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ABSTRACT

Solutions are obtained for the problem of multiple scattering by a plane parallel atmosphere with aniso-
tropic phase functions typical of cloud and haze particles. The resulting albedos, angular distributions of
intensities, and planetary magnitudes are compared to solutions obtained with approximate analytic phase
functions and, in the case of the cloud phase function, to the solution obtained with the forward diffraction
peak omitted from the phase function.

It is shown that the cloud phase function with the truncated peak yields results practically identical to
those obtained with the complete cloud phase function, not only for albedos and magnitudes, but also for
the angular distribution; the approximation introduces errors of several per cent in the angular distribution
for direct backscattering (the region of the glory), for emergent angles near grazing regardless of the incident
angle, and, of course, a larger error occurs for total scattering angles near 0°. However, the errors are unim-
portant for many applications, and hence a large reduction in computer time is possible. This is particularly
useful, for example, in making practical the computations needed for interpreting the phase curve, limb
darkening and spectral reflectivity of Venus.

It is shown that the Henyey-Greenstein phase function, based on the asymmetry factor (cos8), yields
spherical and plane albedos and planetary magnitudes (for optically thick atmospheres) close to those
obtained with the cloud and haze phase functions. The Kagiwada-Kalaba phase function, based on the
ratio of forward to backward scattering, gives significantly less satisfactory results for the same quantities.
Neither of the two analytic phase functions can accurately duplicate the true angular distribution of scat-
tering by thin clouds; however, the results are better with thick layers, especially for hazes. The results
indicate that the Henyey-Greenstein phase function may be useful for problems such as line formation in
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planetary atmospheres.

1. Introduction

The scattering of light in planetary atmospheres is in
most cases characterized by a significantly anisotropic
phase function (scattering diagram) since the presence
of even a small number of haze or cloud particles results
in a forward elongation in the single scattering. As a
consequence of this anisotropy it is usually necessary to
employ numerical methods to solve problems of diffuse
reflection (multiple scattering); however, serious diffi-
culties occur in the numerical approach if the phase
function contains a narrow diffraction spike or if solu-
tions are required at hundreds of wavelengths, as in the
case of line formation. Hence, it is of interest to examine
whether approximate phase functions can yield sub-
stantially the same multiple scattering results as the
exact phase functions.

In the scattering of light by clouds, if the cloud par-
ticles are significantly larger than the wavelength then
Fraunhofer diffraction around the particles gives rise to
a sharp forward peak in the phase function. It has some-
times been assumed, without numerical verification,
that radiation scattered into the narrow diffraction spike
may be treated as being unscattered, i.e., the spike may
be truncated from the phase function and the inter-

action optical thickness of the cloud reduced correspond-
ingly. That assumption greatly reduces the computa-
tional difficulties and it is thus of interest to determine
the angles, if any, for which the approximation is
accurate. [Potter (1969) is also making computations
to test the truncated peak approximation and we are
indebted to him for a preprint of his results. Potter in-
cludes graphs of the transmission function and makes
computations only for the azimuth independent case,
but where comparable our results are in substantial
agreement. ]

In other scattering problems it is sometimes known
that the phase function is anisotropic but its exact
shape, which depends on the particle concentration,
shape, size distribution, refractive index and absorb-
tivity, is unknown. In such cases it may be advan-
tageous to employ a family of analytic phase functions
which are a function of a single parameter, representing
the degree of anisotropy of the phase function. It is not
expected that such analytic phase functions could
accurately match the multiple scattering results if the
phase functions to be matched were of any imaginable
shape; however, the scattering by cloud and haze par-
ticles (both of which we assume to be water) has a
certain regularity, the degree of forward scattering
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F16. 1. Phase functions for scattering by cloud particles (left) and haze particles (right).
The exact phase functions are from Mie theory for spherical water particles; the Henyey-
Greenstein functions are from (3) with g=0.844 (left) and 0.794 (right); the Kagiwada-Kalaba
functions are from (4) and (5) with =1.00105 (left) and 1.00819 (right).

generally increasing with increasing particle size, and
hence it is conceivable that a well chosen analytic phase
function may be useful. Moreover, in many applications
an integrated intensity, such as the spherical albedo,
plane albedo, or planetary magnitude at a given phase
angle, is desired. In these cases the effect of secondary
features in the phase function (such as the glory or
cloudbow) should be at least partially averaged out,
thus increasing the possibility that the use of a smooth
analytic phase function may yield adequate results.

