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ABSTRACT

Terms in the thermal conduction equation arising from infrared emissions and absorptions by atomic
oxygen and carbon monoxide are investigated. The purpose of the investigation is to develop general ex-
pressions for the net emission by O and CO taking into account absorption of planetary radiation from below
as well as radiation from regions of the mesosphere and thermosphere. These expressions are valid at all
optical depths in the thermosphere. An expression for the net emission from a molecular band is also given.

The radiative terms are developed under the assumption of local thermodynamic equilibrium. The expres-
sions developed for the radiative terms permit the evaluation of net heating as well as cooling in the O and
CO emission lines.

The results are compared to the Bates’ approximation to the radiative loss terms for a partly dissociated
CO. atmosphere which is optically thick in both O and CO. For this model it is found that, at high altitudes
where the atmosphere is optically thin in O and CO, the net emission differs from the Bates’ approximation
by about 15% due to the effect of absorption. Near unit optical depth the net emission differs by more than
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an order of magnitude from the Bates’ terms.

1. Introduction

An important aspect of the theoretical computation
of the thermospheric temperature profile is the effect
of radiative cooling in the infrared by constituents pres-
ent in the thermosphere. The most important radiators
in the atmospheres of the terrestrial planets are COg, CO
and O. Radiative losses from CO; will generally occur
near the bottom of the thermosphere below the altitude
of solar ultraviolet heating, whereas CO and O may ra-
diate effectively at higher altitudes, depending, of
course, on the amount of these constituents present.

The usual practice in studying the effect of these last
two constituents in cooling a thermosphere has been to
utilize an approximation introduced by Bates (1951).
This approximation takes unit optical depth in a con-
stituent as a dividing line above which every emitted
photon escapes the thermosphere and is thus effective in
cooling, and below which every emitted photon is reab-
sorbed locally and is thus ineffective in cooling. Such an
approximation distorts the functional form of the loss
terms in the thermal conduction equation with conse-
quent error in the computed temperature profile. The
magnitude of this error is, however, difficult to estimate
qualitatively. In addition, the Bates’ approximation
neglects the possibility of heating in the radiatively
active constituents. This heating can occur if the effec-
tive temperature of the planet is roughly twice the local
temperature at the altitude where O and CO will be
formed via photodissociation of CO; and Os,.

Published models of the Martian atmosphere indicate
temperatures from about 130K (McElroy, 1967) to as

low as 60K (Fjeldbo ef al., 1966) in the altitude region
where photodissociation would occur. Since the plane-
tary effective temperature is 230K, it is necessary to
consider the effect of heating of the radiative constitu-
ents (CO and O) by absorption of radiation from below.

The object of this paper is to develop expressions for
radiative losses by O and CO which take account of
infrared absorption. The use of such expressions in
thermospheric energy balance studies should improve
the accuracy of thermal structure calculations for
optically thick thermospheres or models having a run
of temperatures in the lower thermosphere which are
less than the planetary effective temperature.

2. The thermal conduction equation

The most important processes determining the ther-
mospheric temperature are the deposition of solar ultra-
violet energy and the loss of this energy via thermal con-
duction and infrared radiation. These processes are de-
scribed by the thermal conduction equation which we
will write in the one-dimensional, time-independent form

d((T>dT)+2h L F)——0@, )
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where «(T) is the thermal conductivity, and Q(2) the
ultraviolet heat source. The net emission of radiation
in a specified transition is given by the divergence of the
photon flux multiplied by the energy of the transition
hv. The summation in (1) is taken over the passible
radiative transitions. The factor 7 in the emission term
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arises from the definition of the flux as (Chandrasekhar,
1960)

7TFII= /Ir“dﬂ) (2)

where I is the photon intensity, u the cosine of the polar
angle, and dQ an element of solid angle. The integral on
the right-hand side of (2) gives the number of photons
cm~2 sec™! crossing an area in the radiation beam, and
it is the divergence of this quantity which is of interest.

3. Derivation of the radiative terms

The divergence of the radiative flux may be obtained
in a straightforward way from radiative transfer con-
siderations once the appropriate transfer equation has
been found. To derive this equation we consider a sys-
tem consisting of two energy levels and assume that the
spectral line arising from transitions between these levels
is Doppler broadened. Such a system is appropriate to
both the ground state triplet of atomic oxygen and to
the rotational states of carbon monoxide. There are ac-
tually two possible transitions within the oxygen trip-
let, but the O(GP,)—O(P,) will be much more impor-
tant than O(3Po) — O(®P;), since its Einstein coefficient
for spontaneous emission is about 5 times greater, the
statistical weights of 3P, and 3P; are 1 and 3, respec-
tively, and the population of the higher-energy 3P, state
will be smaller than that of 8P,. There are a number of
excited rotational levels for the CO molecule, but only
the dipole transitions between adjacent states will be of
importance; hence, the summation indicated in (1) may
be taken over the rotational states once the flux diver-
gence arising from transitions between adjacent states
has been found. The radiative emission under discus-
sion occurs in planetary thermospheres under conditions
of very low pressure and the spectral lines are Doppler
broadened. In what follows we denote the upper level
of the two-level system by a subscript 2 and the lower
level by a subscript 1.

