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ABSTRACT

The solar differential rotation, and large-scale meridional currents are investigated with the axially
symmetric, time-independent hydrodynamic equations of motion, including anisotropic convective
viscosity forces. The ¢-component of the equations of motion is integrated to give a linear, ordinary
differential equation determining the angular velocity distribution. The Reynolds number for the dif-
ferential rotation in the convection zone is shown to be large, and an approxzimation based on this fact
is used to solve the equations of motion to first order, under the assumption that the polar heating effects
are negligible and that the convection zone is barytropic. A good fit to the observed differential rotation
is obtained if the anisotropy parameter satisfies s — 1 = 1, and the differential rotation is then approx-
imately independent of the magnitude of the dynamic convective viscosity 5. The circulational velocities
near the surface at high latitudes are ~ (s — 1)p™1 grad ». Reasonable agreement with observed values
is shown.

I. INTRODUCTION

The problem of constructing a theoretical model of the solar differential rotation and
the large-scale circulation currents is one of long standing, and several attempts have
been made to find solutions of the hydrodynamic equations of motion which reproduce
the fluid motions observed in the Sun.

These motions are on a scale much larger than the granulation size (i.e., much larger
than 1000 km) and are of two sorts: First is the differential rotation, the fact that the
Sun’s angular velocity at the equator is about 20 per cent larger than that near the
poles. Second is the over-all meridional circulation (the component of the fluid velocity
in planes of constant longitude), which in the photosphere is observed to be of the order
of 103-10* cm/sec, in contrast to an equatorial rotational velocity of about 2 X 10°
cm/sec. Systematic studies of sunspot motions, which presumably reflect velocities deep
in the convection zone, show meridional velocities of about 200 cm/sec.

The most widely employed approach to the theoretical understanding of these mo-
tions has been to assume that they are primarily generated by the Sun’s over-all rota-
tion and that the velocity fields concerned do not depend on time and longitude. This
latter assumption, while not definitely established observationally, simplifies the equa-
tions of motion a great deal. The present paper employs these assumptions throughout.
The effects of ‘“‘supergranulation” are not discussed.

We here take the standpoint, in common with many previous authors, that the differ-
ential rotation and the associated circulations may be described by stationary, axially
symmetric solutions of the hydrodynamic equations of motion, with convective (turbu-
lent) viscosity forces included. The ordinary molecular and radiative viscosities can be
shown to be many orders of magnitude smaller. This immediately limits the validity of
the analysis to dimensions larger than the scale of the turbulence, which is about 500 km
at the top of the convection zone and about 7 X 10* km at the bottom. Since the total
depth of the convection zone is, in the model used here, about 2 X 105 km, we there-
fore expect our conclusions about motions at the bottom to be very rough.

* Presently on leave from Aerospace Corporation as NAS-NRC Research Associate at the Goddard
Institute for Space Studies
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Let us sketch briefly the progress made up to now by other authors and indicate the
approach of the present paper. For a more comprehensive review the reader is referred
to Mestel (1965).

Most of the previous efforts have centered on the “polar heating’” hypothesis, which
would derive the meridional circulation and the differential rotation from the fact that
in a rotating star strict radiative equilibrium is not possible, the temperature on a given
equipotential surface being higher near the pole than at the equator. This sets up an
unbalanced acceleration force in the meridional planes.

This idea is based on the well-known von Zeipel theorem, and Randers (1942) showed
that the resulting differential rotation is of the proper sign if viscous effects are neglected.
Schwarzschild (1947), using numerical integration techniques, predicted a differential
rotation of the proper order of magnitude. Sweet (1950) and Opik (1951) calculated the
meridional velocities in detail, and recent refinements have been made by Smith (1966)
and Mestel (1966). For the Sun, the velocities predicted by the polar heating theory are
generally 1071°-10~% cm/sec, and thus are many orders of magnitude slower than those
actually observed.

