density-temperature range we are in-
terested, in 10% < p< <102 (g em™?), 105 < T < 10° ° K, the ion-ion interaction is taken into account
by means of the pair- “correlation function. The numerical values of the electron conduction opacities are
given for different values of the parameter I', which characterizes the strength of the ion-ion interaction,
and for different values of 2 < Z < 26.

I. INTRODUCTION

The problem of the electrical conductivity of an electron gas, after the classical papers
by Marshak (1941), Mestel (1950), and Lee (1950), has not been significantly changed
until very recently, when Hubbard (1966), using Kubo formulation for transport phe-
nomena, and Hubbard and Lampe (1969), using a two-polynomial Chapman-Enskog
method, substantially improved the original calculations by using the Kubo quantum-
mechanical expression for the conductivity tensor. One of the improvements consists in
deriving a finite (nondivergent) expression for the Coulomb-scattering cross-section
through a better treatment of the ion-ion correlation. Hubbard (1966) and Hubbard and
Lampe (1969) also take into account electron-electron scattering, which is neglected in
the original treatment. Electron-electron scattering becomes important even when a
small fraction of electrons are above the Fermi sea. This occurs when the gas is partially
degenerate. The Lorentz model of noninteracting electrons has been shown to be valid
when the electrons are strongly degenerate in the density range of ~10%-10% particles
cm~3, However, Hubbard (1966) and Hubbard and Lampe (1969) have not considered
either relativistic effects or the influence of an external magnetic field of arbitrary
strength.

In this paper we will consider a relativistic extension of the previous theories, and we
will compute the electrical conductivity for a degenerate relativistic electron gas without
a magnetic field. The presence of a magnetic field and the corresponding computation
of the longitudinal and transverse conductivities are considered in subsequent publica-
tions (Canuto 1970; Canuto and Chiuderi 1970). The ion-ion interaction is taken into
account by using the pair-correlation function g(r) which has been tabulated numerlcally
by Brush, Sahlm, and Teller ( 1966) for thirteen values of the parameter I', which is the
ratio of the ion-ion Coulomb interaction to their average kinetic energy kT (Salpeter
1961). The many-body correlations are taken into account by introducing a dielectric
constant which reduces, in the static case, to a screening radius 7,2 which is a function
of the density. The general expression for the conductivity ¢ is shown to reduce in the
limit of high temperatures to the classical expression of Drude theory (Jackson 1962).
The numerical values of the conductivity ¢ and the conductive opacity k. are given as
functions of the temperature for densities ranging between 10% and 10 g cm~3 and for
temperatures between 10° ° and 10° ° K. This range covers the interior of white dwarfs
and the nonneutron envelope of neutron stars.
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642 VITTORIO CANUTO Vol. 159

II. DERIVATION OF THE DECAY PROBABILITY FOR MOTT SCATTERING

We shall start by first considering the Lagrangian describing the interaction of one
electron taking place at x with the ath nucleus Ze located at R, (see Fig. 1). The La-
grangian is

8(x, Ra) = —ied’ (%) yud(2) Au(x, Ra) @

where ¢* = yty, and ¢t is the Hermitian conjugate of ¢. In the case of Coulomb inter-
action, equation (1) reduces to

(x, Ra) = -—ezZ'V'(x) Tx=R] ¥(x) . : )

Fi6. 1.—Feyman diagram for elastic scattering of an electron by a heavy ion, Ze

The splnors ¥(x) are solutions of the free Dirac equation
(Gyu0us + mc/B)Y =0,

and they are given by (2 = normalization volume, s = 1 spin index)

1
. E + mc2)‘/2 é+pc
= 1/2 lp. Ihgy(8) (s) = .
'P Q e*P Tihy (P) ’ u (P) | 2E E + mcz ’ ] (3)

wu=1, u'u=E/me,

where E = ¢ mc® = (P> + m?c*)'/? is the relativistic expression for the partlcle energy
If the F ouner transform of the potential, i.e., :

= 4w (2m) TS e, - 4)
is used, then the Hamlltoman of the system becomes
-9 = 4re*Z(27)” 39‘1u*(">(p’)74u‘8)(p)2 S Bqq % Ra [ dPret(d- p'+hq) ik (5)
where N = 'number of ions.