It is the purpose of this paper to determine the accu-
racy of the multiple scattering solutions obtained by
omitting the diffraction peak from cloud phase func-
tions; a second purpose is to compare exact multiple
scattering solutions for phase functions typical of both
clouds and hazes to solutions obtained with analytic
phase functions—in particular, the functions proposed
by Henyey and Greenstein (1941) and by Kagiwada
and Kalaba (1967). For all the phase functions the
calculations are made for both optically thin and
optically thick atmospheres.

Irvine (1968) has previously made exact computa-
tions for an azimuthally symmetric radiation field and
compared them to intensities computed with the small
angle method of Romanova and to fluxes computed
with the Eddington and two-stream approximations.
Irvine found the small angle method to be accurate but
the approximations for the flux resulted in serious errors
in some cases.

2. Phase functiohs

The phase function which we have taken as being
typical of clouds is shown in Fig. 1. This was kindly

computed by H. Cheyney from Mie scattering theory
for the “cloud model” size distribution (Deirmendjian,
1964) of spherical water droplets; this size distribution
has its maximum at the particle diameter d=8u and
it has a mean extinction diameter ~10u. Here, as
elsewhere in this paper, polarization is neglected, i.e.,
the theoretical phase function is obtained as the average
over the two perpendicular polarizations. The com-
putations were for the wavelength A=81894, but,
since the absorbtivity of water is negligible in the range
3000 ASA59000 A and the real refractive index is only
mildly wavelength dependent, the results are approxi-
mately valid for other wavelengths in that range with
the particle sizes modified such that the size parameter
x=md/\ is the same as indicated above.

The asymmetry parameter {cos6), which is defined
as the weighted mean over the sphere of the cosine of
the scattering angle with the phase function P(cosf) as
the weighting function, i.e.,

{cosf)=% / P(cosh) cosfd(cosb), 1)
-1 . L

has the value 0.844 for the cloud phase function in
Fig. 1. The asymptotic value as x— ® is ~0.87 using
1.33 for the real refractive index (van de Hulst, 1957,
p- 226). The significance of the asymmetry parameter,
which will be employed in our approximate calculations,
has been discussed by van de Hulst (1957) and by
Irvine (1963, 1965a) who computes that quantity for
single particles for various refractive indices and particle
size parameters.

The phase function for haze particles, also shown in
Fig. 1, was computed by Deirmendjian (1964) at
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A= 7000 A for his haze model M, which has its maximum
concentration at diameter 0.1u. It is typical of haze
particles for visual wavelengths; there is no sharp
diffraction peak since the particle diameters are less
than the wavelength and the back peak is less pro-

nounced than for cloud particles. For this phase

function {cos#)=10.794.

The first approximate phase function employed in
our multiple scattering computations was that obtained
by truncating the forward diffraction peak; the trun-
cated phase function was obtained by taking the slope
of the logarithm of the phase function as being con-
stant for 8< 20°, with the slope equal to that of the un-
truncated phase function at 20° (Fig. 1). For the
particular cloud phase function in Fig. 1 the fraction of
light contained in the forward peak,

PP 2
f~fh/(— );, 2

is 0.434, where P and P’ are the cloud and truncated
cloud phase functions, respectively; hence, computa-
tions with P for an optical thickness = should be com-
pared to computations with P’ for a thickness 0.5667.
(For nonconservative scattering wo as well as 7 must be
scaled; see, for example, Potter, 1969).