A newer idea is that the anisotropic convective viscosity of the convection zone must
be introduced. Wasiutynski (1946) seems to have been the first to consider anisotropic
viscosities in solar physics, and Biermann (1951) has described the physical causes and
effects of this anisotropic turbulence in stellar and planetary atmospheres. Kippenhahn
(1960, 1963) has calculated a differential rotation and system of circulational currents
for the Sun, using Wasiutynski’s anisotropic viscosity and neglecting the effects of polar
heating. Kippenhahn (1963) uses an iterative approximation based on the assumption
that the viscous forces are much larger than the inertial ones; i.e., that the Reynolds
number for the differential rotation is small. However, the first-order differential rota-
tion that he calculates is much larger than his zeroth-order rotational velocity, and
thus the approximation scheme does not converge. We show in § IIT that in the solar
convection zone the viscous forces are actually very small, and hence that the approx-
imation corresponding to a large Reynolds number is the valid one.

Also, Sakurai (1966) has investigated the motions generated by the anisotropy of the
viscosity, using an expansion in powers of the ratio of the convection zone depth to the
solar radius. We discuss his results in § ITI.

Another school of thought maintains that the differential rotation is really an average
over time and longitude of wind fields which are strongly dependent on these variables.
The reader is referred to the papers of Ward (1965) and H. H. Plaskett (1966) for con-
siderations of this sort.

The results of the present paper are as follows: In § IT we integrate the ¢-component
of the exact equation of motion, obtaining a linear, ordinary differential equation (in gen-
eral, a singular one) for the rotation law in the convection zone. If the polar heating is
neglected, the magnitude of the differential rotation is shown to depend only “weakly”
on the magnitude of the viscosity. In § III we apply the results of § II to the solar con-
vection zone, neglecting polar heating and restricting our attention to the anisotropic
convective viscosity. The large Reynolds number approximation is introduced, and the
equations of motion are integrated to first order, full account being taken of the effects
of variable density and viscosity. The approximation is justified in detail by means of a
model of the convection zone by Baker and Temesvary (1966) and is shown to be valid
everywhere, except for a thin layer at the surface.

Section IV is devoted to a rough power-series analysis of the approximate equations,
valid near the rotational axis. The anisotropy parameter can be adjusted to give a dif-
ferential rotation of the proper sign and magnitude, and values for the meridional veloc-
ities then follow, which are shown to be roughly independent of the order of magnitude
of the angular velocity and which agree with observations,
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II. GENERAL THEORY

We exhibit the hydrodynamic equations of motion with 9/d¢ = /3¢ = 0. Both
cylindrical coordinates (R,z,¢) and spherical coordinates (r,0,¢) are employed through-
out, with R = 7 sin 6 and z = 7 cos 0; ¢ is the longitude angle, and the polar axis (R =
6 = 0) coincides with the axis of rotation. In cylindrical coordinates the equations of
motion are

E)vR a'UR 'U¢2_ 16? 31!1 1

“OR T TR T L3R 24y 1
R oR v 0z R pak +pr[77)S)vRy7)] 1)
97, dv._ _19dp oy 1
VR 6R+Uz 3 = 0z +pf [n,5,08,0:], )
and
0 v VRO
vR 61§+v ¢+ ;¢“_f¢[’7,3,7)¢], @)

where (vg,v,) is the meridional circulation velocity, p is the pressure, and ¢ is the gravi-
tational potential; f is the anisotropic convective viscosity force, 7 is the scalar part of
the dynamic viscosity, and s is the amsotropy parameter. We set! n = }pv.£ by analogy
with the kinetic theory of gases, where p is the density, v. is the root-mean-square con-
vective velocity, and £ is the mean free path of the convective elements. We put £ equal
to the mixing length, which is roughly the same as the pressure scale height (Bohm-
Vitense 1958); f is a linear functional of n: f(an) = af(n), for constant a.