Integrating first over r and then using the é-function to perform the integration over
g, we obtain .

O = 4w ZQ U (P ) yau(p) | () — p)EH| ™2 ge‘q-Ra, (6)
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No. 2, 1970 CONDUCTIVITY AND OPACITY OF ELECTRON GAS 643

where ¢ stands for (" — p)%~! and the summation over a runs over the position R, of
all the ions. As stated earlier, equation (6) can be generalized to include the many-body
effect by the following replacement:

|6 = b2 =it — pI*7 = | — pI*A7* + 707" Q)
with (Silin 1960)
rp~% = lim lim k(»' — 1), (8)

k-0 wl/k-0

where 7! is the longitudinal dielectric constant. A more rigorous expression for rp™2 is
given by Fradkin (1967) as

rp~? = I14(0) ,
where IT,,(k) is the polarization operator, defined by (p, = p,ipo)
,,(k) = ieQ2w) "4 S Try,G(p + k,po + ko)v,G(p,po)dpdpo ; 9)
it relates an external field 4, with the induced current j, through the relation
Ju = wd,, (10)

where G(p) is the Fourier transform of the electron Green function. The electron Green
function and the tensor IL,, have been evaluated by Tsytovich (1961) for a relativistic
electron gas at any temperature and density. The dielectric constant is accordingly com-
puted, and the following expression is derived for rp=%:

ro? = —8re(2mh) S B [(5) (11)

where f(p) is the Fermi distribution. For a degenerate electron gas, rp2 is easily seen
to become [a = 117]

rp? = Xc—zz—:u(uz — D2 = 272X 2 (X, = B/ mc) (12)

where u is the chemical potential plus the rest mass in units of mc?. From equation (6)
we now obtain

N; N;
(812 = (reZprsa | w e @) va(P) (P — P+ 207713, S00RED (13)

a=1 a’=1

where P = p/mc, Q = X;-(P — P’). We will now carry out the double summation in
equation (13). If we first average equation (13) on the canonical distribution function

exp (—U/kT) , (14)

where U is the interaction energy among the ions, we easily obtain

(3 Seerry = w14 %], (15)

a’=1

where g(Q) is the Fourier transform of the pair-correlation function g(r) (Brush, Sahlin,
and Teller 1966): .

£(Q) = SeQrg(r)d*r, (16)

g(niry) = BN(N — ONY fdry. .. drye VT fidry .. . drye”UT . (17)
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644 VITTORIO CANUTO Vol. 159

The function g(r) is dimensionless, hence the dependence on r is of the form g(r/a),
where a is a parameter with the dimension of length. Carrying out the Fourier transform
in equation (16), we obtain

<Z E exp [iQ (R, — Ro)] > =N.l1 + 3./5(x) G) sin ()atds]  (18)

a=1 a’=

£ = (3/4m)3(Q/N)13X.|P — P'| . (20)

The length a has been taken to be equal to the ion-sphere radius (32/47N,)'/3. Let p
be the matter density of the mixture of electrons and ions; from the theory of ionized
stellar material we have (Chandrasekhar 1957, p. 254)

n; = Ni/Q = (p/mu)Zpxr A~ = (p/mu)pui™?, (21)

where x; is the number of grams of particles of type % per gram of mixture

where

xp = npmp(Spnemy) ! (22)

and u; is the molecular weight of the ions (the average number of proton masses per
ion particle). With only oneé type of ions, x— 1, u; = A. For the electron gas we have,
equivalently,

ne = No/Q = (p/mu)Zrxedr (An™ — 1) = (p/mu)p.?, (23)

where
A’y = 1 4 v (k) (24)

is what Chandrasekhar has called the “mean ionization per unit atomic weight” (Cox
1968). The quantity ».(k) is the number of free electrons contributed by the particle of
type k; for complete ionization » = Z. When we have only one type of ion and complete
ionization, from equation (23) we obtain

wol = Z/A. (25)
Let .
= 107%p/p, (26)

be the matter density in units of 10® ., g cm~3. We then have
, = ps(105/mu) (ue/pi) ,  me = ps(105/mz) .
The expression for £ (eq. 20) thus becomes
£ = 2.69057 P[5 (€ + €7) — 1 — (& — 1)V3(? — 1)1 cos 6] . (27)
Substituting equation (19) into equation (13), we finally obtain
B2 = (rZ2 KB — 'Y + 2r 1 |0 (P) yai® (P) % e ) . (28)