We denote the number density of molecules in the
upper state which emit a photon in a frequency interval
dv within the line profile by #.(v) and the number
density of molecules in the lower state which absorb
photons in this frequency interval by #:(»). Using
Milne’s (1924) definition of the Einstein coefficients, we
may equate the increase in the number of photons added
to the radiation field to the decrease in the number
density of the upper state molecules, i.e.,

d o0
/ dQ— / Idy
ds 0
- / [ne(v) Ak (v) Barpy— s () Bup, Jdv,  (3)
0

where dQ is the element of solid angle, ds an element of
path length in the medium, 7, the photon intensity of the
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radiation field, 42; and Bs; the Einstein coefficients for
spontaneous and induced emission, Bj, the Einstein
absorption coefficient, and p, the radiation density. The
integrals of #1(v) and n.(v) over all frequencies are the
total number densities #; and #%.. ’

We will assume that the radiation density traversing
the medium is a broad function of frequency relative to
the local line width. This is certainly a good assumption
for the planetary radiation. It is also a reasonable
assumption for the ambient radiation field in the meso-
sphere and lower thermosphere where the temperatures
are relatively low and the Doppler line widths corre-
spondingly narrow. We will also assume local thermo-
dynamic equilibrium (LTE); the energy levels are
therefore populated according to the Boltzmann
distribution.

These assumptions enable us to reduce (3) to the
standard form for the first moment of the radiative
transfer equation, i.e.,

1dF i
- = —aDnI—l-eDn, (4)
4 dz

where F and I are the frequency-integrated flux and
mean intensity, and # is the total number density of the
radiating constituent. The quantities op and ep are
given by

1 gda 1(6)2
op= —{ -
8n32 Z(T) ap\»
xea = meol=5)) ©
expl —— )| 1—expl —— ] |,
P kT P kT

1 ng 21 €2
€Ep="" exp(——), (6)
4w Z(T) kT

where ap is the Doppler width of the line given by
(v/c)(2kT/m)3, Z(T) the partition function for the
system under consideration, g, the statistical weight of
the upper state, and e the energy difference e;—e; be-
tween the states.

The quantity op is the Doppler absorption cross
section in the center of the line. It is closely related to
the absorption coefficient derived by Mitchell and
Zemansky (1961). Aside from notation the differences
between (5) and Eq. (35) of Mitchell and Zemansky are
the exponential factors. The first of these in (5) results
from relating the number density of the absorbing state.
to the total number density. The second represents the
effect of stimulated emission on the excited state popula-
tion which was assumed to be negligible in Mitchell and
Zemansky.

The quantity ep is the emission coefficient. We note
that ep/op is the integral of the Planck function over the
line as it must be since we assume LTE. The frequency
is the frequency at the center of the line.
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The solution of the radiative transfer equation for I
is discussed in standard works such as Chandrasekhar
(1960) or Kourganoff (1963). Thus,

. "
I(1)=3TEa(ro—r)+1 / TOE(—r)d, (7)
’i 0
v{vhere 7 is the optical depth in the center of the line de-
fined by

i dr=—nopdz, 8)

E,; and E, are special cases of the integro-exponential
function defined by

® di
Ea(e)= / e ©

7o is the total optical thickness of the atmosphere in the
spectral line under consideration and I, represents the
flux incident from below, i.e., from the planetary spec-
trum. J(!) appearing under the integral in (7) is the
source function, which is the Planck function under the
LTE assumption. It is worth noting that in the ther-
mosphere, conditions depart radically from radiative
equilibrium, and we cannot assume I= ep/op, which
would make the flux divergence zero.

The energy from the planetary spectrum which inter-
acts locally is that contained in a Doppler width of the
spectral line. The mean intensity I, is thus

f0=£_/ B,(Tg) exp[— (v—»0)*/ap®(T)Jdv, (10)
TJ o

where B,(Tg) is the Planck distribution characteristic
of the planet, T'g being the planetary effective tempera-
ture. If we take B, as approximately constant over the
Doppler width of the line, then

IeB,(T)an(T), (11)
Aot

where T is the local temperature at the altitude where
I(7) is being evaluated. The emission represented by
the source function in the mtegrand of (7) has a form
similar to I, except that T'g is replaced by T'(¢), the local
temperature at the emitting altitude.