It is important to note that we have written fz and f, as not containing vs. This is
true for Wasiutynski’s form of the viscous stress tensor, as used by Kippenhahn (1960,
1963). Elsisser (1966) has derived this form from kinetic theory, but found it necessary
to assume that the convective velocity moments did not depend on position. We know,
however, that v, is definitely a function of r, and hence extra terms will appear in the
stress tensor. But one can use Elsdsser’s formalism to show that in our axially sym-
metric case these terms do not contain v;. We mention also that axial symmetry, to-
gether with certain symmetry properties of the second velocity moments, implies that
f4 contains no extra terms at all, and hence Wasiutynski’s form for fy may be used.

We must also employ the equation of continuity, which reads in our case

RaR(vaR)-l- (pv:) =0. @)

Since this equation has become two-dimensional, it can be satisfied identically by means
of a stream function S, such that

1 4§ 1 4S5
R—;—{E, vz_+E5—R. ()

VTp= —
Note that this does not imply incompressible flow. The lines S(R,z) = constant are
then the stream lines of the meridional flow.

We must now say a word about the boundary conditions to be employed in inte-
grating equations (1)-(4). Our interest is primarily in the convection zone, where
n % 0, so that one should generally match the currents there to the meridional currents
generated by the polar heating in the radiative layers. However, in the solar case, these
latter currents are very small, as we have already seen, and it will be reasonable to as-
sume later on for the Sun that the circulation is inclosed entirely in the convection zone.

1 See Elsiisser (1966) The factor % should clearly be used.
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The continuity of the viscous stress tensor across the boundaries of the convection
zone must also be insured. But since we wish to include the effects of a variable viscosity,
which we show to be very important, we may satisfy this by letting n — 0 at the bound-
aries. This must be the case anyway as is shown in § III by direct calculation of  from
the convection zone model. This sort of analysis is to be contrasted with the rather
artificial boundary conditions on 74 which one must use when assuming » constant.

Let us now proceed to find the integral of equation (3). We do this in a very general
way without making any assumption as to the relevance of the polar heating hypothesis.
Using equation (5) and defining Ryy = R?Q = M (the angular momentum/mass), we
write equation (3) as

oS oM 4SS oM

9 9y _”_lzﬂe)_i 0SOM _ 84S dM _
”(“ oR T % e T =ri\3R a9z 9z oR/) "~ * ©

R
Note that the density, not assumed to be constant, has dropped out of the equation.
We also have, quite generally,
M M oM oM
feln,s,0]l =g W‘l‘ g2 *5—22—4' gs EE“F g4 —52—+ gsM
where g; and g, are proportional to 5 and gs, g4, and gs contain 5 and grad .

Now let us suppose that we have been able to find coordinates # = u(Rz), w =
w(R,z), such that dM/du = 0, and hence so that the lines w = constant are lines of
constant M. We show in § ITI that in the high Reynolds number case #» = zand w = R
to first order. Then it is easy to show that

aS M asaM__J u,w\ 95 M

R 3z 9z R " \Rz/ du dw’

and equation (6) becomes, with D = d/dw,
'g-%DM=f]_(u,‘ZD)DzM-l—f2(%,W)DM+f3(%,W)M- )

Now since M does not depend on %, we may integrate equation (7) between any two
limit curves # = %i(w) and u = us(w), getting

[S(u2,0) — S(u1,w))DM = h(w)D?M + ho(w)DM + hy(w)M , (8

which is our linear, homogeneous, ordinary differential equation determining the differen-
tial rotation. The boundary conditions € finite and Q2/dR = 0 at R = 0 will generally
suffice to determine M completely, except for a multiplicative constant, once S(u;,w)
has been specified from boundary conditions.