The analytic phase function which has been used most
extensively in the literature was introduced by Henyey
and Greenstein (1941); it is defined by

1—g°

—— 3
(1+4g%—2g cost)} @)

P(cosh)=
The merits of this phase function have been discussed
by van de Hulst and Irvine (1963) and van de Hulst
and Grossman (1968). For the Henyey-Greenstein func-
tion, (cos8)=g, and this parameter may vary from 0 for
isotropic scattering to 1 for an infinitely narrow forward
beam. [Values of g in the range (—1,0) could be used
to represent predominately backward scattering or a
combination of two Henyey-Greenstein phase func-
tions, one with positive g and one with negative, could
be used to simulate atmospheric phase functions (Irvine,
1965b), but the latter case would require the use of
three parameters.] To correspond to the cloud and haze
phase functions the values g=0.844 and g=0.794,
respectively, were used in (3); the resulting Henyey-
Greenstein phase functions are shown in Fig. 1.
Kagiwada and Kalaba (1967) have recently intro-
duced a rational phase function defined by

k

7 P(cost)= , @
c - b—cosb

where
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The Kagiwada-Kalaba phase function hence depends
on the single parameter b and if this function is to be
used to simulate scattering by atmospheric particles
some procedure must be established to determine the
value of b for a given atmospheric phase function. It is
not practical to require either {cos) or the fraction of
light scattered into the forward hemisphere (which is
typically 20.95 for cloud particles) to be the same for
the Kagiwada-Kalaba phase function as for the atmo-
spheric phase functions because for clouds as many as
10%-10* terms would be required in the cosine expansion
of the resulting Kagiwada-Kalaba function. However,
it is possible to use a different parameter discussed by
Kagiwada and Kalaba, the ratio of forward to backward
scattering, P(cos0°)/P(cos180°)=7, in terms of which b
is given by
r+1
b=—-. (6)
r—1

For the cloud phase function r~1900 and hence
b~1.00105, while for the haze phase function r~245
and 6~1.00819; the corresponding Kagiwada-Kalaba
phase functions are shown in Fig. 1.

Other simple analytic phase functions such as P=1
(isotropic), P=%(14+cos?6) (Rayleigh phase function)
and P = 1-+a cosf have been employed in the literature;
these, however, cannot be used to simulate the aniso-
tropic scattering of clouds or hazes.

3. Computational procedure

The computing method has been described in detail
elsewhere (Hansen, 1969). It is based on a doubling
principle first stated by van de Hulst (1963); using that
principle the scattering and transmission functions for
an atmosphere of optical thickness 27 can be obtained
from the same functions for an atmosphere of thickness
7. In the procedure employed here the doubling principle
is applied repeatedly after beginning with a layer of such
small thickness (7o=27?%) that multiple scattering is
negligible; in that case the initial scattering and trans-
mission functions are given by analytic expressions
proportional to the phase function. The phase functions
and the scattering and transmission functions were ex-
panded in cosine series with from as few as 40 terms (for
the Henyey-Greenstein phase function with g=0.794)
to as many as 180 terms (for the cloud phase function).
The number of terms employed and the number of
intervals used in the Gauss integrations were varied
with the results suggesting that the errors do not
exceed ~0.19,.

Computations were made of the spherical albedo as
a function of optical thickness. The spherical albedo,
which is the ratio of the total radiation reflected from a
spherical atmosphere to the total radiation incident
from a distant source, is given in terms of the scattering
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Fic. 2. Spherical albedo of a plane parallel layer with conservative scattering for the phase
functions of Fig, 1. The albedos for the cloud and truncated cloud phase functions (left) are
indistinguishable, as are the albedos for the haze phase function and the corresponding Henyey-
Greenstein function (right). With the truncated peak phase function the optical thickness

was reduced by the factor 1 —f=0.566 [see (2)] in the calculations for Figs. 2-9.

function of Chandrasekhar (1950) by
1 1
A=/~/5WﬂWWW@m )
0 ]

where S%(7;u,u0) is the first (azimuth independent)
term in the cosine expansion of the complete scattering
function S(7; u,; kobo).