‘We may now evaluate the flux divergence for the 62 u
hne of O and the CO rotational lines. Substltutmg the
expresswn for I(r) of (7) into (4), using (11) for I,
and a similar expression for B(f), and evaluating op of
(5) for the ground state triplet of atomic oxygen, we
find the divergence of the energy flux to be

! F
— ()

= —Rox(z,T)[1—Alox(Te,T)—A%x(T)]. (12)
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The coefficient of the term in brackets is

36-—-228/T

Rox(z,T)=A21hVnox(2)< ), (13)
54 3¢—228I T g—326/T

which is just the radiative loss term given by the Bates’
approximation. The terms 42ox (Tg,T) and 4%x(T) are

1/ e228/T—1
Aox(TsT) =—(—-——
2\e228/TE 1

1 70 228/7’(5)_1
Aox(T)= —/ (e_—"——)El( |t—7(2)|)dt. (15)

2 28T 1

)Ez(To— 7), (14)

These absorption terms will be discussed after an ex-
pression similar to (12) is obtained for the CO rotational
lines.

For the CO lines we are interested in the divergence of
the sum of the fluxes arising from all transitions between
adjacent rotational states J — J—1, where J is the ro-
tational angular momentum quantum number of the
upper state. The Einstein coefficient for spontaneous
emission between these states is (based on a rigid-ro-
tator model)

A, J_l_—<41r3)3d2<-—]—4—) (16)

2J+1

where d is the electric dipole moment for CO, and B the
rotational constant given by B=#/(4ncI), where I is
the moment of inertia of the molecule and ¢ the velocity
of light, The partition function for the rotational states
is

hcB T
Z(T)=§ (27+1) exp[—-—k—f](]—l—l):'za—, 17

where the approximate equality in (17) is obtained by
replacing the sum over J states by an integral, and 6, is
the characteristic rotational temperature for CO, i.e.,

heB

0= =2.TIK.
k

(18)

The replacement of the summation over J by an integra-
tion is valid for 7>>6,. Using (22) and (23) we find that
the expression for the Doppler absorption cross section
in the J — J—1 line is

4rt g2 ig
= — iy 76,/ T
73 h<2kT>T expl=7%:/T]

X{1—exp[—270,/TT}. (19)

We may now follow a procedure similar to that used to
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find the flux divergence in the 62 x O line to obtain the
flux divergence for a J — J—1 rotational transition in
CO. The expression so obtained is then summed over J,
but the summation is replaced by an integration as in the
evaluation of the partition function, and termsin J are
neglected relative to terms in J2 The result we obtain is

d «
7— 2 F; 5_1=—Rco(3,T)

dz J=1

X[1—A4%o(TsT)—A%o(T)], (20)
where
2107r4 T 2
Rco(z, T) = 3 Cd234nco(z) (——)
6,

=2.58 X 10"23”(;0 (Z) T2 (21)

is the radiative loss (ergs cm—2 sec™! )given in the Bates’
approximation, and

oo (T T)= (1
Aoo(Ta, )—5(—T—)E2<ro—f>, 22)

Aroo(T)=4 / [T/ T@ B =) ). (23)

The optical depth 7 is taken as the optical depth in the
strongest line. The J dependence of the optical depth has
not been included in the J sums.

4. Comparison with the Bates’ approximation

Bates (1951) wrote the rate of radiative loss in the
62 p O line as
R=eAn(1—0c/p), (24)
where e is the energy emitted in a transition; 4 the
Einstein coefficient for spontanecus emission; » the
number density of the emitting state, which is readily
related to the total species number density through the
partition function; and o/p is the ratio of the energy of
the radiation field which lies within the Doppler width
of the line to the energy which would lie within this
width if the radiation field and gas were in thermo-
dynamic equilibrium. The expressions derived above
for the net emission in the O [Eq. (12)] and CO
[Eq. (20)] lines are of this form, o/p being the sum of
the two terms 4! and A2 in these equatious.
The first term A1in the brackets of (12) and (20) rep-
resents absorption in the line or lines from the planetary
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spectrum. As noted by Bates, near 7=r7,, this term is
roughly T'g/2T, where T is the local temperature at 7.
This follows directly from (22) for the CO lines and
holds approximately for the 62 p O line if the local tem-
perature is greater than 228K, as can be seen by expand-
ing the exponential terms in (14). Thus, if the plane-
tary effective temperature is more than twice the tem-
perature at the altitude where O or CO first appears,
there can be a net heating due to this term alone.

The second term 42 in (12) and (20), represents ab-
sorption at a given level of the radiation emitted at all
other levels of the atmosphere, the radiation from each
emitting layer being attenuated along the optical path
between these levels.