Now let us suppose that we wish to neglect the polar heating currents entirely, which
are vanishingly small in the Sun. Then it is most useful to choose #3(w) to be the upper
boundary of the convection zone, and #;(w) to be the lower boundary; and thus #; and
uy are stream lines, so that there be no fluid flow across them. Therefore, S(u;w) =
constant. Further, axial symmetry requires that the polar axis R = 0 must also be a
stream line (i.e., S(#,0) = constant); and since the polar axis connects #; and #., the
continuity of S requires S(u1,w) = S(u2,w). Therefore the left-hand side of equation (8)
vanishes, and the resulting equation for M is then invariant under the substitution
n — an, where o is a constant.

This shows what we mean by the statement that the differential rotation depends
only weakly on the magnitude of n: Once the topology of the lines w = constant has
been determined, then the distribution of M from line to line is independent of the sub-
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stitution n—> an. However, the determination of the w-lines themselves will depend
in a non-linear fashion on 7. In the next section we show that for large Reynolds num-
bers (small ) the differential rotation is completely independent of the magnitude of 7.

Having thus determined the differential rotation, we may then substitute M (») back
into equation (7) to determine v, < 35/0u. We see that the meridional velocities are
directly proportional to n (again, in this restricted sense), and hence the more viscous
the convection zone, the faster must be the angular momentum transport to compen-
sate for the losses generated by the convective viscosity.

ITI. APPROXIMATION FOR THE SOLAR CONVECTION ZONE

We now develop an approximation for large Reynolds number, which we show to be
valid throughout the solar convection zone, except for a surface layer. This approxima-
tion may be treated formally by expanding the dependent variables in powers of a dimen-
sionless parameter A which is of the order of n(2R¢?p)~%, an inverse Reynolds number,
where @ = 3 X 10~% sec! is a typical value for the solar angular velocity, and R, is the
solar radius. Since 5 = $pv.f, we get X ~ (v.,/RoQ)(£/R,). Now the scale height £ is much
smaller than R, and is greatest at the bottom of the convection zone, where £~ R,/10,
whereas v, < RoQ >~ 2 X 10° cm/sec at the bottom, but v, ~ R,Q at the top. There-
fore N < 745 everywhere. This criterion will be more carefully scrutinized later on.

We solve equations (1)-(4) to first order in X under the further assumption that the
convection zone is barytropic; i.e., that there exists a unique equation of state p = f(p).
Biermann (1958) and Kippenhahn (1960) have shown that this is valid to great accu-
racy in the solar convection zone, except for a very thin layer at the surface. This as-
sumption rids us of the last vestiges of the polar heating effect, which depends on
VP X Vp # 0, and we can write

VI VY=o () Ve =V | [T f (p)dp+v | = VF,

where
= ? ~1 £/
F= "7 (p)dp+y.

Since 7 is a first-order quantity, equation (3) implies that vz and v, must vanish to
zeroth order. Thus we expand vr = vri\ + vr:A2 -+ . . ., and similarly for v,. Further,
vs = R(Q 4+ U\ 4+ . . .), with the same for F and p. Since 7 is first order, we may imme-
diately write the zeroth- and first-order parts of equations (1) and (2): equation (1) im-
plies RQ¢?* = dF,/dR and 2RQyQ; = dF1/dR, while equation (2) yields 0F,/dz =
dF1/8z = 0. Hence F, and F; are arbitrary functions of R, and therefore Q; and Q; are
also functions of R only. As mentioned in § II, the fact that » — 0 at the convection
zone boundaries insures the continuity of the viscous stress tensor without the necessity
of imposing boundary conditions on .

We thus conclude that, to first order in A, the lines of constant M = R2Q are lines of
constant R, and that we may set # = z and w = R.