We next average over the initial and sum over the final spin states. We obtain (g =
235+1=2)

g2 | U (P yu®@ (P) |2 = (4gmict)~ lTr[w(mc2 iyPc)ys(me — iyP'c)]

(29)
= gl (1 + e + PP’ cos9).
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No. 2, 1970 CONDUCTIVITY AND OPACITY OF ELECTRON GAS 645

Finally, the transition probability for the process defined as
W = (2r/i)| 9 |%(E — E) , (30)
after equations (28) and (29) are substituted, takes the following form:
W = Wonig e 1 + e + (& — 1)12(e'2 — 1)1/2 cos 6]
X[+ €2 — 2 — 2(& — 1)12(2 — 1)12cos 8 + 2757272 (e — €)¢p(e,€,0) ,(31)

where
Wo = 4(27)3a3Z2X S(mcE/R)Q7L .

In this paper, only the elastic scattering of electrons by ions is considered. The prob-
lem of the inelastic scattering of relativistic electrons by lattice vibrations, i.e., phonon
scattering, is now being considered (Solinger 1969).

III. EXPRESSION FOR THE ELECTRICAL CONDUCTIVITY

The electrical conductivity will now be calculated from the Boltzmann equation. To
this end we first compute the relaxation time, which is defined as (Argyres and Adams
1956; Chester and Thellung 1959*)

T—l(e) = E.f[l - (P’z/Pz)]W(eaelso) y zf = 9(27x0)_3fd3P ’ (32)

where we have taken the rate of change of momentum in the x-direction. Since the system
is isotropic, the relaxation time will not depend on the direction of momentum chosen.
If the system of coordinates is defined such that

P’, = P[cos w cos 6 + sin w sin 4 cos ¢],

(33)
P,=Pcosw, d9 = sin0dbdo,
then equation (32) becomes
7 e) = 7' S H(b,¢) sin 0d0 = 7,71F(e) , (34)
0
where
H(, ) = e(e¢ — 1)122(1 — cos 0)[(e¢ — 1)(1 — cos 6) + 722 35)

X [1+ &+ (¢ — 1) cos blé(e, 6) ,
7l = 7a?Z2X 3 (mct/B)n; . (36)

In the case 72— 0, ¢ — 1, which implies no screening and a random distribution of
ions, the quantity H(e,8) has an angular dependence like (1 — cos 6)~%, and therefore
the integral in equation (34) diverges at # = 0. The divergence in the nonrelativistic
case and 7¢2— 0, ¢ — 1, is removed by introducing a cutoff angle 6,. In this case we
then have (Mestel 1950, eq. [31])

T = 2m**(27e*Z% In A)7n Y, 37
A= 2(1 — cosfy. (38)

The angle 6, is the minimum scattering angle caused by screening. In our case screening
is automatically included. Once the relaxation time is obtained, it is a simple matter to

1 The latter reference contains a very detailed, critical analysis of the applicability of the Boltzmann
equation.
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646 VITTORIO CANUTO - . Vol. 159

evaluate the conductivity. We first observe that the definition of the current in the
x-direction is given by

T = —gQQwh)7 S pdp LAY (P)je G
jx = efd“’xiﬁ'wP .

where

After evaluation, we obtain ‘
Jo = ecp E7IQ = ecQ 1P, . (40)

The distribution function f is solution of the Boltzmann equation with the electric field
E in the x-direction treated as a first-order perturbation. The result is (Argyres and
Adams 1956; Kelly 1969)

f=f+ ffETe“(mC)‘1 EIT;f"’ | (41)

where fo is the distribution function for thermal‘ equilibrium without an electric field.
Substituting equations (40) and (41) into equation (39), we obtain

® T - 2 . :
= = g = —ge?(2nX.)3m ! S PP [ sin 0d0 S dér (€)Poe? ;{," . (42)
0 0 : 0 : z

Using polar coordinates for the vector P, we can perform the angular mtegratlon over
O, obtaining

gy = ——(41r/3)g627'1m_1‘(27r9(c)—3tlfc‘o(e2 — 1)32F1(e)e2(dfo/ d€)de . (43)