The plane albedo, which is the ratio of the radiation
reflected from a plane parallel atmosphere to the inci-
dent radiation, was also computed; this quantity is a
function of the angle of incidence 6y=cos™'u (measured
from the surface normal) and is given in terms of the
scattering function by

1 1
o)== [ s i ®)

2u0 Jo
The angular distribution of the scattered light is
given in our graphs by the reflection function defined as

S(T; ”7¢; M03¢0)
4u '

R(T; }L,¢; ”0)¢0) = (9)

This Is a convenient quantity to employ since for a
Lambert reflector it would be represented by a hori-
zontal line when plotted against either 8 or ¢—d¢o.

In observations of planets the planetary disk is often
not resolved; hence, the quantity of interest in the
magnitude of the planet as a function of the phase
angle o, the latter being the angle at the planet between

the directions of the earth and sun (divided by 180°, it
gives the fraction of the hemisphere turned toward the
earth that is in darkness). The magnitude is given by
(Horak, 1950)

m(a)=C—2.5 loge //S(T; y.,q&; wo,do)da, (10)

where the integration is over the visible hemisphere and
C is a constant.

4. Computational results

A comparison of the multiple scattering results for
the cloud and truncated cloud phase functions will be
presented first. The spherical albedos, shown in Fig. 2,
are indistinguishable for those two phase functions on
the scale of that diagram. The percentage error intro-
duced by truncating the phase function is greatest for
very thin layers since in that case single scattering
dominates and hence grazing incident and emergent
angles contribute a non-negligible amount to the albedo.
At 7=0.125 the error is ~1.09%, but for r=1 it is
~0.39%,; for thicker layers it is still less.

The local albedos for the same phase functions are
compared in Fig. 3. Although differences of several
per cent occur for near grazing incident angles (u0<0.1),
the results are practically indistinguishable for other
angles at all optical thicknesses.

Perhaps the most striking result of the computations
is the very close agreement of the angular distributions
of the diffusely reflected light for the cloud and trun-
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F16. 3. The albedo of a plane parallel layer as a function of direction for
conservative scattering for the phase functions of Fig. 1.

cated cloud phase functions. Examples of the reflectivi-
ties at representative incident and emergent angles are
shown in Figs. 4+8. For most angles the reflectivities for
the two phase functions differ by an amount too small
(<1.09%) to be visible in the graphs. As expected, the
results begin to deviate for small scattering angles, as
shown, for example, in Fig. 6 with 6,=385° and 6~90°

and in Fig. 8 with 6=6,=85° and ¢—¢o~0°. The dif-
ferences, however, are not very large for total scattering
angles

0= ppot (1—p2)(1—ue?)? cos(p—o)

larger than 10°; i.e.; multiple scattering does not cause
the effect of the forward peak to spread out very much.
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: - Fi1c. 4. Reflectivity of a plane parallel layer with conservative scattering for the phase
_functions of Fig. 1 with 6,=0°. Because of the normal incidence the reflectivity applies for
" all ¢—¢o. For most angles the reflectivities with the cloud and truncated cloud phase functions

are indistinguishable.
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I'16. 5. Same as Fig. 4 except that 6o=60 and ¢—¢o=0°.

A second effect of truncating the forward peak, in-
terestingly enough, is to introduce a noticeable error
(several per cent at most) for direct backscattering. This
is illustrated for 6o=0° and 6~0° in Fig. 4; the reflec-
tivity for the truncated phase function exceeds that for
the true phase function for angles close to direct back-
scattering. The effect arises from multiply scattered
photons whose first scattering, and all subsequent
scatterings except the last, are at total scattering angles
~0°% and whose last scattering is at a total scattering

angle ~180°. The number of such photons is significant
because of the strong forward spike and the back peak
(glory) in the phase function. The truncated peak
approximation, in effect, replaces photons scattered
through a few degrees by photons scattered through 0°;
hence, with the true phase function, the back peak in
the reflectivity is reduced or spread out more by multiple
scattering than it is with the truncated phase function.
For the same reason the reflectivity with the true phase
function slightly exceeds that with the truncated phase
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Fi1G. 6. Same as Fig. 4 except that 6,=85° and ¢ —po=0°.
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Fic. 7. Reflectivity of a plane parallel layer for conservative scattering
for the phase functions of Fig. 1 with §o=60=60° (from the normal).

function for scattering angles several degrees from direct
backscattering. These effects are also visible in Figs. 7
and 8 for ¢—¢o~180°.