Let us now turn to equation (6). Since M = M(R) to first order we will obtain
S = S+ S22+ . .. to second order by solving

‘M aM
~5 =R =R (o g+ o0 G ), ”

which is already in the form of equation (7). From now on, we drop the indices indicating

the order of the terms, for we do not wish to go to higher orders.
By assuming axial symmetry, we have met the objections to the Wasiutynski tensor
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posed by Elsisser (1966), at least as regards f, (see § IT). Note that the Wasiutynski form

also neglects distortions of the viscosity tensor from spherical symmetry. However, these

distortions are only about 2 parts in 10° for the Sun, and may be disregarded. Then f; is

most conveniently expressed in spherical coordinates as

9
7

1
f¢=ﬁsm 0 3

oQ 0 oQ
4, 93¢ — 3 a2 gy—1_ 9 ing g 23
[r nar+2n(1 s)r Q]—I—(r sin? 9 ) 30 (sr; sin 060)' (10)

The meaning of the anisotropy parameter s is as follows: Always, s > 0; s = 1 is
complete isotropy, and fs then reduces to the ordinary molecular viscosity form. The
expression 1 > s > 0 means that the turbulent exchange is stronger in the radial
(vertical) direction, and s > 1 means that it is stronger in the horizontal directions.

We now examine more carefully the validity of our approximation procedure. Our
iterative technique will converge rapidly only if the meridional velocities given by equa-
tion (6) turn out to be much smaller than a typical value of v4 ~ RoQ2. We have dvy/dR ~
%/Ro~ @, and from observations, RedQ/dr ~ 3Q~ 32/36, etc. But since # runs

TABLE 1

SOLAR CONVECTION ZONE PARAMETERS (BAKER AND TEMESVARY 1966)
[Mixing Length £ = 1.5 X (Pressure Scale Height)]

Depth (cm) p (gm/cm3) £ (cm) vc (cm/sec) n=§pvc‘€ p‘lldn/drl
3 4(6) . 4 0(=7) 2 3(7) 2 4(4) 7 3(4) 3 1(5)
1 3(7) 4 6(=T7) 3 3(7) 2 2(5) 1 1(6) 574)
3 7(7) 8 3(=7) 4 5(7) 1 5(5) 1 9(6) 5 4(4)
15(8) . 7 2(—6) 8 3(7) 7 6(4) 1 5(7) 2 9(8)
3 6(8) 6 2(—5) 1 5(8) 4 2(4) 1 3(8) 1 6(4)
1 0(9) 8 2(—4) 4 5(8) 2 2(4) 2 6(9) 8 4(3)
3 3(9). 8 3(=3) 1 6(9) 11(4) 4 9(10) 4 0(3)
1 1(10) 7 6(—2) 559 5 4(3) 7 5(11) 1 6(3)
1 8(10) 1 8(—1) 7 8(9) 2 9(3) 1 4(12) 1 4(3)
1 9(10) 2 1(-1) 8 1(9) 2 0(3) 1 1(12) . .

through its entire range of values over the convection zone depth AR, dy/dr ~ n/AR ~
47/R,, and we see that the terms in equation (10) containing dy/dr will be more impor-
tant than the rest. Setting v,2 = vz? + v, one can then use equations (6) and (10) to

estimate
Om _1fsl _ ldn/dr|
R pRQ2 = pRQ '

()

Thus we must determine the right-hand side of equation (11) throughout the con-
vection zone. Table 1 has been computed from a model of the convection zone calcu-
lated from mixing-length theory by Baker and Temesvary (1966). The mixing-length £
has been set equal to 1.5X (pressure scale height). D is the depth from the top of the
photosphere, not from the top of the convection zone, which extends from about D =
2.7 X 106 cm to D = 1.9 X 10* cm.

Since RoQ =~ 2 X 10% cm/sec, we see from the last column of Table 1 that v,/
(RoQ) < 1 is satisfied for D > 10® cm, whereas for D < § X 107 cm the agreement is
not very good. But 5 X 107 cm </ at this depth, and variations over this small a
distance have no relevance for a viscosity theory, which is good only for scales ><.
Thus our criterion predicts good convergence of the approximation scheme, except for
the uppermost layers, where the predicted velocities are too high. Let us note, however,
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that near the bottom of the convection zone the mixing length £ is of the order of the
total depth of the convection zone. Thus any results for the bottom layers will be quite
rough. A more serious defect is the fact that at no depth is £ less than about % this
depth, and since the coefficients of equation (8) depend on the application of boundary
conditions at the top and bottom, we should not expect the results of any theory em-
ploying a convective viscosity to correspond very accurately with observation.