This physical interpretation facilitates writing a
general expression for the net emission from a molecular
band. The flux divergence is

w-il—( F)d
/0 dzw )y
s 1.70(1'0)
=— 1 drxeJ,(7)| 1—- Ea(r— 19
/o 1 Bt
1 o)
—5/; JP(T)El(li—-rl)dt:In, (25)

the last two terms in the brackets of the integrand on
the right-hand side of (25) being the ratio of the energy
of the radiation field contained in the band to that
which would be contained in the band under equilibrium
conditions. The frequency integration in (25) is difficult
in general. However, if we again assume that the radi-
ation traversing the medium is a broad function of
frequency relative to the widths of the absorbing lines
in small band intervals, we have

d 1 jo(To)
E;(TF)— —4#5](1)[1—5 o Es2(ro—17)
1 o J(@)
5 /0 J(T)El( [t—7] )dt]n (26)

for the flux divergence in a given band interval, .S being
the band intensity in the interval.

Fig. 1 shows a comparison of the Bates’ radiative loss
term with the loss given by (12) and (20). These are
computed on the basis of a model atmosphere for the
planet Mars. This is an optically thick model in both O
and CO, unit optical depths in these constituents occur-
ring at 121 and 128 km, respectively. The model assumes
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{ F1. 1. Comparison of the net emission (eV cm™ sec™) in the
62 u O line and the CO rotational lines with the radiative losses
given by the Bates’ approximation. Computed values of the

v?.rlous terms are based on a model Martian atmosphere which
is optically thick in both O and CO. The curves are: (1) radiative

heatmg and loss in O; (2) radiative heating and loss in CO; (3)
radiative loss in O in Bates’ approximation; (4) radiative loss
in CO in Bates’ approximation. Curves (3) and (4) are terminated
at the altitudes of unit optical depth in O and CO.

!
|

densities of 7X10" cm~2 of both O and CO at 90 km.
The temperature profile above this point is taken as

: T(Z) = Tm+ (Tco— Tm){ l—exp[— (Z-zm)2/C]}) (27)

where T, the temperature at 90 km, is taken as 125K,
and an exospheric temperature 7T, of 300K has been
assumed. The constant C may be evaluated by assuming
a T(z) value at any altitude above 90 km. For the com-
putatlons represented in Fig. 1, we have taken 7'(120)=
160K. The integrals which appear in (15) and (23) have
been evaluated with a two-point quadrature formula,
the weights and divisions being computed for each value
of 7. The method is discussed by Chandrasekhar (1960).

For the model in Fig. 1 we see that there is a heating in
the CO lines which peaks at 110 km and has a magnitude
of about 32 €V cm3, This is due entirely to absorption
from the surrounding atmosphere, i.e., to the term A2
in (20). Absorption from the planetary infrared spec-
trum occurs within the first kilometer above 90 km and
is indicated, with exaggerated width, at the extreme
left-hand side of the figure. The heat source provided by
the term A1 is of the same magnitude as A2 Both of
these heating terms are no doubt of trivial importance
insofar as determination of the temperature in the 90~
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120 km region is concerned. The net heating in the 62 u
O line is more extensive than that in the CO rotational
lines. There is, of course, more energy available for ab-
sorption in the planetary spectrum at 62 g than in the
far infrared CO lines.

For altitudes roughly 15 km above the altitudes of
unit optical depth in O and CO, the cooling given by
(12) and (20) is less by more than an order of magnitude
than that given by Bates’ approximation. For several
kilometers below the altitudes of unit optical depth
there is an actual net cooling where the Bates’ approxi-
mation gives no cooling. The form of the radiative emis-
sion terms, when expressed as the divergence of the
radiative fluxes in the emission lines, therefore deviates
considerably from the Bates’ approximation over a wide
altitude interval.

5. Summary

Those terms in the thermal conduction equation
which represent radiative emission by O and CO have
been derived. The thermal conduction equation which
includes these terms, as well as CO, loss and ultraviolet
heating, is the appropriate one to use in energy balance
calculations for the thermospheres of the terrestrial
planets. The equation used in this investigation differs
from those usually employed in thermospheric investi-
gations by the inclusion of infrared absorption terms.
The spontaneous radiative emission at a given altitude
is a function only of the local temperature at that alti-
tude, but absorption depends upon the flux originating
at all other levels and is thus a function of the run of
temperatures throughout the thermosphere, as well as
of the planetary effective temperature. The upper atmo-
spheric energy balance is therefore expressed by an in-
tegro-differential equation for the temperature profile
T(z) in contrast to the differential equation which ex-
presses energy balance in the Bates’ approximation. The
net radiative emission as a function of altitude has been
compared with that given by the Bates’ approximation
for a model Martian atmosphere. The differences be-
tween the net emission terms and the Bates’ approxi-
mation are substantial at low altitudes, suggesting that
these absorption terms should be included in thermal
structure calculations for the terrestrial planets.
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