Still a third noticeable error is introduced by the
truncating of the forward spike, again several per cent
at most. This occurs for grazing viewing angles 6~90°
(Figs. 4 and 5); it exists regardless of the incident angle,
although in Fig. 6 it is not visible since it occurs at the
same angle as the first error discussed above. An ex-

planation for the third error is as follows: At a small
distance below the top of the atmosphere the diffuse
radiation field has some angular distribution, generally
anisotropic; photons moving upward, but in a direction
nearly parallel to the upper surface, have a greater
probability of being scattered (and changing their
direction) before emerging than do photons moving
more perpendicular to the surface. Hence, a relative
limb darkening occurs in the emerging diffuse radiation,
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Fic. 8. Same as Fig. 7 except that 6=00=85°. For 7=1 and ¢—~¢0>175° the reflectivity
for the truncated cloud phase function slightly exceeds that for the cloud phase function, but
only the latter is shown due to the crowding of lines at those angles.
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F1e. 9. Planetary magnitude as a function of phase angle (earth-planet-sun angle) for a
plane parallel atmosphere with conservative scattering for the phase functions of Fig. 1. The
vertical scale applies to the planet Venus; for other planets an appropriate constant must be
added. Ground reflection from the planet is neglected.

and the more anisotropic the phase function, the greater
is the limb darkening. Therefore, since truncating the
peak decreases the scattering anisotropy, the limb
darkening is reduced for the truncated phase function.
Since the scattering function is symmetric in 6 and 6o,
the same error should occur for grazing incident angles;
this is verified by the computations. For angles other
than those discussed in the above three paragraphs the
crror introduced by truncating the peak is < 1.0%.
The results for the pla.netary magnitude as a function
of phase angle are shown in Fig. 9; these indicate that
truncating the phase function does not introduce a
significant error for phase angles <170°. The angular
width of the region in which a significant error occurs is
not much larger than the width of the spike in the phase
function, because single scattering dominates for large
phase angles. Calculations were also made with particles
half aslarge (diameters ~4u) as those used for the
illustrated phase function; for the smaller particles the
truncated peak approximation was good for phase
angles <160°% For still smaller particles the peak is
broad enough that there is no need for it to be truncated.
Thé results of the computations with the analytic
phase functions are also compared in Figs. 2-9 to the
computations with the exact cloud and haze phase
functions: For both the spherical and plane albedos the
Henyey-Greenstein phase function, based on the
asymmetry factor (cosf), very accurately duplicates
the albedos of both the cloud and haze; however, the
Kagiwada-Kalaba phase function, based on the ratio of
forward to backward scattering, consistently gives

albedos that are too large. There are significant errors
with the Henyey-Greenstein phase function only for
thin layers (r<1), or, in the case of the local albedo,
for incident angles near grazing.

The reflectivities shown in Figs. 4-8 indicate that in
general neither of the analytic phase functions can
accurately duplicate the angular distribution of scat-
tering by hazes and clouds. However, as would be ex-
pected, the results are significantly better for the haze
than for the cloud and they are much better for thick
layers than for thin ones. Also, in most cases the
Henyey-Greenstein phase function yields reflectivities
closer to those of the cloud or haze than does the
Kagiwada-Kalaba phase function. For thick atmo-
spheres it appears that it would be difficult to distinguish
experimentally between the Henyey-Greenstein and
cloud phase functions or the Henyey-Greenstein and
haze phase functions.

The planetary magnitudes are compared in Fig. 9
which shows clearly that both analytic phase functions
lead to poor approximations for thin layers; however,
for thick layers the analytic functions provide results
which may be sufficiently accurate for some problems.

For scattering by clouds, the truncated peak and
analytic phase function approximations may be com-
bined, as suggested by van de Hulst and Irvine (1963);
i.e., the light scattered into the forward peak may be
treated as unscattered and an analytic function fit to
the phase function without the peak. This approach
was applied to the cloud with both the Henyey-
Greenstein and Kagiwada-Kalaba functions, but the
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results (not illustrated) did not represent a significant
improvement over those obtained by using the analytic
phase functions alone.