For the case of complete degeneracy the derivative can be approximated by —&(e — u),
where u is the chemical potential of the electron rest mass (m units of mc?). For a rela-
tivistic degenerate gas we also know that

p2— 1 = pg, (44)
where, as usual, p is the mass density. The final form for g is given by
o= "Gl , | | (45)
oo = §[(2m)*K>PZn] aZ(B/mc)] ™, (46)
or
0’0 = 0.33Z271ps7110% (sec™?) . 4n

The function G(p) is given by (a = 1i7)

Go) = p(1 + p)~ 1/2{ S0 sin 8(1 — cos O)[2 + p(1 + cos 0)]

L@
X [p(1 = cos 0) + (2a/m) (1 + 91 %(s, O}
where '
86,0 = 1 +3 S @0 sin Dg)dn, (#9)
£ = 2.697u3u13(1 — cos )V2, (50)
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No. 2, 1970 CONDUCTIVITY AND OPACITY OF ELECTRON GAS 647

Although p does not enter explicitly in ¢, nonetheless it enters in an implicit form in
g(x). As we will discuss later, g(x) is given only for certain values of the parameter T’
which depends on p.

The conductive-opacity coefficient £.° is defined by

kS = (4ac/3p)T3N\t,  ac = wkt/15047 (51)

where % = 1.38024 X 1071¢ erg deg™! is the Boltzmann constant. The parameter A is
the thermal-conductivity coefficient, which can be related to oo through the Widemann-
Franz law which is valid in the case of high degeneracy (Hubbard 1966)

= (n%/3)(k/e)’0oT . (52)

Using equatlons (48) and (45), we now obtain
ke = B G (ps"?) , ; (53)
B9 = (1/5) @) mu i@k A2, (54)

where

a =

mu = 1.6594 X 107% g, ¢ = kT/mc.

T%7 ’
In the case of complete ionization, inserting the value of the constants, we obtain

k' = 6.753T¢(Z*/ A)1078 cm? g™ | (55)
where? Ty = T X 1075,

IV. THE PATR-CORRELATION FUNCTION
The most important ingredient in equation (48) is the function g(x), which depends
on the value of the parameter
T = [(Ze)*/kT)[47/3)(N:/Q® = Tops'*Ts™*

56
To = 2276253 (56)

which is a measure of the ion-ion correlation. For completely randomly distributed ions
(high temperature), the function ¢ reduces to 1. For low values of T' («<1) the classical
Debye-Hiickel theory can be used, giving for g(x) an analytic expression

gou(x) = exp [—(I'/2) exp (—«[3T]'"?)]. (87)

When we decrease the temperature, T increases, and the Debye-Hiickel theory breaks
down. Recently, Brush, Sahlin, and Teller (1966), using a Monte Carlo Method, have
computed g(x) for values of T' up to 100, but the use of their table is not straightforward
anii some care has to be used. First of all, the function g(x) — 1 has to be normalized to
-—13, L€,

= jeg(x) — 1]a%dx = —%. k (58)

This can be easily shown by using equation (18). The Monte Carlo results are given only
for x < b with & = 3.5. The normalization condition is never satisfied, and it gets worse
for higher values of T'. It is therefore necessary to continue g(x) beyond the Monte Carlo
data with a plausible analytic form. We have used a form proposed by Hubbard (1966)

g(x) = 1 — Alexp (—Bx)]x™* cos (Cx + D), (59)

2 Dr. B. Paczynski has communicated to the author that equation (53) is fairly well fitted by a simple
expression of the form k.o~ T?p71,

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1970ApJ...159..641C&amp;db_key=AST

J. - CI59C 64T

DAG

rt

648 VITTORIO CANUTO

where 4, B, C, and D have been determined in the following way:3 C and D were found
by using the last two points of the Monte Carlo data for which g(x) = 1 and dg/dx 2 0,
respectively. A and B are then determined by the least-squares method. In Table A
we quote the values of 4, B, C, and D and those of the normalizing integral I for ' > 1.
For I < 1 we used the Debye-Hiickel formula. For I' = 2.5 no extension was required.
A detailed discussion concerning this point is found in Hubbard’s paper (1966).