Note also from Table 1 that, at the bottom of the convection zone, » descends to zero
from its peak value over a distance considerably smaller than a mixing length. Since
the viscous stresses arise from convective elements which have come from distances ~¥,
we cannot contemplate stresses caused by large changes in velocities or viscosity which
occur over distances smaller than a mixing length. Thus the last entry in the last column
of Table 1 is artificially large.

Sakurai (1966) has also investigated this anisotropic viscosity theory. He uses an in-
teresting iterative approximation based on the smallness of the ratio of the convection
zone depth to the solar radius and concludes that his method is self-consistent only if
the convective velocity is ~10* cm/sec. Baker and Temesvary (1966) show that this
low a velocity is obtained for D > 10° cm (see Table 1). In his numerical analysis Saku-
rai assumed o, = constant.

To continue with our analysis of equation (9), we may convert equation (10) into
cyl/indrical coordinates and write, assuming that s is independent of position and that
/90 = 0,

— (R2Q)’%§=R3Q”[1+ (s—1)cos? 8]9
+3R2Q'[14+ (1 — s)(sin28 —cos28) ]9+ 6RQ(1 — s)sin? 0y (12)

+R[RQY+2(1—5)Q]sin 6 %Eg(R,z),

where the primes indicate d/dR.

As discussed in § IT, we wish to integrate this equation neglecting the polar heating
currents. Since @ does not depend on z, the above equation implies vz(R,z) = vz(R,—3),
and from equation (S5), we then obtain v,(R;z) = —v,(R,—2). Hence v, vanishes at
at 2= 0, and S is also constant on z = 0. Therefore the arguments of § IT imply that
we may take the lower boundary of the integration to bez = 2;(R) = 0 for R; < R < R,,
and z;(R) = (R2 — R for 0 < R < R;, where R; = Ry — AR is the inner radius
of the convection zone, and the upper boundary is z2(R) = (R¢* — R?)'/2 Thus we may
restrict our attention to the region z > 0.

Since by the arguments in § I, S(R,z1) = S(R,32) (= constant), we immediately
integrate equation (12) to find

— ey [ 82 d= [ g (Ra)ds=m(R)Q + I (R)Y + I (R)=0. a9

Equation (13) is the approximate form of equation (8), valid to first order. Note that
n and dn/dr occur linearly, and that the equation is invariant under 5 — a7, where o is
a constant. Thus, to first order, the magnitude of the differential rotation does not de-
pend on the magnitude of . However, the anisotropy parameter plays a crucial role,
for s = 1 implies that @ = constant.

It is possible to integrate equation (13) exactly. Using equation (10) in cylindrical
coordinates, one can show that f; may be written as R*, = dF,/dR + 9F;/9z. There-
fore one may perform an integration by parts with respect to z in equation (13), and
since 5 vanishes on the convection zone boundaries and 4%2/90 vanishes at z = 0, the
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boundary terms may be thrown away. Equation (13) then becomes a perfect differen-
tial in R, and one easily integrates to find

Q' s () £, n(r) -1
T RG -1 (el [Cal Rt | =FR),

where r = (R? + 22)!/2, The integration constant has been set equal to zero so that Q may
remain finite at R = 0.
We may obviously integrate again to get finally

Q(R) = ay exp[f0 RF(R’)dR’] . (14)

It might be well to mention that we have no real assurance that the exact steady-state
solution of equations (1)-(4) converges uniformly as 4 — 0 to the solution for » = 0.
This difficulty also occurs in boundary-layer theory in compressible hydrodynamics,
which is likewise a high Reynolds number approximation (Pai 1956). As far as the author
knows, no satisfactory theory exists for these problems, called “singular perturbation
problems.” One can only rely on plausibility arguments and comparison with observa-
tion, as in the following section.