5. Discussion

The computations presented indicate that if the
phase function for scattering by cloud particles is
known, then without great computational difficulty it
is possible to accurately obtain the angular distribution
of scattering by clouds even if there is a strong forward
diffraction peak; the error introduced by truncating the
forward peak of the phase function is unimportant for

most applications (excepting, of course, cases in which -

the diffraction peak itself is examined, e.g., the study of
the aureole in diffuse transmission.) The small error in
the reflectivity for viewing or incident angles near
grazing (6~90°) would be very difficult to observe; the
error for direct backscattering, which would occur only
for phase functions with both.a forward spike and back
peak (glory), is also a minor effect. A similarly small
error would occur for any phase function having a sharp
feature in addition to a forward spike; truncating the
diffraction peak would cause the corresponding feature
in the reflectivity to be sharper than it would be for the
true phase function. The largest error caused by trun-
cating the forward spike is that which occurs for total
scattering angles near 0°; however, the calculations
indicate that the region with significant error is not
much wider than the peak itself, a result of the fact that
single scattering dominates at grazing angles.

 An important application of the truncated peak
approximation is to planetary magnitudes. For a
particle size distribution with a mean extinction
diameter ~10u (for A~8000 A ; hence, for size param-
eters x~40), the truncated peak approximation is good
for phase angles a<<170°. As indicated by Arking and
Potter (1968), though, it would be difficult to obtain
observational data for phase angles >170° and the
plane parallel atmosphere approximation moreover
would become invalid. Therefore, since the truncated
peak approximation would be still better for larger
particles, it should be very useful for x>40. For size
parameters 20<x<40 more care must be exercised
since there is still a peak in the phase function and
truncation may cause large errors for phase angles
>160°. For still smaller size parameters the peak is
sufficiently broad that the complete phase function
may be used without difficulty.

The Henyey-Greenstein phase function, based on the
asymmetry factor (cosf), accurately simulates the
albedos, spherical and plane, of both the cloud and haze;
the Kagiwada-Kalaba phase function, at least if it is
based on the ratio of forward to backward scattering,
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is less accurate for the same purpose. This suggests in
the case of conservative scattering, for a given 7, that
(cosf) essentially determines the albedos. Some support
for that suggestion follows from calculations we have
made (not illustrated here) for several different phase
functions having the same value of {cosf); the spherical
albedos generally agreed within a few per cent and the
correspondence improved with increasing optical thick-
ness. Also, Kagiwada et al. (1968) showed that the fluxes
are nearly equal with isotropic and Rayleigh scattering;
both of those phase functions have (cos#)=0. The im-
portance of (cosf) is apparently due to the fact that
both the spherical and plane albedos involve the inte-
gral over cosf of the product of the intensity and cos8,
and in the definition (3) of {(cos#), P is proportional to
the intensity of singly scattered radiation. The im-
portance of {cosf) in determining the spherical albedo
was recognized by Sagan and Pollack (1967) and in-
corporated in their two-stream approximation for the
flux.

The analytic phase functions cannot, in general,
accurately simulate the angular distribution of scatter-
ing by haze or clouds. However, for thick atmospheres
the Henyey-Greenstein phase function is sufficiently
accurate for many purposes; for example, it could be
used, as suggested by van de Hulst and Grossman
(1968), to test the effect of anisotropic scattering in the
problem of line formation in planetary ‘atmospheres.
The analytic phase functions cannot, of course, be used
in problems in which the effects of specific features in
the phase function (such as the cloudbow or glory) are
searched for; this is the case, for example, with the
photometric magnitude of Venus as a function of phase
angle (Arking and Potter, 1968).

Our calculations were made only for conservative
scattering but this is the relevant case for scattering by
clouds and haze in the visual range; moreover, it is clear
that the truncated peak approximation would be at
least as accurate in the nonconservative case (Potter,
1969). But, since the analytic phase functions provide
their poorest results for single scattering,. the multiple
scattering solutions obtained with those functions would
become less accurate if the single partlcle albedo were
decreased. : :
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