V. NUMERICAL RESULTS

The Monte Carlo data and the extended analytic expression for g(x) were used to
compute the function G (see egs. [45] and [53]), which is given in Tables 1 and 2 for dif-
ferent values of Z (2 < Z < 26) and ps. For a given value of the density ps, the atomic
number, and the parameter I', the temperature is easily computed from equation (56).
In Tables 1 and 2 the seven values of log G, corresponding to each couple of values of
log ps and Z, correspond to T' = 0, 2.5, 10, 20, 40, 75, and 100, respectively. I' = 0 means
completely randomly distributed ions, i.e., ¢ — 1. The density p ranges from 10° to 10*,
while the temperature T ranges from 10° ° to 108 ° K. To compare our results with the

TABLE A
VALUES OF 4, B, C, AND D

r A4 B C D I

S.... 0.583242 1.26555 5.23598 1.57081 —0.333233
10.... 0.772943 0.909053 3.69599 2.67959 —0.332123
14.... 0.517428 0.608818 3.69599 3.04920 —0.342655
20.... 0.882497 0.735184 3.77006 2.95252 —0.325321
30.... 6.23226 1.13223 3.92699 2.74890 —0.315717
40.... 2.53091 0.702997 3.92699 2.74890 —0.347549
50.... 0.679080 0.241315 4.05367 2.38153 —0.391829
75.... 1.72393 0.361834 4.18879 1.98968 —0.320898
100.... 3.32609 0.475877 4.53214 0.849743 —0.303438

one obtained by Mestel (1950) for the nonrelativistic region, we have computed the
ratio KHH/K,.’, where KHH is the Haselgrove and Hoyle (1959) analytic formula
which fits the Mestel conductivities and K, is the one computed in this paper. The ratio
has been evaluated at p = 10° g cm~2 for different values of T' and Z (see Table 2). As
we can see from Table 2, the ratio is less than 1 for I' < 40 and it is slightly greater than
1 for higher I'. A ratio KHH/K,* < 1 for p = 10° has also been found by Hubbard and
Lampe (1969). It can also easily be checked that at p = 10% g cm™3 the opacity K.°
computed here is very close to the one given by Hubbard and Lampe (1969) in their
Tables 2 and 3. , ~

Finally, the validity of the results has to be mentioned. As pointed out by Salpeter
(1961), the ratio Z/ A can be significantly modified because of free-electron capture (also
called inverse B-decay in astrophysics). Let Ez be the B-decay energy of the electron
where the nucleus (Z — 1,4) decays to the nucleus (Z,4). The electron Fermi energy of
the plasma is simply

Ex/me = (1 + pl) — 1.

If Ex > Ez, the nucleus (Z,4) can decay back to the nucleus (Z — 1,4) via inverse
B-decay. We have computed Er and Ez for the nuclei in Table 1. The results are given
in Table 3. The second column of this table is taken from the 1964 Atomic Mass Table
(Mattauch, Thiele, and Wapstra 1965). Apart from *?Fe and “Ca, “He is stable up to

3 This procedure has been suggested to us by W, B, Hubbard,
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TABLE 2

COMPARISON OF THE CONDUCTIVE OPACITIES KHH AND K,°

FOR DIFFERENT VALUES OF Z AND T AT ps=1

‘Log KHH

-0.33985E
-0.42985E
-0.47485E
-0.51985E
-0.56185E
-0.57985E

-0.17215E
-0.26364E
-0.30864E
-0.35364E
-0.39414E
-0.41364E

-0.12969E
-0.21964E
-0.26464E
-0.30964E
-0.35014E
-0.36964E

-0.67325E
-0.15854E
-0.20353E
-0.24853E
-0.28903E
-0.30853E

-0.44389E
-0.13385E
-0.17884E
-0.22534E
-0.26584E
-0.28384E

-0.82401E
-0.80921E
-0.12586E
-0.17085E
-0.21135E
-0.23085E

0.43709E
-0.41174E
-0.85992E
-0.13096E
-0.17145E
-0.19095E

LogK:

-0.24624E
-0.47104E
-0.53564E

- =0.60644E

-0.65664E
~0.68044E

-0.11213E
-0.24333E
-0.30623E
-0.37123E
-0.42423E
-0.45103E

-0.56338E
-0.18464E
-0.24734E
-0.31154E
-0.36494E
-0.39164E

-0.25471E
-0.10363E
-0.16603E
-0.22923E
~-0.28283E

0.30933E

0.55666E
-0.71134E
-0.13333E
-0.19823E
-0.25183E
-0.27643E

0.12636E
-0.16441E
-0.63644E
-0.12594E
-0.17984E
-0.20634E

0.17785E
0.50450E
-0.11350E
-0.73450E
-0.12745E
-0.15385E

1

KHH/KS

0.91194
2.58206
4.05478
7.34458
8.87088
0.13833

0.25107
0.62656
0.94616
1.49957
1.99971
2.36574

0.18469
0.44663
0.67137
1.04464
1.40594
1.65946

0.11804
0.28241
0.42165

0.64116

0.86690
1.01851

0.09987
0.23593
0.35070
0.53575
0.72438
0.84327

0.06589
0.16115
0.23869
0.35559
0.48413
0.56881

0.04556
0.12127
0.17930
0.26601
0.36304
0.42556
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10" g cm™3, 2C and '*O up to 10° g cm~%, and #Mg and 2Si up to 10® g cm™3. In the
case ¢ = 1, equation (48) would not depend on this process because the variable Z/4
enters only in ps, (eq. [26]), and Table 1 depends only on pe. The ratio 4:Z/A enters
in the definition of £ (eq. [50]). The ion effect as seen from Table 1 increases with T';
therefore, in each table the values for T' =< 75-100 could be affected by the process of
inverse B-decay more than the values for lower T'.

VI. THE CLASSICAL LIMITS

In this section we will show that in the limit 7,2 — 0, ¢ — 1, the formula for the
conductivity reduces to the one obtained by simple classical nonrelativistic arguments
based on Drude theory (Jackson 1962, p. 459). We first consider that the Fermi-Dirac
distribution has to be changed into the Boltzmann distribution

fro = g[1 + Z7' exp (E/kT)]' — Z exp (—E/kT) (60)
where (Huang 1963)
Z = n.2nh/m)*(m/2nwkT)%? . (61)

TABLE 3

ENERGIES AND MATTER DENSITIES
OF VARIOUS NUCLEI

Nucleus Ez(MeV) pe Erp(MeV)
) @ @ @

He....... +25.8 1 0.207
2C. 1134
6o +10.4 102 1.87
uMg. . + 5.51 108 4.52
mgi + 4.6 104 8.623
wCa L + 1.31 108 22.68
®Fe. . .. ...... — 237 108 50

We therefore have
frpo — n(2nhi/m)¥fs, fo = (m/2wkT)*? exp — (mv*/2kT) . (62)

The nonrelativistic limit of equation (43) gives
oxm = — (4,r/3)ezf,-m—i(z,rxc)—sfdppsFNRﬂ(e)(afB/ap> . (63)
The nonrelativistic limit of F (¢), equation (34), in the limits ¢ — 1, r¢2— 0, is simply
Fxr(e) = 257 0f1r(1 — cos 6)' sin 66 = 2p* In A, (64)
where the lower limit has been changed to 6, to avoid divergences. We therefore have
oxm = — (4n/3)@rm-1(2rK)-3c=5(2 In A)~! Ofvs(afB/av)dv. (65)

The integration can be first performed by parts, giving
—6 f/fpdy, (66)
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which finally can be evaluated by remembering the general formula (Landau and Lif-
shitz 1958)

o]

(o) S e (- ) o = oy (Bt + 91 (o)

We have
onr = (Ar/3)erim™1(2wX.) 3¢~ %(2 In A)"6m,(2nh/ m)*n=32(2kT/m)%? . (68)

Substituting the values of 7, given in equation (36), we finally obtain

onr = 4(2/7)2nn; 27 (kT / mc2)32(aZ) Y (mc?/h)(In A)™L. (69)
In the case of complete ionization, we have from equations (22) and (24)
ne = (p/mu)(Z/A), n;= (p/ma)d™t, nmnZ1=1, (70)
and we finally obtain
onr = 4(2/7)*2(RT/mc*)**(aZ) " (mc*/h)(In A)71, (71)

which coincides with the expression obtained from classical electrodynamics (Jackson
1962, p. 461).
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