IV. NUMERICAL RESULTS AND CONCLUSIONS

Since R = 0 is surely a line of constant M, we may expect equation (13) to be very
accurate near the polar axis. Thus let us expand the unknowns £ and .S in power series
in R? and find the first non-trivial coefficients.

Substitution of Q(R) = Z,a,R* into equation (14) may be easily shown to lead to
the result

a1=au(s—1)ﬂ:odzn(z)z*"’/sﬁ:')dzn(z),

where R; is the inside radius of the convection zone. But from Table 1 we see that »(r)
peaks near R; = R — AR, and we have approximately a; =~ ao(s — 1)s7'R; 7% and there-
fore

SZ(R)NQ(O) 1) (R) (15)

We see that for the differential rotation to be of the observed sign and magnitude, we
must have s — 1 ~ 1. Kippenhahn (1963) also concluded that s — 1 > 0 and mentioned
that studies of turbulent convection in thin layers suggest that this is not unreasonable.
Sakurai (1966) also finds s — 1~ $

One may also expand § = fo(z)R2 + fi(z)R*+ . . . and use equation (12) to con-
clude that, to first order in R%

—8S/0z=Rpvr~{[d4saiac—3(s—1)z272]19(z) + (1 —s)z7'dn(z)/dr}R?
Therefore at the top and bottom of the convection zone, where n = 0,

_(1—S)R

(16)
03 dr’

VR

Note that this expression is independent of the angular velocity.
We have seen that s > 1, and thus at the top of the convection zone where dy/dr < 0,
equation (16) implies that vg > 0; whereas at the bottom of the convection zone,
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vp < 0. Thus the surface flow near the poles is from pole to equator, which conclusion
agrees with the observations of Plaskett (1966).

To compute the order of magnitude vg, we need to know dy/dr. Since variations over
distances shorter than a mixing length are meaningless for our theory, we might choose
from Table 1 the surface value p~!|dn/dr| ~ 5 X 10* cm/sec. At a latitude of 60°
(6 = 30°), where R/z2>~ 0.8, with s — 1 = 1, equation (16) predicts 2z ~ 8 X 10% cm/
sec, in rough agreement with Plaskett’s values ~5 X 10° cm/sec for these latitudes.
Since these observations are actually of photospheric velocities, where energy transfer
has become mostly radiative, we would expect these velocities to have decayed to a
value somewhat lower than those in the convection zone.

Measurement of sunspot drifts, which show meridional velocities of about 200 cm/sec
(de Jager 1959), do not extend higher than a latitude of 40° and presumably represent
an average over velocities at different depths. It is difficult to say just how to pick a
representative depth for sunspots since there is no generally accepted model for them.
Danielson (1965) concludes from Deinzer’s (1965) sunspot models that equipartition be-
tween convective and radiative transport inside a sunspot with a surface field of 3000
gauss is reached at D > 10° cm. At a depth of D ~ 3 X 10° cm in the convection zone
we have (s — 1)p~|dn/dr| ~ 800 cm/sec, again in very rough agreement, since we
might expect v, at 30° to be of the order of vz at 60°.

These same calculations have also been made from a convective zone model con-
structed under the assumption £ = pressure scale height (Baker and Temesvary, un-
published). Although the depth of the convection zone in this second model is consider-
ably less than the one used here, the corresponding computed circulational velocities for
the second model are only very slightly smaller than the ones computed here. Thus our
results are insensitive to the particular convection zone model used.

We see that the theory stands up fairly well under comparison with observation, al-
though it must be admitted that both are in great need of refinement. It would be de-
sirable to include non-linear effects in integrating equations (1) and (2), although in
our treatment equations (3) and (4) have not been linearized. However, as we have men-
tioned before, the fact that the mixing length is always of the order of the distance from
the top of the convection zone may limit the accuracy of any theory involving a convec-
tive viscosity.
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